Состав фибробетона - RU2583965C1

Код документа: RU2583965C1

Чертежи

Описание

Изобретение относится к составам фибробетонных смесей, применяемых для изготовления сборных и монолитных строительных конструкций и изделий с высокими эксплуатационными характеристиками.

Известна фибробетонная смесь, включающая цемент, заполнитель и упрочнитель - стальную проволоку [Пат. №2420472. Российская Федерация. Фибробетонная смесь / Перфилов В.А.; патентообладатель Перфилов В.А. - Опубл. 10.06.2011. - Режим доступа: http://www1.fips.ru]. Недостатками смеси являются применение специального оборудования и затраты времени для приготовления модифицирующей добавки, применение щебня двух фракций.

Наиболее близким является состав фибробетонной смеси, содержащей портландцемент, базальтовое волокно, пластификатор, песок и воду [Пат. №2423331. Российская Федерация. Фибробетонная смесь / Боровских И.В., Хозин В.Г., Морозов Н.М.; патентообладатель Общество с ограниченной ответственностью "Фибробетонные люки" (ООО "ФБЛ"). - Опубл. 10.07.2011. - Режим доступа: http://www1.fips.ru], принятый за прототип.

Основными недостатками смеси являются применение дорогостоящего фракционированного песка, высокий расход цемента и базальтового волокна, отсутствие данных по водонепроницаемости, применяемые пластификаторы имеют разные технические свойства.

Технической задачей заявленного изобретения является получение фибробетона с высокой прочностью при сжатии, морозостойкостью и водонепроницаемостью при минимальном расходе цемента, а также снижение себестоимости состава в целом.

Технический результат достигается тем, что рациональный подбор и расход компонентов фибробетонной смеси обеспечивают повышение прочности при сжатии, увеличение морозостойкости и водонепроницаемости

фибробетона, а снижение количества цемента и использование крупного нефракционированного песка ведет к уменьшению его себестоимости.

На фиг. 1 приведена информация, подтверждающая положительный эффект заявленного изобретения.

Заявленная фибробетонная смесь содержит портландцемент, микрокремнезем, пластификатор, волокнистый наполнитель, песок и воду. В качестве пластификатора использован гиперпластификатор Stachement 2061/151.2, волокнистого наполнителя - полипропиленовое волокно длиной 18 мм и диаметром 20 мкм, песок крупный с модулем крупности МК=2,5÷3,0 вводится в смесь в нефракционированном виде. Соотношение компонентов в фибробетонной смеси выбрано следующим, мас. %:

Портландцемент19,00-22,00Микрокремнезем1,50-2,50Пластификатор0,15-0,60Полипропиленовое волокно0,02-0,15Песок65,00-75,00Водаостальное

Для приготовления фибробетонной смеси применялись:

- портландцемент ЦЕМ I 42,5Н ЗАО «Белгородский цемент», ГОСТ 31108-2003, ГОСТ 30515-97;

- микрокремнезем МКУ-85 ОАО «Кузнецкие ферросплавы», г. Новокузнецк, ТУ 5743-048-02495332-96 со следующим химическим составом, мас. %: SiO2 93,8; H2O 0,1; Na2O 0,68; K2O 1,6; СаО 0,41; SiO3 0,41; потери при прокаливании 1,6;

- гиперпластификатор Stachement 2061/151.2, EN 934-2:2001, ГОСТ 24211-2008 - жидкая добавка на основе поликарбоксилатов и замедлителя производства «STACHEMA Bratislava a.s.», Bratislava, Slovak Republic;

- полипропиленовое волокно длиной 18 мм и диаметром 20 мкм, ТУ 2272-001-90345062-2012, ТУ 5458-001-82255741-2008;

- песок нефракционированный крупный МК=2,5÷3,0, ГОСТ 8736-93.

При применении микрокремнезема в составе вяжущего и крупного нефракционированного песка увеличивается плотность смеси, повышается прочность и снижается пористость цементного камня и уменьшается расход цемента. Гиперпластификатор позволяет увеличить водоредуцирующий эффект, улучшить реологические и технологические свойства смеси. Наибольшее влияние при равномерном распределении по объему полипропиленовое волокно оказывает на бетонную матрицу в качестве усиления контактной зоны «цементный камень - заполнитель». Оптимизация расхода компонентов в составе фибробетонной смеси позволяет получать фибробетоны с высокими эксплуатационными показателями качества.

Фибробетонную смесь готовили следующим образом: портландцемент предварительно смешивали с микрокремнеземом, затем засыпали вяжущее вместе с песком в лопастной бетоносмеситель и перемешивали в течение 30 с до получения однородной массы. После этого в сухую смесь до получения требуемой подвижности добавляли воду с растворенным в ней пластификатором и перемешивали в течение 60 с. Затем полипропиленовое волокно добавляли без предварительной подготовки в готовую смесь и перемешивали еще 60 с. Уплотнение смеси проводилось на лабораторном вибростоле. Твердение фибробетонной смеси проходило в нормальных условиях; испытание фибробетонных образцов на прочность при сжатии, морозостойкость и водонепроницаемость производилось на 28-е сутки в соответствии с ГОСТ 10180-2012, ГОСТ 10060-2012, ГОСТ 12730.5-84.

Предложенные рациональные составы фибробетонных смесей, а также прочностные и эксплуатационные свойства полученных фибробетонов в сравнении с прототипом показаны в таблицах. При использовании нефракционированного крупного песка с модулем крупности МК=2,5÷3,0, при малых расходах полипропиленового волокна 0,02-0,15% и дозировках пластификатора 0,15-0,60% достигается высокая прочность фибробетона при сжатии, увеличивается его морозостойкость и водонепроницаемость. При

увеличении подвижности (до ОК=23 см) фибробетонной смеси показатели качества изменяются незначительно.

Сопоставление результатов испытаний заявленного решения (оптимальные составы фибробетонной смеси 1-3) и прототипа показывает, что прочность при сжатии меньше на 12%, морозостойкость выше в 1,7 раза при экономии цемента и микрокремнезема в 1,5 раза и уменьшении расхода волокна от 10 до 30 раз по массе.

4

ФИБРОБЕТОННАЯ СМЕСЬ

Реферат

Изобретение относится к составу фибробетона, применяемого для изготовления сборных и монолитных строительных конструкций. Технический результат изобретения - получение фибробетона с высокой прочностью при сжатии, морозостойкостью и водонепроницаемостью при минимальном расходе цемента, а также снижение себестоимости состава в целом. Фибробетонная смесь, включающая портландцемент, микрокремнезем, пластификатор, волокнистый наполнитель, песок и воду содержит в качестве пластификатора гиперпластификатор Stachement 2061/151.2, в качестве волокнистого наполнителя полипропиленовое волокно длиной 18 мм и диаметром 20 мкм, песок крупный с модулем крупности М=2,5÷3,0 в нефракционированном виде при следующем соотношении компонентов, мас. %: портландцемент 19,00-22,00, микрокремнезем 1,50-2,50, пластификатор 0,15-0,60, полипропиленовое волокно 0,02-0,15, песок 65,00-75,00, вода остальное. 1 табл.

Формула

Фибробетонная смесь, содержащая портландцемент, микрокремнезем, пластификатор, волокнистый наполнитель, песок и воду, отличающаяся тем, что содержит в качестве пластификатора гиперпластификатор Stachement 2061/151.2, в качестве волокнистого наполнителя - полипропиленовое волокно длиной 18 мм и диаметром 20 мкм, песок крупный с модулем крупности МК=2,5÷3,0 в нефракционированном виде при следующем соотношении компонентов, мас. %:
Портландцемент19,00-22,00Микрокремнезем1,50-2,50Пластификатор0,15-0,60Полипропиленовое волокно0,02-0,15Песок65,00-75,00Водаостальное

Авторы

Патентообладатели

Заявители

СПК: C04B2103/001 C04B2103/32 C04B2111/27 C04B16/0633 C04B28/04

Публикация: 2016-05-10

Дата подачи заявки: 2014-11-06

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам