Код документа: RU2642451C1
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[1] Настоящее изобретение относится к области промышленного каталитического синтеза Фишера-Тропша и, в частности, относится к катализатору на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша и к способу его получения.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
[2] Уголь, нефть и природный газ являются важными энергоносителями, от которых зависит существование и развитие человеческой цивилизации, и являются гарантией устойчивого развития национальной экономики, а также безопасности и стабильности. При непрерывной эксплуатации этих энергоносителей энергетический кризис усугубляется, и поэтому актуальной проблемой для ученых являются поиски возобновляемых источников энергии. Китай является страной с крупным сельским хозяйством и имеет большое количество различных видов возобновляемой биомассы. Важным путем решения энергетического кризиса является замена ископаемых источников энергии на энергию возобновляемой биомассы.
[3] Синтез Фишера-Тропша представляет собой процесс, включающий газификацию биомассы в синтез-газ и превращение синтез-газа (CO+H2) в углеводороды в присутствии катализатора. Способ превращения биомассы в синтез-газ и образования разных типов масел с помощью синтеза Фишера-Тропша дает возможность эффективного решения энергетического кризиса.
[4] Основной реакцией синтеза Фишера-Тропша является CO+2H2→(-CH2-)+H2O. Поскольку вместе с образованием углеводородов образуется вода, концентрация воды может достигать очень высоких значений в некоторых реакторах с использованием последующего перемешивания, таких как суспензионный реактор. В настоящее время, в наиболее широко применяемом промышленном катализаторе синтеза Фишера-Тропша используются железо и кобальт в качестве активных компонентов. Для катализатора на основе кобальта для синтеза Фишера-Тропша металлический кобальт является активным компонентом, который может окисляться и деактивироваться водным продуктом, составляющим 50% масс. от общего количества продуктов. Кроме того, чем выше конверсия СО, тем более значительной является деактивация. Например, Bertole et al. (J.Catal., 2002, 210: 84-96) отмечает, что вода приводит к деактивации катализатора на основе Со без подложки, поскольку высокое давление воды (> 0,4 МПа) легко приводит к спеканию катализатора, удельная поверхность кобальта уменьшается и активность металла снижается или абсорбция CO на поверхности катализатора снижается. Batholomew (Appl. Catal. A, 2001, 212.17-60) также придерживается мнения о том, что водяной пар увеличивает скорость спекания катализатора без подложки. Поскольку катализатор на основе кобальта имеет относительно высокую стоимость производства, существуют высокие требования к стабильности, активности и селективности катализатора и, следовательно, крайне необходимо получение нечувствительного к воде катализатора.
[5] В китайской патентной публикации CN 101203304 A описан катализатор на основе кобальта, включающий оксидный носитель. Оксидный носитель содержит алюминий и 0,01-20% масс. лития, при этом литий существует в виде алюмината лития. Такой носитель, содержащий алюминат лития, имеет улучшенную водостойкость, снижает образование тетраоксида диалюминия-кобальта и обладает высокой активностью и селективностью в отношении С5+. Однако получение носителя является сложным и требует прокаливания при 700-1000°C в течение длительного времени.
[6] В китайской патентной публикации CN 1785515 A описан катализатор для синтеза средних дистиллятов из сингаза. В катализаторе используется мезопористый диоксид циркония в качестве носителя. Катализатор содержит 5-35% масс. металлического кобальта, 0-2% масс. благородного металла и 0-10% масс. оксида неблагородного металла. Катализатор имеет высокую активность, хорошую стабильность, высокую селективность в отношении углеводородов, содержащих от 11 до 20 атомов углерода, и хорошие механические свойства. Однако получение мезопористого диоксида циркония является сложным и дорогостоящим.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[7] С учетом описанных выше проблем одной целью изобретения является предложить катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша и способ его получения. Катализатор имеет длительный срок службы, хорошую стабильность и регулируемую толщину слоя оболочки.
[8] Для достижения указанной выше цели в соответствии с одним вариантом осуществления изобретения предлагается катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша. Катализатор содержит кремнеземный носитель. Поверхность кремнеземного носителя насыщена активным компонентом - кобальтом и селективным промотором - цирконием. Снаружи активный компонент кобальта и селективный промотор циркония покрыты слоем оболочки мезопористого материала.
[9] Катализатор изобретения получают с помощью первоначального насыщения активным компонентом поверхности кремнеземного носителя путем импрегнирования, и покрытия активного компонента снаружи мезопористым материалом, имеющим регулярные каналы пор, при этом толщина слоя оболочки мезопористого материала регулируется изменением параметров. Толщина слоя оболочки мезопористого материала может быть в диапазоне 1,8-13 мкм и более предпочтительно в диапазоне 2,0-6,0 мкм. Таким образом, слой оболочки мезопористого материала инкапсулирует активный компонент внутри каналов пор, что позволяет избежать агрегирования и слущивания активного компонента, и в то же время регулярные каналы пор мезопористого материала обеспечивают каналы массопереноса для CO и H2, гарантируя высокую реакционную способность катализатора.
[10] Предпочтительно, чтобы избежать снижения активности катализатора из-за слущивания активного компонента в процессе реакции или в процессе переноса и чтобы предотвратить окисление и деактивацию водой, образованной в реакции, активного металла Co, слой оболочки мезопористого материала покрывают гидрофобным слоем органического соединения.
[11] Предпочтительно кремнеземным носителем является неорганический силикагель.
[12] Предпочтительно неорганический силикагель имеет удельную поверхность 150-350 м2/г, средний размер пор 3-50 нм, объем пор 0,7-1,7 мл/г и размер частицы 20-200 мкм.
[13] Предпочтительно удельная поверхность неорганического силикагеля составляет 200-300 м2/г, средний размер пор неорганического силикагеля составляет 8-13 нм, объем пор неорганического силикагеля составляет 0,75-1,3 мл/г и размер частицы неорганического силикагеля составляет 40-150 мкм.
[14] Предпочтительно содержание активного компонента кобальта составляет 10-25% масс. от общей массы катализатора и содержание селективного промотора циркония составляет 5-10% масс. от общей массы катализатора.
[15] Предпочтительно содержание активного компонента кобальта составляет 15-20% масс. от общей массы катализатора и содержание селективного промотора циркония составляет 5-8% масс. от общей массы катализатора.
[16] Предпочтительно содержание активного компонента кобальта составляет 20-25% масс. от общей массы катализатора и содержание селективного промотора циркония составляет 8-10% масс. от общей массы катализатора.
[17] Предпочтительно катализатор имеет удельную поверхность 150-400 м2/г, средний размер пор 2-40 нм и объем пор 0,5-1,4 мл/г.
[18] Предпочтительно катализатор имеет удельную поверхность 250-350 м2/г, средний размер пор 3-9 нм и объем пор 0,6-1,0 мл/г.
[19] Также предложен способ получения указанного выше катализатора. Способ включает в себя:
[20] 1) импрегнирование кремнеземного носителя в водном растворе соли циркония, выдерживание образующейся в результате первой смеси в течение 12-24 ч, высушивание первой смеси при температуре 70-120°C в течение 8-24 ч, прокаливание первой смеси при температуре 400-500°C в течение 3-12 ч с получением насыщенного цирконием кремнеземного носителя;
[21] 2) импрегнирование насыщенного цирконием кремнеземного носителя в водном растворе соли кобальта, выдерживание образующейся в результате второй смеси в течение 12-24 ч, высушивание второй смеси при температуре 70-120°C в течение 8-24 ч, прокаливание второй смеси при температуре 400-500°C в течение 3-12 ч с получением первичного катализатора на основе кобальта для синтеза Фишера-Тропша;
[22] 3) растворение темплата P123 в растворе азотной кислоты, равномерное перемешивание образующейся в результате третьей смеси, добавление тетраэтилортосиликата в третью смесь и непрерывное перемешивание в течение 12-30 ч для получения раствора-прекурсора мезопористого материала;
[23] 4) импрегнирование первичного катализатора на основе кобальта для синтеза Фишера-Тропша в растворе-предшественнике мезопористого материала с образованием четвертой смеси; и кристаллизацию, промывку, высушивание и прокаливание четвертой смеси для получения катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша.
[24] Предпочтительно способ также включает в себя: 5) импрегнирование катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша в гидрофобном органическом растворе, изолирование образующейся в результате пятой смеси в течение 3-12 ч и выбор органического растворителя для промывки пятой смеси, высушивание пятой смеси при температуре 60-90°С в течение 3-8 ч с получением катализатора на основе кобальта с покрытием из мезопористого материала, обладающего гидрофобными свойствами.
[25] Предпочтительно соль циркония в 1) является нитратом циркония или цирконилнитратом и предпочтительно цирконилнитратом.
[26] Предпочтительно соль кобальта в 2) является карбонатом кобальта или нитратом кобальта и предпочтительно нитратом кобальта.
[27] Предпочтительно в 3) концентрация раствора азотной кислоты составляет 1-2 моль/л; третью смесь перемешивают при температуре 25-45°C до получения осветленного раствора. Тетраэтилортосиликат добавляют в осветленный раствор и продолжают перемешивание в течение 12-24 ч для получения раствора-прекурсора мезопористого материала.
[28] Темплат P123 содержит известный триблоксополимер, т.е. полиоксиэтилен-полиоксипропилен-полиоксиэтилен, имеющий молекулярную формулу PEO-PPO-PEO и общую формулу EO20PO70EO20.
[29] Предпочтительно в 4) кристаллизацию осуществляют при температуре 80-130°C в течение 20-100 ч при скорости вращения 7-20 об/мин. Промывку осуществляют с помощью деионизированной воды до тех пор, пока четвертая смесь не станет нейтральной. Высушивание осуществляют при температуре 80-120°C в течение 10-20 ч. Прокаливание осуществляют при температуре 400-550°C в течение 5-12 ч.
[30] Предпочтительно в 4) кристаллизацию осуществляют при температуре 90-120°C в течение 30-80 ч при скорости вращения 7-15 об/мин.
[31] Предпочтительно в 5) гидрофобный органический раствор представляет собой раствор, выбранный из группы, состоящей из полиметилтриэтоксисилана, γ-аминопропилтриэтоксисилана и триметилхлорсилана.
[32] Предпочтительно в 5) гидрофобный органический раствор представляет собой раствор, выбранный из группы, состоящей из н-гексана, ацетона и этанола.
[33] Предпочтительно в 5) катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша импрегнируют в гидрофобном органическом растворе и изолируют на 3-8 ч и после этого промывают органическим растворителем 2-3 раза.
[34] Преимущества катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша и способа его получения в соответствии с вариантами осуществления изобретения резюмируются ниже.
[35] Катализатор на основе кобальта для синтеза Фишера-Тропша, полученный по изобретению, преодолевает ограничения традиционного катализатора на основе кобальта и катализатора по типу «яичной скорлупы». С помощью первоначального нанесения слоя оболочки мезопористого материала на поверхность катализатора и регулирования толщины слоя оболочки технологическими параметрами, активный компонент катализатора становится защищенным, и в то же время структура каналов пор мезопористого материала обеспечивает каналы для диффузии СО и Н2. Кроме того, введение супергидрофобных органических молекул в слой оболочки мезопористого материала позволяет эффективно останавливать проникновение молекул воды внутрь каналов.
[36] Предотвращается не только слущивание активного компонента в процессе трения, активации или переноса катализатора, но также исключается влияние пара на катализатор в ходе реакции. В связи с этим стабильность катализатора значительно улучшается, срок службы катализатора эффективно увеличивается и перспективы промышленного применения катализатора являются хорошими. Катализатор на основе Со по изобретению обладает длительным сроком службы, высокой реакционной способностью, хорошей стабильностью, высокой селективностью в отношении С5+ и низкой селективностью в отношении метана и поэтому особенно подходит для суспензионного барботажного колонного реактора или суспензионного реактора с непрерывным перемешиванием.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[37] Изобретение описывается ниже со ссылкой на прилагаемые чертежи, на которых:
[38] на фиг.1 представлена схема технологического процесса получения катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша;
[39] на фиг.2 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора B;
[40] на фиг.3 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора С;
[41] на фиг.4 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора D;
[42] на фиг.5 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора E;
[43] на фиг.6 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора F; и
[44] на фиг.7 представлено TEM-изображение, иллюстрирующее толщину слоя оболочки катализатора G.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[45] Для дополнительной иллюстрации изобретения ниже приводятся эксперименты, подробно описывающие катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша. Следует отметить, что следующие примеры предназначены для описания, а не для ограничения изобретения.
Пример 1. Получение катализатора B
[46] Катализатор B содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора и слой оболочки мезопористого материала. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[47] Получение катализатора В осуществлялось следующим образом:
[48] 1) 30 г неорганического силикагелевого носителя, имеющего удельную поверхность 280 м2/г, объем пор 1,25 мл/г, средний размер пор 13,6 нм и размер частицы 40 мкм, импрегнировали в 45 мл водного раствора, содержащего 5,07 г ZrO(NO3)2, с получением первой смеси. Первую смесь затем выдерживали в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч для получения насыщенного цирконием неорганического силикагелевого носителя.
[49] 2) Насыщенный цирконием неорганический силикагелевый носитель импрегнировали в 63 мл водного раствора, содержащего 39,43 г Co(NO3)3·6H2O, с образованием второй смеси. После этого вторую смесь выдерживали на воздухе в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч с получением первичного катализатора на основе кобальта для синтеза Фишера-Тропша.
[50] 3) 4 г темплата P123 растворяли в 140 мл раствора азотной кислоты, имеющего концентрацию 2 моль/л, с образованием третьей смеси. Третью смесь затем перемешивали при 35°C до получения осветленного раствора. 8,4 г тетраэтилортосиликата добавляли в осветленный раствор и продолжали перемешивание в течение 24 ч для получения раствора-прекурсора мезопористого материала.
[51] 4) Раствор-прекурсор мезопористого материала переносили в чистый тефлоновый реактор. 10 г первичного катализатора на основе кобальта для синтеза Фишера-Тропша импрегнировали в растворе-прекурсоре мезопористого материала с образованием четвертой смеси. Четвертую смесь затем помещали в устройство для гидротермического синтеза, кристаллизовали при 130°C в течение 20 ч при скорости вращения 7 об/мин. После этого четвертую смесь промывали деионизированной водой до нейтральной реакции, высушивали при 100°C в течение 12 ч и прокаливали при 550°C в течение 5 ч для получения катализатора В, т.е. катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша.
[52] С помощью определения было установлено, что катализатор В имеет удельную поверхность 291 м2/г, объем пор 1,16 мл/г, средний размер пор 10,6 нм, и толщину слоя оболочки 1,8 мкм. Толщина слоя оболочки катализатора В проиллюстрирована на TEM-изображении, показанном на фиг.2.
Пример 2. Получение катализатора С
[53] Катализатор С содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора и слой оболочки мезопористого материала, как проиллюстрировано в примере 1. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[54] Получение катализатора С является по существу таким же, как и в примере 1, за исключением того, что время кристаллизации в 3) в данном случае составляло 60 ч.
[55] С помощью определения было установлено, что катализатор С имеет удельную поверхность 301 м2/г, объем пор 0,98 мл/г, средний размер пор 9,5 нм и толщину слоя оболочки 5 мкм. Толщина слоя оболочки катализатора С проиллюстрирована на TEM-изображении, показанном на фиг.3.
Пример 3. Получение катализатора D
[56] Катализатор D содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора и слой оболочки мезопористого материала, как проиллюстрировано в примере 1. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс. Катализатор D имеет удельную поверхность 320 м2/г, объем пор 1,02 мл/г, средний размер пор 8,9 нм и толщину слоя оболочки 13 мкм.
[57] Получение катализатора D является по существу таким же, как и в примере 1, за исключением того, что время кристаллизации в 3) в данном случае составляло 100 ч. Толщина слоя оболочки катализатора D проиллюстрирована на TEM-изображении, показанном на фиг.4.
Пример 4. Получение катализатора E
[58] Катализатор Е содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора, слой оболочки мезопористого материала и слой гидрофобного органического соединения триметилхлорсилана. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[59] Получение катализатора Е осуществлялось следующим образом:
[60] 1) 30 г неорганического силикагелевого носителя, имеющего удельную поверхность 280 м2/г, объем пор 1,25 мл/г, средний размер пор 13,6 нм и размер частицы 40 мкм, импрегнировали в 45 мл водного раствора, содержащего 5,07 г ZrO(NO3)2, с получением первой смеси. Первую смесь затем выдерживали в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч для получения насыщенного цирконием неорганического силикагелевого носителя.
[61] 2) Насыщенный цирконием неорганический силикагелевый носитель импрегнировали в 63 мл водного раствора, содержащего 39,43 г Co(NO3)3·6H2O, с образованием второй смеси. После этого вторую смесь выдерживали на воздухе в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч с получением первичного катализатора на основе кобальта для синтеза Фишера-Тропша.
[62] 3) Наносили покрытие слоя оболочки мезопористого материала: 4 г темплата P123 растворяли в 140 мл раствора азотной кислоты, имеющего концентрацию 2 моль/л, с образованием третьей смеси. Третью смесь затем перемешивали при 35°C до получения осветленного раствора. 8,4 г тетраэтилортосиликата добавляли в осветленный раствор и продолжали перемешивание в течение 24 ч для получения раствора-прекурсора мезопористого материала.
[63] 4) Раствор-прекурсор мезопористого материала переносили в чистый тефлоновый реактор. 10 г первичного катализатора на основе кобальта для синтеза Фишера-Тропша импрегнировали в растворе-прекурсоре мезопористого материала с образованием четвертой смеси. Четвертую смесь затем помещали в устройство для гидротермического синтеза, кристаллизовали при 130°C в течение 20 ч при скорости вращения 7 об/мин. После этого четвертую смесь промывали деионизированной водой до нейтральной реакции, высушивали при 100°C в течение 12 ч и прокаливали при 550°C в течение 5 ч для получения катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша.
[64] 5) Катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша импрегнировали в 200 мл раствора триметилхлорсилана и изолировали на 8 ч. Образованную в результате пятую смесь промывали далее безводным этанолом 2 раза, высушивали при 80°С в течение 8 ч для получения катализатора Е, т.e. катализатора на основе кобальта с покрытием из мезопористого материала, обладающего гидрофобными свойствами.
[65] С помощью определения было установлено, что катализатор Е имеет удельную поверхность 279 м2/г, объем пор 0,86 мл/г, средний размер пор 8,2 нм и толщину слоя оболочки 2,5 мкм. Толщина слоя оболочки катализатора Е проиллюстрирована на TEM-изображении, показанном на фиг.5.
Пример 5. Получение катализатора F
[66] Катализатор F содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора, слой оболочки мезопористого материала и слой гидрофобного органического соединения полиметилтриэтоксисилана. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[67] Получение катализатора F является по существу таким же, как и в примере 4, за исключением того, что полиметилтриэтоксисилан используется вместо триметилхлорсилана примера 4 в качестве материала для слоя гидрофобного органического соединения.
[68] С помощью определения было установлено, что катализатор F имеет удельную поверхность 282 м2/г, объем пор 0,91 мл/г, средний размер пор 7,9 нм и толщину слоя оболочки 2,1 мкм. Толщина слоя оболочки катализатора F проиллюстрирована на TEM-изображении, показанном на фиг.6.
Пример 6. Получение катализатора G
[69] Катализатор G содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора, слой оболочки мезопористого материала и слой гидрофобного органического соединения γ-аминопропилтриэтоксисилана. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[70] Получение катализатора G является по существу таким же, как и в примере 4, за исключением того, что γ-аминопропилтриэтоксисилан используется вместо триметилхлорсилана примера 4 в качестве материала для слоя гидрофобного органического соединения.
[71] С помощью определения было установлено, что катализатор G имеет удельную поверхность 280 м2/г, объем пор 0,83 мл/г, средний размер пор 8,5 нм и толщину слоя оболочки 2,3 мкм. Толщина слоя оболочки катализатора G проиллюстрирована на TEM-изображении, показанном на фиг.7.
Пример 7. Получение катализатора H
[72] Катализатор H содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора, слой оболочки мезопористого материала и слой гидрофобного органического соединения γ-аминопропилтриэтоксисилана. Содержание Zr составляет 8% масс., и содержание Co составляет 25% масс.
[73] Получение катализатора H осуществлялось следующим образом:
[74] 1) 30 г неорганического силикагелевого носителя, имеющего удельную поверхность 150 м2/г, объем пор 1,3 мл/г, средний размер пор 8 нм и размер частицы 90 мкм, импрегнировали в 45 мл водного раствора, содержащего 16,74 г Zr(NO3)4·5H2O, с получением первой смеси. Первую смесь затем выдерживали на воздухе в течение 24 ч, высушивали при 120°C в течение 10 ч и прокаливали в муфельной печи при 500°C в течение 3 ч для получения насыщенного цирконием неорганического силикагелевого носителя.
[75] 2) Насыщенный цирконием неорганический силикагелевый носитель импрегнировали в 63 мл водного раствора, содержащего 22,5 г CoCO3, с образованием второй смеси. После этого вторую смесь выдерживали на воздухе в течение 24 ч, высушивали при 120°C в течение 10 ч и прокаливали в муфельной печи при 500°C в течение 3 ч с получением первичного катализатора на основе кобальта для синтеза Фишера-Тропша.
[76] 3) Наносили покрытие слоя оболочки мезопористого материала: 4 г темплата P123 растворяли в 140 мл раствора азотной кислоты, имеющего концентрацию 1 моль/л, с образованием третьей смеси. Третью смесь затем перемешивали при 45°C до получения осветленного раствора. 8,4 г тетраэтилортосиликата добавляли в осветленный раствор и продолжали перемешивание в течение 12 ч для получения раствора-прекурсора мезопористого материала.
[77] 4) Раствор-прекурсор мезопористого материала переносили в чистый тефлоновый реактор. 10 г первичного катализатора на основе кобальта для синтеза Фишера-Тропша импрегнировали в растворе-прекурсоре мезопористого материала с образованием четвертой смеси. Четвертую смесь затем помещали в устройство для гидротермического синтеза, кристаллизовали при 100°C в течение 24 ч при скорости вращения 10 об/мин. После этого четвертую смесь промывали деионизированной водой до нейтральной реакции, высушивали при 80°C в течение 20 ч и прокаливали при 400°C в течение 12 ч для получения катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша.
[78] 5) Катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша импрегнировали в 200 мл раствора γ-аминопропилтриэтоксисилана и изолировали на 3 ч. Полученную в результате пятую смесь далее промывали н-гексаном 3 раза, высушивали при 60°С в течение 3 ч для получения катализатора H, т.e. катализатора на основе кобальта с покрытием из мезопористого материала, обладающего гидрофобными свойствами.
[79] С помощью определения было установлено, что катализатор H имеет удельную поверхность 200 м2/г, объем пор 1,0 мл/г, средний размер пор 4,0 нм и толщину слоя оболочки 2,0 мкм.
Пример 8. Получение катализатора I
[80] Катализатор I содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента, Zr в качестве промотора, слой оболочки мезопористого материала и слой гидрофобного органического соединения γ-аминопропилтриэтоксисилана. Содержание Zr составляет 10% масс., и содержание Co составляет 10% масс.
[81] Получение катализатора I осуществлялось следующим образом:
[82] 1) 30 г неорганического силикагелевого носителя, имеющего удельную поверхность 300 м2/г, объем пор 0,75 мл/г, средний размер пор 13 нм и размер частицы 150 мкм, импрегнировали в 45 мл водного раствора, содержащего 9,5 г цирконилнитрата, с получением первой смеси. Первую смесь затем выдерживали на воздухе в течение 12 ч, высушивали при 70°C в течение 24 ч и прокаливали в муфельной печи при 400°C в течение 12 ч для получения насыщенного цирконием неорганического силикагелевого носителя.
[83] 2) Насыщенный цирконием неорганический силикагелевый носитель импрегнировали в 63 мл водного раствора, содержащего 7,55 г CoCO3, с образованием второй смеси. После этого вторую смесь выдерживали на воздухе в течение 12 ч, высушивали при 70°C в течение 24 ч и прокаливали в муфельной печи при 400°C в течение 12 ч с получением первичного катализатора на основе кобальта для синтеза Фишера-Тропша.
[84] 3) Наносили покрытие слоя оболочки мезопористого материала: 4 г темплата P123 растворяли в 140 мл раствора азотной кислоты, имеющего концентрацию 2 моль/л, с образованием третьей смеси. Третью смесь затем перемешивали при 25°C до получения осветленного раствора. 8,4 г тетраэтилортосиликата добавляли в осветленный раствор и продолжали перемешивание в течение 30 ч для получения раствора-прекурсора мезопористого материала.
[85] 4) Раствор-прекурсор мезопористого материала переносили в чистый тефлоновый реактор. 10 г первичного катализатора на основе кобальта для синтеза Фишера-Тропша импрегнировали в растворе-прекурсоре мезопористого материала с образованием четвертой смеси. Четвертую смесь затем помещали в устройство для гидротермического синтеза, кристаллизовали при 80°C в течение 70 ч при скорости вращения 15 об/мин. После этого четвертую смесь промывали дистиллированной водой до нейтральной реакции, высушивали при 120°C в течение 10 ч и прокаливали при 500°C в течение 8 ч для получения катализатора на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша.
[86] 5) Катализатор на основе кобальта с покрытием из мезопористого материала для синтеза Фишера-Тропша импрегнировали в 200 мл раствора γ-аминопропилтриэтоксисилана и изолировали на 15 ч. Полученную в результате пятую смесь далее промывали ацетоном 2 раза, высушивали при 90°С в течение 5 ч для получения катализатора I, т.e. катализатора на основе кобальта с покрытием из мезопористого материала, обладающего гидрофобными свойствами.
[87] С помощью определения было установлено, что катализатор I имеет удельную поверхность 350 м2/г, объем пор 0,6 мл/г, средний размер пор 9 нм и толщину слоя оболочки 6 мкм.
Сравнительный пример 1. Традиционный катализатор А
[88] Традиционый катализатор А содержит: неорганический силикагель в качестве носителя, Co в качестве активного компонента и Zr в качестве промотора. Содержание Zr составляет 5% масс., и содержание Co составляет 20% масс.
[89] Получение катализатора А осуществлялось следующим образом:
[90] 1) 30 г неорганического силикагелевого носителя, имеющего удельную поверхность 280 м2/г, объем пор 1,25 мл/г, средний размер пор 13,6 нм и размер частицы 40 мкм, импрегнировали в 45 мл водного раствора, содержащего 5,07 г ZrO(NO3)2, с получением первой смеси. Первую смесь затем выдерживали в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч для получения насыщенного цирконием неорганического силикагелевого носителя.
[91] 2) Насыщенный цирконием неорганический силикагелевый носитель импрегнировали в 63 мл водного раствора, содержащего 39,43 г Co(NO3)3·6H2O, с образованием второй смеси. После этого вторую смесь выдерживали на воздухе в течение 16 ч, высушивали при 110°C в течение 8 ч и прокаливали в муфельной печи при 450°C в течение 10 ч с получением катализатора А на основе кобальта для синтеза Фишера-Тропша.
[92] Оценочные результаты синтеза жидких углеводородов с использованием биомассы соответственно в присутствии катализаторов B-I и традиционного катализатора А сравниваются в таблице 1.
[93] Из таблицы 1 понятно, что когда традиционный катализатор покрыт слоем оболочки мезопористого материала, конверсия CO не меняется видимым образом и составляет приблизительно 55-65% масс. Это происходит преимущественно потому, что хотя слой оболочки мезопористого материала имеет определенную толщину, размер частиц катализатора относительно мал, сопротивление массопереносу также является относительно низким, и слой оболочки мезопористого материала обеспечивает каналы массопереноса для H2 и CO. В то же время селективность в отношении жидких углеводородов немного повышается и селективность в отношении метана немного понижается, что может объясняться тем, что слой оболочки мезопористого материала способен предотвращать слущивание активного компонента в результате трения в процессе активации и переноса. Кроме того, слой оболочки мезопористого материала способен остановить непосредственный контакт основной массы воды с активными центрами. После модификации гидрофобным органическим веществом поверхности слоя оболочки, селективность в отношении жидких углеводородов увеличивается, и селективность в отношении метана явно уменьшается, что означает, что введение гидрофобного вещества в слой оболочки мезопористого материала способно эффективно предотвращать окисление катализатора водой и деактивацию. Как только маленькая молекула воды будет образована, она вытесняется из слоя оболочки и гидрофобного слоя органического соединения. Таким образом, катализатор на основе кобальта, получаемый в настоящем изобретении, обладает сравнительно высокой реакционной способностью, высокой селективностью в отношении С5+ и низкой селективностью в отношении метана.
[94] В частности, после введения гидрофобного вещества в слой оболочки мезопористого материала селективность в отношении жидких углеводородов улучшается весьма значительно. Поскольку молекулярная структура органического соединения в модифицированном катализаторе F относительно меньше, гидрофобность модифицированного катализатора F относительно хуже, чем у катализаторов E и G. Стоимость органического соединения в модифицированном катализаторе E выше, чем в модифицированном катализаторе G, и оно является легколетучим и имеет сильную коррозийную способность. Катализатор H имеет относительно низкую удельную поверхность и размер пор, и его активность и селективность в отношении углеводородов оказываются несколько ниже. Катализатор I имеет сравнительно большой размер частиц и толстый слой оболочки, некоторое сопротивление массопереносу и пониженную конверсию СО, однако время кристаллизации катализатора I является относительно большим. Исходя из указанного выше, катализатор G превосходит катализаторы E, F, H и I.
Таблица 1 - Сравнение активностей и селективностей катализаторов A-I
[95] Для лучшего объяснения преимущества настоящего изобретения проводили исследование долговременной стабильности традиционного катализатора А и катализаторов B и G по изобретению, результаты которого приводятся в таблице 2 и таблице 3.
Таблица 2. Сравнение конверсии CO разных катализаторов после длительной эксплуатации
Таблица 3. Сравнение селективности в отношении жидких углеводородов (C5+) разных катализаторов после длительной эксплуатации
[96] Из таблицы 2 и таблицы 3 следует, что, когда время реакции для традиционного катализатора А в отсутствие какой-либо модификации достигает 800 ч, активность традиционного катализатора А начинает уменьшаться, что может быть связано со слущиванием Co на поверхности катализатора под действием трения после длительного перемешивания; и вода, образующаяся в результате реакции, приводит к окислению и деактивации катализатора. Когда традиционный катализатор покрывают слоем оболочки мезопористого материала для получения катализаторов В и G, время реакции увеличивается до 1500 ч и конверсия CO по-прежнему остается свыше 55%. Это, вероятно, связано с тем, что слой оболочки катализатора способен защитить активные центры катализатора и предотвратить слущивание металлического компонента катализатора под действием трения. В частности, для катализатора G, модифицированного гидрофобными органическими веществами, когда реакция осуществляется в течение 2500 ч, активность катализатора все еще остается высокой, и конверсия CO по-прежнему составляет приблизительно 60%, и селективность в отношении жидких углеводородов составляет приблизительно 85%, что указывает на то, что срок службы катализатора очевидно повышается. Это связано с тем, что введение гидрофобной группы в слой оболочки мезопористого материала способно эффективно предотвратить слущивание металлического компонента с катализатора и эффективно предотвратить контактирование активных центров с водой, что в противном случае может привести к деактивации катализатора. Резюмируя вышесказанное, можно констатировать, что катализатор на основе Со, полученный в соответствии с настоящим изобретением, имеет высокую стабильность и существенно больший срок службы.
Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала. Способ получения включает в себя получение кремнеземного носителя, насыщенного цирконием, получение первичного катализатора синтеза Фишера-Тропша на основе кобальта на кремнеземном носителе, приготовление раствора-прекурсора мезопористых материалов, дальнейшее погружение, кристаллизацию, промывку, сушку и прокаливание для получения катализатора синтеза Фишера-Тропша на основе кобальта с покрытием мезопористых материалов. Активный компонент покрыт и защищен слоем оболочки мезопористого материала, толщина слоя оболочки регулируется, катализатор имеет длительный срок службы, высокую реакционную способность и хорошую стабильность. Структура пор мезопористых материалов обеспечивает канал для диффузии CO и H, селективность в отношении Сявляется высокой, и селективность в отношении метана является низкой. Катализатор особенно подходит для суспензионных барботажных колонных реакторов или корпусных реакторов с непрерывным перемешиванием. 2 н. и 20 з.п. ф-лы, 7 ил., 3 табл., 8 пр.