Код документа: RU2758257C1
Предлагаемое изобретение относится к области химии, касается способа синтеза фосфатов металлов в степени окисления III вида RR'(PO4)3 и R1-xR'x(PO4)3, где R,R' - Al, Cr, Fe, Sb, La, Ce, Pr, Nd, Bi, которые обладают химической стойкостью и термической стабильностью. Высокая устойчивость позволяет применять их в специальной электротехнике как керамические изоляторы и ферромагнетики, в химической технологии как матрицы для иммобилизации токсичных промышленных отходов.
Известен синтез BiFe2(PO4)3 (Anand Theerthan. Effect of electric and magnetic stresses on ferroelectric single crystals and ceramics: Docteur.
При получении монокристаллов полученный в предыдущем методе порошок помещали в платиновый тигель и нагревали до полного плавления при 1125°C на воздухе в течение 6 ч со скоростью 2°C/мин. Затем расплав медленно охлаждали до 1000°C со скоростью 1.8°C/час. Затем образец охлаждали до комнатной температуры 24 часа. Выращенные кристаллы были в основном меньше миллиметра и имели форму иголок.
Недостатком метода являются высокая температура и значительные затраты времени, затрудняющие управление состоянием продукта синтеза.
В задачу изобретения положено создание нового способа синтеза фосфатов металлов в степени окисления III состава RR'(PO4)3 и R1-xR'x(PO4)3, где R,R' - Al, Cr, Fe, Sb, La, Ce, Pr, Nd, Bi.
Техническим результатом от использования изобретения является повышение реакционной способности шихты, сокращение продолжительности процесса и снижение температуры получения продукта.
Поставленная задача достигается тем, что способ синтеза фосфатов металлов в степени окисления III включает приготовление растворов солей металлов из исходных реагентов, в качестве которых используют нитраты, хлориды металлов, ацетат хрома, смешение растворов солей металлов с раствором кислоты H3PO4, поэтапную сушку реакционной смеси при температурах 90°С и 200°С для полного обезвоживания продукта, дальнейшую поэтапную термообработку реакционной смеси при температуре 600-1000°С в течение 12-48 часов, диспергирование и контроль химического и фазового состава методами электронно-зондового микроанализа и рентгенографии после каждой термообработки, при этом используют сочетания следующих катионов металлов в химическом составе поликристаллических RR'(PO4)3 фосфатов R - Bi, SbxBi1-x (0 ≤ x ≤ 1), R' - Fe2, Cr2, AlxCr2-x (0 ≤ x ≤ 0.5) или R - Sb, La, Ce, Pr, Nd, R' - Cr2; диспергирование осуществляют после каждой термообработки в течение 30 минут; осуществляют дополнительную термообработку образца при температуре последнего нагрева в случае появления на рентгенограмме аморфного гало, наличия нечетких дифракционных максимумов и асимметрии профилей дифракционных линий на рентгенограмме, свидетельствующих о наличии аморфной фазы и несовершенств кристаллической структуры в образце; для получения монокристаллов BiFe2(PO4)3 в качестве шихты используют поликристаллический фосфат, предварительно синтезированный способом по п. 1, который нагревают до температуры расплава, монокристаллы получают при понижении температуры расплава BiFe2(PO4)3 от 1080°С до 950°С со скоростью 2.7 град/ч и последующем охлаждении образца до комнатной температуры в течение 20 ч.
На фиг. 1 представлены рентгенограммы фосфатов, где: 1 - BiFe2(PO4)3, 2 - BiCr2(PO4)3, 3 - Sb0.25Bi0.75Cr2(PO4)3, 4 - Sb0.5Bi0.5Cr2(PO4)3, 5 - Sb0.75Bi0.25Cr2(PO4)3, 6 - SbCr2(PO4)3.
На фиг. 2 представлена структура фосфата BiFe2(PO4)3, аналога(α-CaMg2(SO4)3).
Предлагаемый способ синтеза фосфатов металлов в степени окисления III осуществляют следующим образом.
Предварительно проводят структурно-химический дизайн возможных новых фосфатов на основе кристаллохимических принципов. С учетом ионных радиусов металлов в степени окисления III прогнозируют вероятность нахождения атомов в сходных позициях кристаллической структуры (см. книгу В.С. Урусов. Теоретическая кристаллохимия, М.: Изд-во МГУ, 1987. - 275 с.). Близость ионных радиусов металлов и их одинаковая степень окисления III позволяет рассчитывать на их изоморфизм в фосфатах, то есть смешение в составе однофазного продукта - фосфата в эквивалентных позициях кристаллической структуры металлов близких ионных радиусов, отличающихся на 10-15%.
После теоретического этапа проводят эмпирический этап, включающий проведение различных анализов, позволяющих установить оптимальные промежуточные тепловые обработки, их продолжительность, температурную границу синтеза. Для этого используют синхронный дифференциально-термический и термогравиметрический анализ (ДТА-ТГ), позволяющие в динамике оценить температуры экзо- и эндотермических эффектов, связанных с фазовыми превращениями в образце. Помимо динамического определения температур промежуточных изотермических обработок и возможной температуры синтеза используют метод статического нагревания для определения минимального (оптимального) времени термообработки на каждой изотермической стадии. Суть метода заключается в поэтапном изотермическом нагреве образца, после которого проводятся рентгенофазовый и электронно-микрозондовый анализы, позволяющие определить изменение фазового и химического состава образца.
На эмпирическом этапе, также, определяют реагенты, использование которых позволит провести последующую твердофазную реакцию. Преимущественно, в качестве таких веществ используют нитраты, карбонаты, хлориды металлов, соли органических кислот, например, ацетат хрома. Их разложение при нагреве приводит к перестройке кристаллической структуры, вызывая большое количество дефектов кристаллической решетки, благоприятно влияющих на скорость протекания последующей твердофазной реакции. Использование термически устойчивых веществ (оксидов) требует более высоких температур для их активации и начала протекания реакции.
В дальнейшем осуществляют приготовление растворов солей металлов из исходных реагентов, смешение растворов солей металлов в степени окисления III с растворами кислоты H3PO4 или ее соли NH4H2PO4, поэтапную сушку реакционной смеси до полного обезвоживания продукта сначала при температуре 90°С, затем при температуре 200°С, дальнейшую термообработку реакционной смеси с диспергированием и контролем химического и фазового состава методами электронно-зондового микроанализа и рентгенографии после каждого нагрева.
Термообработку реакционной смеси осуществляют в течение 6-48 часов. Нагрев фосфата менее 6 часов приводит к неполной кристаллизации, и, следовательно, образец может быть неоднофазным. Термообработка более 48 часов не вызывает заметных изменений в сформированном однофазном кристаллическом образце, и является неоправданной затратой ресурсов.
Диспергирование смеси осуществляют после каждой термообработки, например, в течение 30 минут.
В случае появления на рентгенограмме аморфного гало, наличия нечетких дифракционных максимумов и асимметрии профилей дифракционных линий на рентгенограмме, свидетельствующих о наличии аморфной фазы и несовершенств кристаллической структуры в образце, осуществляют дополнительную термообработку образца при температуре последнего нагрева.
Ниже приведены примеры конкретного осуществления предлагаемого изобретения.
Пример 1.
Фосфат BiFe2(PO4)3 со структурой α-CaMg2(SO4)3 был спрогнозирован на основе кристаллохимических данных. Структурной основой фосфата I служит каркас {[Fe2(PO4)3]3-}3∞, в котором атомы Fe координированы шестью атомами кислорода от шести тетраэдров РО4 с расстоянием Fe-O 1.897-2.140
Для синтеза фосфата в качестве исходных реагентов были выбраны Fe2O3, Bi2O3, H3PO4. Их использование позволило провести процесс при наиболее низкой температуре.
Для получения 2 г фосфата BiFe2(PO4)3 на первом этапе к стехиометрической навеске Fe2O3 добавляли раствор соляной кислоты до полного растворения навески. К образовавшемуся раствору добавляли стехиометрическую навеску Bi2O3. Затем при постоянном перемешивании по каплям добавляли раствор фосфорной кислоты, взятый также в соответствии со стехиометрией образца (см. таблицу 1).
Реакционную смесь первоначально высушивали при температуре 90°С для удаления воды и далее при 200°С для полного обезвоживания продукта. В дальнейшем реакционную смесь подвергли термообработке при 600°С в течении 24 часов, после которой образец диспергировали в агатовой ступке в течение 30 минут с применением изопропилового или этилового спирта для обеспечения гомогенизации смеси. Затем образец снова обжигали в печи при температуре 800°С. Каждую стадию нагревания чередовали с диспергированием.
BiFe2(PO4)3, по данным рентгенофазового анализа (РФА) (рис. 1), кристаллизуется в структуре α-CaMg2(SO4)3 (пр. гр. P63/m), параметры его элементарной ячейки: a=14.3115(4), c=7.4311(2)
Данный способ синтеза превосходит способ описанный ранее (Anand Theerthan. Effect of electric and magnetic stresses on ferroelectric single crystals and ceramics: Docteur.
Для получения монокристаллов BiFe2(PO4)3 в качестве шихты использовалипредварительно синтезированный поликристаллический фосфат. Монокристаллы получены при понижении температуры расплава BiFe2(PO4)3 от 1080 до 950°С со скоростью 2.7 град/ч. Затем образец охлаждали до комнатной температуры в течение 20 ч.
Данный способ синтеза превосходит способ описанный ранее (Anand Theerthan. Effect of electric and magnetic stresses on ferroelectric single crystals and ceramics: Docteur.
Пример 2.
Фосфаты SbxBi1-xCr2(PO4)3, (0 ≤ x ≤ 1) с ожидаемой структурой α-CaMg2(SO4)3 были спрогнозированы на основе кристаллохимических данных. В данном случае каркас структуры образуют октаэдры CrO6, тетраэдры PO4. Внекаркасные позиции занимают катионы большего радиуса - это Sb3+ и Bi3+ (одинаковые степени окисления, ионные радиусы близки).
Для получения данного ряда фосфатов использовали следующие реагенты: Sb2O3, Bi2O3, Cr(CH3COO)3 и H3PO4.
Для получения 2 г продукта на первом этапе к стехиометрической навеске Bi2O3 добавляли раствор соляной кислоты до полного растворения оксида. К образовавшемуся раствору добавляли стехиометрическую навеску Sb2O3, а после его растворения стехиометрическую навеску Cr(CH3COO)3. Затем при постоянном перемешивании по каплям добавляли раствор фосфорной кислоты, взятый также в соответствии со стехиометрией образца (см. таблицу 2).
Реакционную смесь первоначально высушивали при температуре 90°С для удаления воды и далее при 200°С для полного обезвоживания продукта. В дальнейшем реакционную смесь подвергли термообработке при 600°С в течении 24 часов, после которой образец диспергировали в агатовой ступке в течение 30 минут с применением изопропилового или этилового спирта для обеспечения гомогенизации смеси. Затем образец снова обжигали в печи при температурах 800, 900 и 1000°С. Каждую стадию нагревания чередовали с диспергированием. Конечная температура получения целевого продукта зависела от состава твердого раствора.
По данным рентгенографии все образцы состава SbxBi1-xCr2(PO4)3 (0 ≤ x ≤ 1) (рис. 1) кристаллизуются в структуре α-CaMg2(SO4)3 и образуют неограниченный твердый раствор. Данные электронно-зондового микроанализа показали однородность состава их зерен и соответствие ожидаемых (спрогнозированных) и фактических составов с учетом погрешности метода (таблица 5).
Пример 3.
Фосфаты BiAlxCr2-x(PO4)3, 0 ≤ x ≤ 0.5 с ожидаемой структурой α-CaMg2(SO4)3 были спрогнозированы на основе кристаллохимических данных. В данном случае каркас структуры образуют октаэдры CrO6 и AlO6 (одинаковые степени окисления, ионные радиусы близки), тетраэдры PO4. Внекаркасные позиции занимают катионы большего радиуса - Bi3+.
Для получения данного ряда фосфатов использовали следующие реагенты: Bi2O3, AlCl3, Cr(CH3COO)3 и H3PO4.
Для получения 2 г продукта на первом этапе к стехиометрической навеске Bi2O3 добавляли раствор соляной кислоты до полного растворения оксида. К образовавшемуся раствору добавляли стехиометрическую навеску AlCl3, а после ее растворения стехиометрическую навеску Cr(CH3COO)3. Затем при постоянном перемешивании по каплям добавляли раствор фосфорной кислоты, взятый также в соответствии со стехиометрией образца (см. таблицу 3).
Реакционную смесь первоначально высушивали при температуре 90°С для удаления воды и далее при 200°С для полного обезвоживания продукта. В дальнейшем реакционную смесь подвергли термообработке при 600°С в течении 24 часов, после которой образец диспергировали в агатовой ступке в течение 30 минут с применением изопропилового или этилового спирта для обеспечения гомогенизации смеси. Затем образец снова обжигали в печи при температурах 800 и 1000°С. Каждую стадию нагревания чередовали с диспергированием.
По данным рентгенографии все образцы состава BiAlxCr2-x(PO4)3 0 ≤ x ≤ 0.5 кристаллизуется в структуре α-CaMg2(SO4)3 и образуют ограниченный твердый раствор. Данные электронно-зондового микроанализа показали однородность состава их зерен и соответствие ожидаемых (спрогнозированных) и фактических составов с учетом погрешности метода (таблица 5).
Пример 4.
Фосфаты RCr2(PO4)3, где R=La, Ce, Pr, Nd, с ожидаемой структурой α-CaMg2(SO4)3были спрогнозированы на основе кристаллохимических данных. В данном случае каркас структуры образуют октаэдры CrO6, тетраэдры PO4. Внекаркасные позиции занимают катионы большего радиуса - R3+.
Для получения данного ряда фосфатов использовали следующие реагенты: LaF3⋅0.5H2O, Ce(NO3)3⋅6H2O, Pr(NO3)3∙6H2O, Nd2O3, Cr(CH3COO)3 и H3PO4.
Для получения 2 г продукта на первом этапе к навеске LaF3⋅0.5H2O (или Ce(NO3)3⋅6H2O, или Pr(NO3)3⋅6H2O, или Nd2O3) добавляли раствор соляной кислоты до полного растворения навески. К образовавшемуся раствору добавляли Cr(CH3COO)3. Затем при постоянном перемешивании по каплям добавляли раствор фосфорной кислоты (см. таблицу 4).
Реакционную смесь первоначально высушивали при температуре 90°С для удаления воды и далее при 200°С для полного обезвоживания продукта. В дальнейшем реакционную смесь подвергли термообработке при 600°С в течении 24 часов, после которой образец диспергировали в агатовой ступке в течение 30 минут с применением изопропилового или этилового спирта для обеспечения гомогенизации смеси. Затем образец снова обжигали в печи при температурах 800, 1000 и 1200°С. Каждую стадию нагревания чередовали с диспергированием.
По данным рентгенографии все образцы состава RCr2(PO4)3 кристаллизуются в структуре α-CaMg2(SO4)3. Данные электронно-зондового микроанализа показали однородность состава их зерен и соответствие ожидаемых (спрогнозированных) и фактических составов с учетом погрешности метода (таблица 5).
Таким образом, повышение реакционной способности шихты достигается благодаря использованию в синтезе нитратов, карбонатов, хлоридов металлов, солей органических кислот (например, ацетат хрома), которые подвергаясь термическому разложению при воздействии температурного поля, увеличивают удельную поверхность и поверхностную активность реакционной зоны за счет перестройки кристаллической структуры и образования большого количества дефектов кристаллической решетки. Вследствие этого высокая активность такого материала приводит к увеличению скорости протекания последующей твердофазной реакции и формированию фазы продукта при более низкой температуре по сравнению с использованием термически устойчивых реагентов (оксидов), мало инициирующих реакцию и требующих более высоких температур для их активации и формирования требуемого продукта.
В представленных примерах в синтезе использованы катионы металлов: Bi3+, Fe3+, Cr3+, Sb3+, Al3+, La3+,Ce3+, Pr3+, Nd3+. Однако, синтез фосфатов может приводить к получению веществ с более широким спектром металлов в тех же степенях окисления, например, еще не изученных фосфатов RR'2(PO4)3 (R, R' - металлы в степени окисления III) и твердых растворов на их основе. Поэтому представленные примеры иллюстрируют предлагаемое изобретение, но не ограничивают его.
Изобретение может быть использовано при изготовлении керамических изоляторов и ферромагнетиков, матриц для иммобилизации токсичных промышленных отходов. Способ синтеза фосфатов металлов в степени окисления III включает приготовление растворов солей металлов из исходных реагентов, в качестве которых используют нитраты, хлориды металлов, ацетат хрома. Растворы солей металлов смешивают с раствором H3PO4и проводят поэтапную сушку реакционной смеси при 90°С и 200°С для полного обезвоживания продукта. Затем проводят поэтапную термообработку реакционной смеси при 600-1000°С в течение 12-48 ч, диспергирование и контроль химического и фазового состава методами электронно-зондового микроанализа и рентгенографии после каждой термообработки. Используют сочетания следующих катионов металлов в химическом составе поликристаллических RR'(PO4)3фосфатов: R - Bi, SbxBi1-x(0 ≤ x ≤ 1), R' - Fe2, Cr2, AlxCr2-x(0 ≤ x ≤ 0,5) или R - Sb, La, Ce, Pr, Nd, R' - Cr2. Изобретение позволяет повысить реакционную способность шихты, снизить продолжительность процесса и температуру получения продукта. 3 з.п. ф-лы, 2 ил., 5 табл., 4 пр.
Способ синтеза сульфат-фосфатов металлов