Способ получения углеродных материалов с высоким содержанием азота - RU2663165C1

Код документа: RU2663165C1

Описание

Изобретение относится к химическому производству, в частности к получению углеродных материалов, которые широко используются в качестве сенсорных материалов, а также в электрохимических устройствах, таких как конденсаторы двойного электрического слоя, называемые суперконденсаторами, в электронике, в качестве адсорбентов, носителей для катализаторов. Для использования в качестве материалов для сенсоров и электрохимических устройств на первое место выступает достижение высокого содержания азота при одновременно высокой электропроводности (Z.R. Ismagilov, A.E. Shalagina, O. Yu. Podyacheva, A.V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon. 2009. V. 47. P. 1922-1929).

Настоящее изобретение относится к способу введения атомов азота в структуру углеродного материала, то есть к способу легирования азотом углеродного материала.

Известен способ получения нитрида углерода C3N4 (Two-dimensional carbon nitride material and method of preparation. WO 2016027042 A1. Дата приоритета 21.08.2014), включающий разложение меламина в расплаве смеси солей LiBr и KBr при 500-700°С. В известном решении получают стехиометрический нитрид углерода, который обладает низкой электропроводностью.

Известен способ получения активированных углеродных волокон на основе полиакрилонитрила (M. Suzuki. Activated carbon fiber: fundamentals and applications. Carbon. 1994. V. 32. P. 577-586), которые содержат 2-6 мас. % азота. В известном решении получают углеродный материал, который обладает низким содержанием азота.

Известен способ получения активированного угля с содержанием азота до 10 масс. % (Ильинич Г.Н.; Лихолобов В.А. Пористый азотсодержащий углеродный материал и способ его приготовления. Дата приоритета 18.02.1999), включающий разложение летучих молекул, содержащих углерод и азот, при температурах не ниже 550°С в присутствии никельсодержащих металлических катализаторов. В известном решении получают углеродный материал, который обладает низким содержанием азота, а также примесью соединений никеля.

Известен способ получения углеродных материалов, которые содержат до 13 мас. % азота (Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties. Kim, Jeong-Nam ; Choi, Min-Kee ; Ryoo, Ryong ; Bulletin of the Korean Chemical Society, volume 29, issue 2, 2008, Pages 413~416), включающий разложение смеси фурфурилового спирта и меламина при температуре 900°С в порах алюмосиликатного мезопористого носителя. В известном решении получают углеродный материал, который обладает низким содержанием азота, а также требует применения токсичной плавиковой кислоты в процессе получения.

В качестве ближайшего аналога-прототипа выбрано техническое решение - способ легирования азотом углеродного материала по патенту (E.G. Lundquist, G.R. Parker Jr. Carbons useful in energy storage devices. EP 1655267 A2. Дата приоритета 4.11.2004), включающий взаимодействие смеси каменноугольного пека и меламина с последующим его прокаливанием при 800°С и активацией в атмосфере углекислого газа при 1000°С.

Недостатком данного решения является прокаливание при 800°С и активация в атмосфере углекислого газа при 1000°С. Использование избыточно высоких температур 800-1000°С приводит к резкому снижению содержания азота в конечном материале до 1-2 масс. %.

Задачей настоящего изобретения является получение углеродного материала, содержащего до 32 масс. % азота, с одновременным увеличением электропроводности.

Технический результат от использования данного изобретения выражается в следующем:

- расширение диапазона концентрации азота в материале и соответствующее увеличение его емкостных характеристик;

- снижение энергопотерь в электрохимических устройствах за счет высокой электропроводности материала.

Технический результат достигается за счет того, что в способе получения углеродных материалов с высоким содержанием азота, включающем взаимодействие смеси каменноугольного пека и меламина в течение их нагрева и выдержки, в соответствии с настоящим изобретением максимальную температуру ограничивают 500°С.

Средне- или высокотемпературный каменноугольный пек, сланцевый или нефтяной пек в количестве 50-100 масс. % смешивают с меламином в количестве 0-50 масс. %, после этого нагревают от 20°С до 500°С со скоростью 1-3 °С/час, далее выдерживают при 500°С в течение 100 ч и охлаждают.

Пример 1. Среднетемпературный каменноугольный пек в количестве 5 г смешивают с меламином в количестве 5 г, после этого в стеклянной склянке смесь нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 32 масс. % азота, с удельным электрическим сопротивлением 1,4 Ом⋅м.

Пример 2. Нефтяной пек в количестве 5 г смешивают с меламином в количестве 5 г, после этого в стеклянной склянке смесь нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 32 масс. % азота, с удельным электрическим сопротивлением 1,3 Ом⋅м.

Пример 3. Высокотемпературный каменноугольный пек в количестве 5 г смешивают с меламином в количестве 5 г, после этого в стеклянной склянке смесь нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 32 масс. % азота, с удельным электрическим сопротивлением 2,9 Ом⋅м.

Пример 4. Сланцевый пек в количестве 5 г смешивают с меламином в количестве 5 г, после этого в стеклянной склянке смесь нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 32 масс. % азота, с удельным электрическим сопротивлением 67 Ом⋅м.

Пример 5. Среднетемпературный каменноугольный пек в количестве 9 г смешивают с меламином в количестве 1 г, после этого в стеклянной склянке смесь нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 6,5 масс. % азота, с удельным электрическим сопротивлением 217 Ом⋅м.

Пример 6. Среднетемпературный каменноугольный пек в количестве 10 г в стеклянной склянке нагревают от 20°С до 500°С в течение 500 ч, далее выдерживают при 500°С в течение 100 ч и охлаждают. Получают углеродный материал, содержащий 1 масс. % азота, с удельным электрическим сопротивлением 522 Ом⋅м.

Дополнительные примеры приведены в Таблице 1.

При температурах выше 500°С начинается разложение материала, сопровождающееся потерей значительной части азота. При температурах ниже 500°С или при времени выдержки менее 100 часов не успевает сформироваться графитовая структура и удалиться основная часть водорода. При выдержке дольше 100 часов нерационально перерасходуется время и энергия на нагрев материала. При скорости нагрева выше 3оС/час снижается выход материала и его однородность. При скорости нагрева ниже 0,96оС/час нерационально перерасходуется время и энергия на нагрев материала.

В предлагаемом способе нагрев смеси осуществляют до 500°С, что позволяет снизить потери азота из углеродного материала. При этом экспериментальным путем установлено, что уменьшение количества пека в смеси с меламином ниже 50% приводит к образованию в материале второй фазы - нитрида углерода (таблица 1). В качестве пека могут быть применены: среднетемпературный каменноугольный пек, высокотемпературный каменноугольный пек, сланцевый пек, нефтяной пек.

Таблица 1.

Содержание среднетемпературного пека, в исходной смеси масс. %Содержание меламина в исходной смеси, масс. %Фазовый состав полученного материалаУдельное электросопротивление полученного материала, Ом⋅м0100C3N41000000000001090C3N4+ углеродный материал, содержащий 32 масс. % азота2300002080C3N4+ углеродный материал, содержащий 32 масс. % азота2903070C3N4+ углеродный материал, содержащий 32 масс. % азота624060C3N4+ углеродный
материал, содержащий 32 масс. % азота
25
5050Углеродный материал, содержащий 32 масс. % азота1,46040Углеродный материал, содержащий 25 масс. % азота207030Углеродный материал, содержащий 19 масс. % азота438020Углеродный материал, содержащий 13 масс. % азота609010Углеродный материал, содержащий 6 масс. % азота2201000Углеродный материал, содержащий 1 масс. % азота520

Для определения фазового состава полученного углеродного материала использовали порошковый рентгеновский дифрактометр. Обнаружено (Таблица 1), что во всех четырех сериях с разными сортами пека в диапазоне содержания пека от 0 до 40 масс. % образцы состоят из двух фаз: чистого C3N4 и углеродного материала со структурой графита, содержащего 32 масс. % азота. Начиная ссодержания пека 50-100 масс. %, все образцы являются однофазными углеродными материалами со структурой графита и содержанием азота от 1 до 32 масс. %.

Максимальная концентрация азота в полученном углеродном материале по данным рентгенофлуоресцентного энергодисперсионного спектрального анализа равна 32 масс. % N. Для углеродного материала, полученного из чистого пека, удельное электрическое сопротивление составило 520 Ом⋅м (Таблица 1). Введение 32 масс. % азота позволило снизить сопротивление до 1,4 Ом⋅м.

Реферат

Изобретение может быть использовано при изготовлении суперконденсаторов, сенсорных материалов, адсорбентов, носителей для катализаторов. Готовят смесь, содержащую 50-100 масс. % средне- или высокотемпературного каменноугольного пека, или нефтяного пека, или сланцевого пека и 0-50 масс. % меламина. Полученную смесь нагревают до 500°C со скоростью 0,96-3°C/ч. Затем производят прокаливание при этой температуре в течение 100 ч. Полученный углеродный материал характеризуется высоким содержанием азота – до 32 масс. %, за счет чего его удельное электрическое сопротивление снижается в 100-1000 раз. 1 табл., 6 пр.

Формула

Способ получения углеродных материалов с высоким содержанием азота, характеризующийся нагревом смеси пека и меламина с последующим ее прокаливанием, отличающийся тем, что в качестве пека используют средне- или высокотемпературный каменноугольный пек, или нефтяной пек, или сланцевый пек, соотношение пека в смеси устанавливают в количестве 50-100 масс. %, меламина - в количестве 0-50 масс. %, нагрев смеси осуществляют до температуры 500°C со скоростью 0,96-3°C/ч, а прокаливание производят в течение 100 ч при температуре 500°C.

Авторы

Патентообладатели

Заявители

СПК: C01B21/0605 C01B32/00

Публикация: 2018-08-01

Дата подачи заявки: 2017-06-16

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам