Код документа: RU2462296C2
Перекрестная ссылка на родственные заявки
Приоритет настоящей заявки основан на предварительной патентной заявке US 60/994574, поданной 20 сентября 2007 г., содержание которой в порядке ссылки включено в настоящую заявку.
Предпосылки создания изобретения
Изобретение относится к разрушению углеродистых материалов, содержащихся в композициях. Более точно, изобретение применимо для удаления двуокиси углерода из газообразных и жидких композиций.
Часто желательно удалять углеродистые материалы из какой-либо композиции или атмосферы. Например, известен способ изоляции углевода с целью удаления двуокиси углерода из атмосферы. С целью содействия ослаблению глобального потепления исследованы разнообразные способы захвата и накапливания углерода, а также усиления природных процессов изоляции.
Из уровня техники известен Клаус-процесс, являющийся стандартным процессом, применяемым в настоящее время для преобразования сероводорода в серу. Сероводород естественным путем образуется в природном газе, при этом в случае высокой концентрации сероводорода его называют "высокосернистым газом", а также образуется в процессе очистки нефти или в ходе других промышленных процессов. Согласно Клаус-процессу (Claus Process) воздух или кислород окисляет такое количество сероводорода до двуокиси серы, которого достаточно для вступления в реакцию с остальным сероводородом, в результате которой образуются элементарная сера и вода. Этот процесс частично осуществляется при температурах выше 850°С и частично в присутствии катализаторов, таких как активированная окись алюминия или двуокись титана. В основе Клаус-процесса лежат следующие химические реакции:
2H2S+3O2→2SO2+2H2O и
4H2S+2SO2→3S2+4H2O.
Кроме того, может образовываться сернистый карбонил в результате следующей химической реакции:
СО2+H2S→COS+H2O.
Смотри A. Attar, Fuel 57, 201 (1978); R.Steudel, Z.Anorg. Allg. Chem. 346, 255 (1966).
Краткое изложение сущности изобретения
Согласно одной из особенностей изобретения предложен способ преимущественного удаления углеродистого материала из композиции, в котором используют композицию, содержащую углеродистый материал; вводят углеродистый материал в реакцию с сернистым соединением и получают продукты, содержащие серную кислоту и/или сернистую кислоту и/или двуокись серы и углеродсодержащее соединение.
Согласно другой особенности изобретения предложена преимущественно не содержащая углеродистый материал композиция, из которой углеродистый материал удален способом, в котором используют химическую композицию, содержащую углеродистый материал и сернистое соединение; и вводят углеродистый материал в контакт с сернистым соединением.
Согласно одной из дополнительных особенностей изобретения предложена система для преимущественного удаления углеродистого материала из композиции, содержащая реактор, в который загружают композицию, содержащую углеродистый материал и сернистое соединение, и получают продукты, преимущественно не содержащие углеродистый материал.
Подробное описание изобретения
В изобретении предложен способ преимущественного удаления углеродистого материала из композиции. Углеродистым материалом предпочтительно является двуокись углерода. Двуокись углерода может находиться в жидком или газообразном состоянии.
Композицией может являться любая композиция, содержащая углеродистый материал, но предпочтительно в жидком или газообразном состоянии. Источником углеродистого материала могут являться ископаемые виды топлива и другие виды сжигаемого топлива, атмосферные газы, органическое вещество, природные химические элементы и другие источники, такие как печи для обжига цемента и асфальтовые заводы. Одним из примеров композиции является двуокись углерода, которая может быть получена в результате сжигания ископаемого топлива на энергетической установке. Углеродистый материал преимущественно удаляют или разрушают путем использования композиции, содержащей углеродистый материал, ввода углеродистого материала в реакцию с сернистым соединением и получения продуктов, содержащих углерод и серу. "Преимущественно" означает по меньшей мере степень удаление в 50%, но степень удаления может достигать 100%. После контакта с сернистым соединением удаляют предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 85%, наиболее предпочтительно по меньшей мере 95% углеродистого материала. Степень удаления зависит от количества углеродистого материала, контактирующего с сернистым соединением, т.е. 100% контакт соответствует 100% разрушению, 95% контакт соответствует 95% разрушению, а отсутствие контакта - отсутствию разрушения.
Реагенты включают углеродистый материал, сернистое соединение и необязательно окись или гидроокись. Углеродистым материалом предпочтительно является двуокись углерода, а сернистым соединением предпочтительно является сероводород. В предпочтительном варианте осуществления соотношение реагентов находится в пределах от около 2:1 до 3:2 в пересчете на молярный объем двуокиси углерода к молярному объему сероводорода. Реагенты также могут включать одну или несколько окисей или гидроокисей, которыми могут являться любая окись или гидроокись, в присутствии которой реакция достигает завершения быстрее, чем при отсутствии окиси или гидроокиси. Примеры окисей и гидроокисей включают окись кальция, гидроокись кальция и гидроокись натрия. Для увеличения скорости химической реакции также могут применяться катализаторы. Примерами катализаторов являются пятиокись ванадия и двуокись титана.
При контакте углеродистого материала с сернистым соединением происходит реакция, которая может быть ускорена за счет различных катализаторов и условий, таких как повышенные давления и температуры. Углеродистый материал и сернистое соединение могут подаваться в реактор предпочтительно с не содержащей кислород средой, в которой содержание кислорода доведено до минимума. Сероводород может избирательно вступать в реакцию с любым присутствующим кислородом, в результате чего образуется двуокись серы, если среда содержит какой-либо кислород, т.е. сероводород предпочтительно вступает в реакцию с кислородом, а не двуокисью углерода, из-за чего может непроизводительно сероводород расходоваться в случае присутствия кислорода. Вместе с тем, подразумевается, что могут оставаться ничтожные количества кислорода, не вступившие в реакцию с сероводородом, и с точки зрения настоящего изобретения термин "не содержащий кислород" в том значении, в котором он используется в настоящем изобретении, также может означать содержание кислорода от 0,01% до 0,00%. С целью увеличения скорости реакции содержимое реактора может быть подвергнуто возбуждению путем электромагнитного облучения, генерации разрядов или нагрева до 1000°С.
Реакция может протекать при температуре в пределах от приблизительно комнатной температуры до 1000°С. Обычно при более высоких температурах в результате реакции образуется COS, при умеренных температурах в пределах от 125 до 500°С образуется H2SO4, H2SO3, SO2, Н2О, С и S и/или сероуглероды, а более низкие температуры способствуют образованию Н2О, С и S или H2O и сероуглеродов. При температурах выше комнатной температуры реакция ускоряется. Для ускорения реакции в реакторе также может поддерживаться давление на уровне атмосферного давления или выше. Поддержание повышенного давления является особо предпочтительным в случае реакций с участием газообразного сероводорода.
Реагенты могут подаваться в реактор непрерывно. В лабораторных условиях предпочтительно используют реактор периодического действия, а в промышленных условиях предпочтительно используют трубчатый реактор непрерывного действия. До загрузки реагентов в реактор он может быть герметизирован и прочищен инертным газом, таким как аргон или азот.
Продукты реакции включают углеродсодержащее соединение, такое как углерод, включая элементарный углерод, и полимеры на основе сероуглерода, а также любое из следующих соединений: серную кислоту, двуокись серы, воду, сернистую кислоту, серу, сульфиты и сульфаты. Углерод может быть аморфным или структурированным. Полимеры на основе сероуглерода могут являться простыми, как в случае двусернистого углерода (CS2), или сложными со структурами, такими как (CSp)m, в которых p равно от 0,2 до около 50, a m является численным значением, которое больше или равно 2, предпочтительно больше 10. Это соединение также может содержать другие элементы, включая без ограничения водород и кислород. Эти полимеры на основе сероуглерода иногда называют сероуглеродами, которые обычно представляют собой соединения черного цвета с температурой плавления выше 500°С и содержат серу и углерод в качестве основных компонентов.
В одном из вариантов осуществления углеродистым материалом является двуокись углерода, сернистым соединением является сероводород, а продуктами реакции являются серная кислота и углерод и/или полимеры на основе сероуглерода. Этот вариант осуществления можно отобразить следующей химической реакцией:
2CO2+H2S→H2SO4+2Х,
в которой Х означает углерод и/или полимер на основе сероуглерода.
В другом варианте осуществления углеродистым материалом является двуокись углерода, сернистым соединением является сероводород, а продуктами реакции являются сернистая кислота и углерод и/или полимеры на основе сероуглерода. Этот вариант осуществления можно отобразить следующей химической реакцией:
3СО2+2H2S→2H2SO3+3Х,
в которой Х означает углерод и/или полимер на основе сероуглерода.
В другом варианте осуществления углеродистым материалом является двуокись углерода, сернистым соединением является сероводород, а продуктами реакции являются двуокись серы, вода и углерод и/или полимеры на основе сероуглерода. Этот вариант осуществления можно отобразить следующей химической реакцией:
3СО2+2H2S→2H2O+2SO2+3Х,
в которой Х означает углерод и/или полимер на основе сероуглерода.
В другом варианте осуществления углеродистым материалом является двуокись углерода, сернистым соединением является сероводород, а продуктами реакции являются сульфат, вода и углерод и/или полимеры на основе сероуглерода. Этот вариант осуществления можно отобразить следующей химической реакцией:
2CO2+H2S+Y→Z+nH2O+2Х,
в которой:
Y означает окись или гидроокись;
Z означает сульфат, в структуру которого может входить nH2O в качестве гидросульфата;
n равно 1 или 2; и
Х означает углерод и/или полимер на основе сероуглерода. Во время этой реакции углеродистый материал и сернистое соединение вступают в реакцию с окисью или гидроокисью, в результате чего образуется гидросульфат. Примеры химических реакций согласно этому варианту осуществления включают:
2CO2+H2S+CaO→CaSO4.H2O+2Х;
2CO2+H2S+Са(ОН)2→CaSO4.2H2O+2Х;
2CO2+H2S+NaOH→NaHSO4.H2O+2Х; и
2CO2+H2S+2NaOH→Na2SO4+2Х+2H2O (существует в виде смеси Na2SO4 с Na2SO4·7H2O и/или Na2SO4·10H2O),
в которой Х означает углерод и/или полимер на основе сероуглерода.
В другом варианте осуществления углеродистым материалом является двуокись углерода, сернистым соединением является сероводород, а продуктами реакции являются сульфит, вода и углерод и/или полимеры на основе сероуглерода.
Этот вариант осуществления можно отобразить следующей химической реакцией:
3CO2+2H2S+2Y→2Z+nH2O+3Х,
в которой:
Y означает окись или гидроокись;
Z означает сульфат, в структуру которого может входить NH2O в качестве гидросульфата;
n равно 2 или 4; и
Х означает углерод и/или полимер на основе сероуглерода.
Во время этой реакции углеродистый материал и сернистое соединение вступают в реакцию с окисью или гидроокисью, в результате чего образуется гидросульфат. Примеры химических реакций согласно этому варианту осуществления включают:
3CO2+2H2S+2СаО→2CaSO3+2H2O+3Х;
3CO2+2H2S+2Са(ОН)2→2CaSO3+4H2O+3Х; и
3CO2+2H2S+2NaOH→2NaHSO3+2H2O+3Х,
в которой Х означает углерод и/или полимер на основе сероуглерода.
После получения продуктов реакции они могут быть разделены. Продукты реакции могут быть выгружены и могут быть отделены любые твердые, жидкие и газообразные вещества. Затем продукты реакции могут быть охлаждены.
В реактор может подаваться избыточная двуокись углерода. Предпочтительно любое избыточно количество составляет от 1 до 50%, но при необходимости может использоваться большее или меньшее количество. Любая непрореагировавшая двуокись углерода может быть легко выделена в виде непрореагировавшего газа.
Одновременно с разрушением двуокиси углерода и других углеродистых материалов при осуществлении способа создаются новые молекулы углерода путем перегруппирования их атомных составляющих. Эти молекулы углерода являются аморфными или структурированными и также могут представлять собой полимеры на основе сероуглерода. Структурированные молекулы углерода относятся к различным типам с различными физическими свойствами и включают без ограничения углеродную сажу, графитообразный углерод, алмазоподобный углерод и углерод с нанотрубчатоподобной структурой. Углеродные нанотрубки могут быть созданы и/или выращены в контролируемых условиях, как, например, путем посева желаемых разновидностей. Полимеры на основе сероуглерода могут использоваться для изготовления волокнистых изделий из углерода или в других целях.
В изобретении также предложена композиция, преимущественно не содержащая углеродистый материал, из которой углеродистый материал удален описанным выше способом, и система для преимущественного удаления углеродистого материала из композиции. Для системы требуется реактор. В небольшом масштабе может осуществляться реакция периодического действия в одно- или многогорлой стеклянной колбе, на горловины которой установлены переходные устройства для добавления реагентов и выхода продуктов. Реактор может быть изготовлен из жаростойкого боросиликатного стекла или кварцевого стекла, такого как стекло производства компаний Pyrex®, Kimble® Glass, United Glass Technologies и Buchi® Corporation. Реакции под высоким давлением могут осуществляться в реакторах, специально сконструированных для таких реакций, таких как реакторы производства компании Parr Instrument Company. Температура может измеряться с помощью термометра посредством контакта со стеклом или иными средствами, такими как бесконтактное измерение по инфракрасному излучению с лазерным наведением, а для охлаждения продуктов может использоваться колонна Вигро или другие средства. В одном из вариантов осуществления колонна Вигро установлена над реактором или колбой и служит конденсатором.
В крупном масштабе реактор может представлять собой реактор башенного типа с насадкой или любого другого из множества типов, обычно используемых для обеспечения взаимодействия реагентов. Эти реакторы могут представлять собой покрытые с внутренней стороны эмалью реакторы. Оборудование не ограничено оборудованием, описанным в заявке. Может использоваться любое оборудование, если оно обеспечивает выполнение стадий способа.
Одна из выгод способа, если он применяется в энергетической установке, включает разрушение двуокиси углерода (для поддержания нейтральности или почти нейтральности углерода) и получение товарных продуктов, включая серную кислоту, сернистую кислоту, двуокись серы, углерод и/или сероуглероды и, возможно, различные сульфаты или сульфиты. Получаемый углерод может без ограничения использоваться для обеспечения углеродом производителей углеродного волокна и других потребителей углерода. Если в этой продукции содержатся полимеры на основе сероуглерода или сероуглероды, они могут продаваться, в том числе, для применений, подобных производству углеродного волокна.
В одном из вариантов осуществления способ включает стадии, на которых:
подают двуокись углерода и сероводород в реактор с не содержащей кислород средой при температуре до 1000°С в соотношении два молярных объема двуокиси углерода к одному молярному объему сероводорода с целью осуществления реакции для получения серной кислоты и углеродсодержащего соединения; и
разделяют продукты реакции.
Химической реакцией может являться: 2CO2+H2S→H2SO4+2С. В качестве альтернативы, химической реакцией может являться: 2СО2+H2S→2H2O+полимер на основе сероуглерода.
Одна из выгод этого варианта осуществления состоит в том, что рабочие параметры являются менее строгими, чем в случае Клаус-процесса. Другие выгоды включают разрушение двуокиси углерода для обеспечения нейтральности или почти углерода и получение углерода, полимера на основе сероуглерода и серной кислоты. В число других выгод в качестве примера и без ограничения входит возможность транспортировки продуктов в целях, включающих без ограничения продажу. Одной из дополнительных выгод является отсутствие необходимости отделения продуктов сероводорода от природного газа, когда газ предназначен для сжигания в энергетических установках, оснащенных в расчете на этот вариант осуществления, что делает газ менее дорогостоящим. Выгода для энергетической установки может состоять в снижении расходов на топливо за счет сжигания содержащего примеси неочищенного или нерафинированного газа и возможности производства дополнительной энергии в результате сжигания сероводорода в ходе экзотермической реакции.
Следующие далее примеры приведены, чтобы проиллюстрировать способ, систему и композицию согласно изобретению. Эти примеры рассчитаны на то, чтобы помочь специалистам в данной области техники в понимании настоящего изобретении. Тем не менее, это никоим образом не ограничивает настоящее изобретение.
Химическая реакция между двуокисью углерода и сероводородом, рассчитанная на получение серной кислоты, может осуществляться при комнатной температуре или более высокой температуре путем смешивания обоих газов и их сжатия. Катализаторы, такие как пятиокись ванадия и двуокись титана, ускоряют реакцию, равно как и повышенные температуры.
Данный вариант осуществления может быть реализован в промышленном масштабе различными способами, включая без ограничения энергетические установки для сжигания природного газа. На этих установках, на которых применяется изобретение, может использоваться газ с более высоким содержанием серы вместо более дорогого газа с низким содержанием серы. Для доведения до минимума избытка кислорода предпочтительно используется сжигание обедненной кислородной смеси. Путем подачи горячих отходящих газов, состоящих из смеси двуокиси углерода и двуокиси серы (содержащей или не содержащей другие составляющие воздуха, такие как азот, если воздух являлся окисляющим компонентом), в реактор Клауса или реактор башенного типа (поддержание повышенного давления значительно увеличивает скорость реакции) и непрерывной подачи сероводорода обеспечивают реакцию горячей двуокиси углерода с сероводородом. Из реактора выгружают серную кислоту и/или сернистую кислоту и углерод и/или полимеры на основе сероуглерода и другие составляющие воздуха, такие как азот, если воздух используется окисляющим компонентом в энергетической установке. Отделение продуктов реакции от отработанных газов может осуществляться с помощью обычного гравитационного сепаратора и с использованием технологии пылеуловительных камер.
Хотя изобретение подробно описано применительно к конкретным вариантам его осуществления, для специалистов в данной области техники будет очевидна возможность внесения в него различных изменений и модификаций, не выходящих за пределы существа и объема изобретения. Следовательно, предполагается, что изобретение охватывает все его модификации и варианты при условии, что они входят в объем прилагаемой формулы изобретения и ее эквивалентов.
Изобретение относится к разрушению углеродистых материалов, содержащихся в композициях, более конкретно изобретение применимо для удаления двуокиси углерода из газообразных и жидких композиций. Способ преимущественного удаления углеродистого материала из композиции, содержащей углеродистый материал, заключается в том, что вводят углеродистый материал в реакцию с сернистым соединением и получают продукты, содержащие углерод и серную кислоту, сернистую кислоту и/или двуокись серы. Также описаны получаемая композиция и используемая с этой целью система. Техническим результатом изобретения является удаление углеродистых материалов для защиты атмосферы. 4 н. и 21 з.п. ф-лы.
Способ очистки газа от двуокиси углерода в присутствии сероводорода