Код документа: RU2617026C1
Изобретение относится к авиадвигателестроению.
Основным трендом для дозвуковых ТРДД является повышение их экономичности (фиг. 1). Достигается это за счет увеличения степеней повышения давления и степеней двухконтурности ТРДД. Степени повышения давления в ТРДД практически достигли своих максимальных значений π∑=50…60 (ограничены жаропрочностью лопаток компрессора ~1000 К). Степени двухконтурности ТРДД можно повысить двумя путями: а) увеличением диаметра вентилятора, б) уменьшением диаметра компрессора. Первый путь практически исчерпан (диаметры вентиляторов ТРДД достигли трех метров). Остается второй путь - уменьшение диаметра компрессора (внутреннего контура), но для этого необходимо повышать температуру газа перед турбиной.
Решить эту задачу только за счет жаропрочности материалов нельзя (жаропрочные стали работают эффективно до 1200…1300 К), а значит, необходимы эффективные системы охлаждения тех же лопаток.
Эффективность систем охлаждения во многом определяется температурой охлаждающего воздуха.
Известен способ понижения температуры охлаждающего воздуха, заключающийся в использовании теплообменника, установленного во втором контуре двухконтурного турбореактивного двигателя, имеющего степень двухконтурности менее единицы (Теория, расчет и проектирование авиационных двигателей и энергетических установок. Под ред. В.А. Сосунова, В.М. Чепкина. - М.: Изд-во МАИ, 2003. С. 656, рис. 22.1). Эффективность способа ограничена хладоресурсом воздуха, проходящего через второй контур, размерами теплообменника, эффективностью теплообменных процессов, происходящих в теплообменнике.
Задачей изобретения является устранение указанных недостатков.
Поставленная задача достигается тем, что во втором контуре ТРДД со степенью двухконтурности более десяти установлен циркуляционный теплообменник, в котором циркулирует воздух высокого давления. Часть этого воздуха используется для охлаждения двигателя. Изъятый из обращения воздух замещается воздухом, поступающим из компрессора двигателя. Циркуляция воздуха обеспечивается центробежным компрессором, замещение воздуха осуществляется в смесителе.
Сущность изобретения заключается в том, что за счет увеличения времени теплообмена (воздух несколько раз проходит через теплообменник), а также площади контактной поверхности теплообменника (размеры ТРДД при заявленных степенях двухконтурности позволяют сделать это) количество тепла q, которое отводится от воздуха, поступающего из компрессора, увеличивается, соответственно, температура воздуха, поступающего в систему охлаждения, уменьшается: Тх*=Тк*-q/cp, где Тк* - температура воздуха за компрессором, ср - теплоемкость воздуха при постоянном давлении.
На фиг. 1 показаны тягово-экономические показатели дозвуковых ТРДД;
на фиг. 2 изображен ТРДД с циркуляционным теплообменником во втором контуре;
на фиг. 3 изображен термодинамический цикл ТРДД в P-υ координатах;
на фиг. 4 показаны характеристики эффективности циркуляционного теплообменника;
на фиг. 5 показаны зависимости тяги двигателя Ro от температуры газа Тг* и степени двухконтурности m в условиях взлета;
на фиг. 6 показаны зависимости удельного расхода топлива
на фиг. 7 показаны зависимости тяги двигателя Rн от температуры газа Тг* и степени двухконтурности m в условиях крейсерского полета;
на фиг. 8 показаны зависимости удельного расхода топлива Суд от температуры газа Тг* и степени двухконтурности m в условиях крейсерского полета.
Система охлаждения ТРДД (фиг. 2) включает: теплообменник 1, центробежный компрессор 2, камеру смешения 3, соединительные каналы.
Работа системы охлаждения осуществляется следующим образом. Горячий воздух отбирается за компрессором двигателя и подается в камеру смешения 3 и далее в теплообменник 1. Охлажденный в теплообменнике 1 воздух поступает в систему охлаждения двигателя и в центробежный компрессор 2, который нагнетает его в камеру смешения 3. В камере смешения охлажденный воздух перемешивается с горячим воздухом, поступающим из двигателя. В результате смешения температура горячего воздуха понижается. Образовавшаяся смесь поступает в теплообменник, и цикл повторяется. Снижение температуры воздуха будет продолжаться до тех пор, пока не будет достигнут тепловой баланс между теплом, поступающим в камеру смешения 3 от двигателя, и теплом, отводимым через теплообменник 1 во второй контур.
На фиг. 3 изображен цикл ТРДД с циркуляционным теплообменником во втором контуре. Цикл состоит из основного и вспомогательного циклов. Основной цикл - цикл Брайтона. Вспомогательный цикл - цикл 1-2-3, работа которого тратится на проталкивание воздуха через каналы теплообменника 1 (фиг. 1). Рабочим телом вспомогательного цикла является воздух, циркулирующий внутри теплообменника 1. Воздух (процесс 1-2) расширяется и охлаждается в теплообменнике (отводится теплота q2). Охлажденный воздух сжимается до исходного давления (процесс 2-3). При постоянном давлении к воздуху подводится теплота q1 (процесс 3-1 - осуществляется в смесителе). Цикл повторяется. Количество подведенной и отведенной в цикле теплоты равны (q1=q2), так как вся работа расширения (процесс 1-2) преобразуется в теплоту.
Количество отведенной (подведенной) теплоты в цикле 1-2-3 зависит от интенсивности теплообменных процессов и массы рабочего тела цикла.
Интенсивность теплообменных процессов характеризуется коэффициентом интенсивности охлаждения воздуха в теплообменнике
где
Масса рабочего тела, участвующего в теплообмене, характеризуется коэффициентом циркуляции воздуха в теплообменнике, который определяется как
где Gв - расход воздуха, поступающего из теплообменника в смеситель,
Gвт - расход воздуха, циркулирующего в теплообменнике.
Температуры воздуха в цикле 1-2-3 определяются как
где
ηс - к.п.д. в процессе сжатия.
На фиг. 4 показано изменение температуры Т2* на выходе из теплообменника 1 (фиг. 1) в зависимости от коэффициента интенсивности охлаждения воздуха
Таким образом, циркуляционный теплообменник обладает замечательным свойством - позволяет охлаждать воздух, отбираемый от компрессора, практически до температуры, при которой этот воздух поступает в компрессор.
На фиг. 5…8 показаны характеристики ТРДД с циркуляционным теплообменником во втором контуре. При определении характеристик заданы параметры: степень повышения давления в компрессоре в условиях взлета πко=60; диаметр вентилятора dв=3,5 м; к.п.д. в процессе сжатия ηс=0,84; к.п.д. в процессе расширения ηр=0,94; механический к.п.д. ηm=0,99; лопатки - монокристаллические с пленочным охлаждением. Крейсерский режим полета: Н=11 км; М=0,8. Параметры эффективности теплообменника: коэффициент интенсивности охлаждения воздуха
Использование циркуляционного теплообменника в ТРДД, как показывают исследования, позволит:
при прочих равных условиях повысить экономичность двигателя на 5…10% в зависимости от условий полета;
достичь в условиях крейсерского полета (Н=11 км, М=0,8) общего к.п.д. 40…42% (Суд=0,48…0,43 кг/кгс⋅ч);
повысить тягу двигателя в условиях взлета до 50 тс и более.
Если оценивать в целом, то использование циркуляционного теплообменника в ТРДД является весьма эффективным и, по-видимому, обязательным.
Способ охлаждения двухконтурного турбореактивного двигателя заключается в сжатии воздуха, используемого при охлаждении, в компрессоре с последующим его охлаждением в теплообменнике, установленном во втором контуре двигателя. Воздух в теплообменник поступает из смесителя, в котором воздух, поступающий из компрессора, смешивается с воздухом, поступающим из теплообменника. Изобретение направлено на повышение экономичности и тяги двигателя в условиях взлета. 3 з.п. ф-лы, 8 ил.
Авиационный двигатель, снабженный средством теплового обмена
Комментарии