Код документа: RU2661427C1
Изобретение относится к авиадвигателестроению.
Основным трендом для двухконтурных турбореактивных двигателей (ТРДД) является повышение их экономичности. Достигается это повышением полетного и эффективного к.п.д.
Крейсерскими условиями полета для ТРДД являются: высота - 10 км, скорость - 0,8 чисел Маха. Потребными тягами ТРДД в условиях крейсерского полета являются R=3000÷7000 кгс.
Полетный к.п.д. воздушно-реактивного двигателя может быть выражен через удельную тягу двигателя (Теория и расчет воздушно-реактивных двигателей / Под ред. С.М. Шляхтенко - М.: Машиностроение, 1987, с. 50)
где Vп - скорость полета;
Rуд=R/Gв - удельная тяга двигателя.
Принимая во внимание, что расход воздуха через двигатель для заданных условий полета определяется как Gв≈const⋅d2, получаем
где d - диаметр вентилятора.
На фиг. 1 показаны полетные к.п.д. ТРДД в условиях крейсерского полета в зависимости от тяги двигателя и диаметра вентилятора. Видно, что при заданной тяге R полетный к.п.д. ТРДД можно повысить только путем увеличения диаметра вентилятора d. В настоящее время диаметры вентиляторов ТРДД достигли своих физических пределов ~ 3 м, а это значит, что возможности повышения полетного к.п.д. практически исчерпаны.
В этих условиях единственный путь повышения экономичности ТРДД - это повышение эффективного к.п.д. ТРДД.
Целью изобретения является повышение экономичности ТРДД.
Известен двухконтурный турбореактивный двигатель, состоящий из входного устройства, вентилятора, внутреннего контура, внутри которого расположены: компрессор с отбором воздуха для охлаждения турбины, камера сгорания, турбины; внешнего контура, внутри которого расположен теплообменник, в котором циркулирует воздух, поступающий из смесителя, в котором смешиваются воздух, поступающий из компрессора, и воздух, поступающий из теплообменника, сужающееся сопло (патент RU 2617026 С1, 2017 г).
Известны турбовинтовые газотурбинные двигатели с регенерацией тепла (Теория и расчет воздушно-реактивных двигателей / Под ред. С.М. Шляхтенко - М.: Машиностроение, 1987, с. 354, рис. 11.3).
Известны турбовальные газотурбинные двигатели, у которых за свободной турбиной устанавливается диффузорный патрубок, который позволяет повышать перепад давлений на свободной турбине больше, чем располагаемый перепад давлений (Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Ч.2. М.: Машиностроение, 1978, с. 268, рис. 19.2).
Поставленная цель достигается тем, что двухконтурный турбореактивный двигатель, состоящий из входного устройства, вентилятора, внутреннего контура, внутри которого расположены: компрессор с отбором воздуха для охлаждения турбины, камера сгорания, турбины; внешнего контура, внутри которого расположен теплообменник, внутри которого циркулирует воздух, поступающий из смесителя, в котором смешиваются воздух, поступающий из компрессора, и воздух, поступающий из теплообменника, снабжен теплообменником, который является продолжением внутреннего контура, расположен внутри внешнего контура - за первым теплообменником, соединяет через выхлопные патрубки внутренний контур с атмосферой.
Сущность изобретения заключается в том, что использование первого теплообменника позволяет повысить температуру газа перед турбиной ТРДД, а использование второго теплообменника - понизить температуру выхлопных газов, что в соответствии со вторым законом термодинамики означает повышение термического (эффективного) к.п.д. цикла тепловой машины (ТРДД).
Рабочие параметры ТРДД предпочтительно иметь предельно высокими: температура газа пред турбиной более 2300 К; суммарная степень повышения давления воздуха более 40. Диаметр вентилятора - более 2,5 метра.
На фиг. 1 показана зависимость полетного к.п.д. ТРДД от тяги двигателя и диаметра вентилятора;
на фиг. 2 показан ТРДД;
на фиг. 3 показан термодинамический цикл ТРДД (внутренний контур);
на фиг. 4 показан термодинамический цикл ТРДД (наружный контур);
на фиг. 5 показана зависимость общего к.п.д. ТРДД от тяги двигателя и диаметра вентилятора;
на фиг. 6 показана зависимость удельного расхода топлива ТРДД от тяги двигателя и диаметра вентилятора.
Двухконтурный ТРД (фиг. 2) состоит из входного устройства 1, вентилятора 2, внутреннего и внешнего контуров.
Во внутреннем контуре расположены: компрессоры 3, камера сгорания 4, турбины 5, выходные патрубки 6, состоящие из диффузорных каналов, которые одновременно являются внутренними каналами теплообменника 7. Внутренние каналы теплообменника 7 пересекают внешний контур и соединяют внутренний контур с атмосферой.
Внешний контур представляет собой кольцевой канал, заканчивающийся сужающимся соплом 8. Внутри внешнего контура расположены: теплообменник 9 (первый теплообменник) и теплообменник 7 (второй теплообменник). Внутренние каналы теплообменника 9 с одной стороны через смеситель 10 соединены с воздушной полостью за компрессорами 3, а с другой стороны - со смесителем 10 через центробежный нагнетатель 11 и воздушными каналами системы охлаждения турбин.
Работа двигателя не отличается от работы ТРДД с раздельными контурами за исключением работы системы охлаждения турбин и выходного устройства.
Работа системы охлаждения турбин осуществляется следующим образом. Горячий воздух отбирается за компрессором двигателя и подается в смеситель 10, и далее в теплообменник 9. Охлажденный в теплообменнике 9 воздух поступает в систему охлаждения турбин 5 и в центробежный нагнетатель 11, который нагнетает его в смеситель 10. В смесителе 10 охлажденный воздух перемешивается с горячим воздухом, поступающим из двигателя. В результате смешения температура горячего воздуха понижается. Образовавшаяся смесь поступает в теплообменник, и цикл повторяется. Снижение температуры воздуха будет продолжаться до тех пор, пока не будет достигнут тепловой баланс между теплом, поступающим в смеситель 10 от двигателя, и теплом, отводимым через теплообменник 9 во внешний контур.
Работа выходного устройства осуществляется следующим образом. В турбинах 5 срабатывается перепад давлений, превышающий располагаемый перепад давлений (отношение давления газа перед турбиной к атмосферному). В результате скорость газа за турбинами увеличивается, а статическое давление становится меньше атмосферного. В диффузорных каналах 6 газ тормозится до скорости, при которой его статическое давление становится равным атмосферному, после чего газ истекает в атмосферу.
Каналы 6, являющиеся внутренними каналами теплообменника 7, обдуваются воздухом внешнего контура, температура которого меньше температуры выхлопных газов. Между горячим газом и воздухом устанавливается тепловой поток, в результате чего температура выхлопных газов понижается, а температура воздуха повышается. Понижение температуры выхлопных газов снижает затраты энергии на их сжатие при торможении в каналах 6, а так же - тепловые потери с выхлопом. Повышение температуры воздуха увеличивает скорость истечения воздуха из сопла 8, которая, как известно, пропорциональна корню квадратному из указанной температуры.
На фиг. 3 показан термодинамический цикл ТРДД (внутренний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-к - сжатие воздуха в компрессорах; к-г - процесс подвода теплоты в камере сгорания; г-тк - расширение газа в турбинах привода компрессоров; тк-т - расширение газа в турбине привода вентилятора; т-с - сжатие газа в каналах выходного патрубка. Сжатие газа происходит с отводом тепла во внешний контур ТРДД (температура газа приближается к температуре воздуха наружного контура Тв* - точка с). Работа цикла внутреннего контура Lц1 (площадь н-к-г-т-с-н) увеличивается на величину затененной области.
На фиг. 4 показан термодинамический цикл ТРДД (внешний контур) в Р-υ координатах. Здесь н-в - сжатие воздуха во входном устройстве и вентиляторе; в-в' - подвод теплоты во внешний контур из внутреннего контура (через теплообменники); в'-с'- расширение газа в сопле внешнего контура (с подводом теплоты). В результате подвода теплоты из внутреннего контура во внешний появляется работа Lц2 (площадь н-в-в'-с'-н), которая в прототипе отсутствует.
Работа цикла ТРДД складывается из работ внутреннего и внешнего контуров: Lц=Lц1+m-Lц2, где m - степень двухконтурности ТРДД. Эффективный к.п.д. ТРДД определяется как отношение работы цикла к подведенной теплоте ηe=(Lц1+m⋅Lц2)/Q1.
Эффективный к.п.д. ТРДД увеличивается по отношению к прототипу тем больше, чем больше степень двухконтурности m и работа внешнего контура Lц2. Степень двухконтурности m тем больше, чем больше при прочих равных условиях температура газа перед турбиной, величина которой напрямую зависит от эффективности первого теплообменника, которая, в свою очередь, зависит от эффективности второго теплообменника - способности устранять негативные последствия от повышения температуры газа перед турбиной (преобразовывать энергию выхлопных газов в работу Lц2). Таким образом, совместная работа теплообменников повышает эффективность применения каждого из них - создает интегральный эффект, в результате которого эффективный к.п.д. ТРДД по отношению к прототипу максимально увеличивается.
Оценим газодинамические возможности ТРДД (фиг. 2)
Если допустить, что при достаточно больших значениях m величина m⋅Lц2, входящая в работу цикла Lц, становится равной потерям работы внутреннего контура, то цикл ТРДД может быть заменен эквивалентным циклом Брайтона (с той же степенью повышения давления), в котором потери отсутствуют. В этом случае эффективный к.п.д. цикла ТРДД будет равен термическому к.п.д. эквивалентного цикла Брайтона, т.е.
Соответственно, общий к.п.д. ТРДД определится как
где
где q(λв) - плотность тока на входе в вентилятор,
σвx - коэффициент восстановления давления,
На фиг. 5 показаны значения общих к.п.д., полученные при π∑=45, q(λв)=0,85, σвх=0,98,
Видно (фиг. 5), что в диапазоне тяг R=4000…6000 кгс (d<3 м) общий к.п.д. дозвукового ТРДД составляет 0,45…0,52, что соответствует удельным расходам топлива Суд=0,37…0,45 кг⋅ч/кгс (фиг. 6).
Двухконтурный турбореактивный двигатель может быть использован в гражданской и военно-транспортной авиации.
Если сравнить удельные расходы топлива (фиг. 6) с удельными расходами топлива лучших дозвуковых ТРДД (Trent 1000, GP7270, PW4460 и др.), то от реализации предлагаемого технического решения можно ожидать снижения расходов топлива в этом классе двигателей ~20…25%, что в стоимостном эквиваленте, учитывая налет самолетов гражданской и военно-транспортной авиации, составит миллиарды долларов в год.
Двухконтурный турбореактивный двигатель содержит входное устройство, вентилятор, внутренний контур, внешний контур, сужающееся сопло. Внутри внутреннего контура расположены компрессор с отбором воздуха для охлаждения турбины, камера сгорания, турбины. Внутри внешнего контура расположен теплообменник, в котором циркулирует воздух, поступающий из смесителя. В смесителе смешиваются воздух, поступающий из компрессора, и воздух, поступающий из теплообменника. Двигатель снабжен теплообменником, который является продолжением внутреннего контура, расположен внутри внешнего контура - за первым теплообменником и соединяет через выхлопные патрубки внутренний контур с атмосферой. Использование выхлопных патрубков позволяет понизить давление газа за турбинами до минимально возможного (меньше атмосферного) и тем самым повысить удельную работу турбин, что позволяет уменьшить расход воздуха (топлива) через внутренний контур - повысить экономичность двигателя. 3 з.п. ф-лы, 6 ил.
Способ охлаждения двухконтурного турбореактивного двигателя