Код документа: RU2180334C2
Симметричные и несимметричные 4,6-бис(арилокси)пиримидины, полезные в качестве пестицидов, описаны в WO 94/02470. Симметричные 4, 6-бис(арилокси)пиримидины получают одностадийной реакцией 4,6-дигалогенпиримидина с двумя молярными эквивалентами фенола. В противоположность этому несимметричные 4,6-бис(арилокси)пиримидины получить значительно труднее, потому что арилоксигруппы нужно вводить с помощью отдельных реакций.
В WO 94/02470 описано, что несимметричные 4,6-бис(арилокси) пиримидины получают взаимодействием 4,6-дигалопиримидина с одним молярным эквивалентом первого фенола в присутствии основания и затем взаимодействием полученного соединения со вторым фенолом в присутствии основания. Однако этот способ не вполне удовлетворителен для промышленного производства несимметричных 4,6-бис(арилокси)пиримидинов. При использовании 4,6-дихлорпиримидина происходит смешанное замещение арилоксигруппами, в результате чего получаются, как показано в схеме реакций I (в конце описания), симметричные соединения, которые трудно отделить от целевого несимметричного продукта.
Для решения проблемы смешанного замещения, связанной с использованием 4,6-дихлорпиримидина, использовали 4,6-дифторпиримидин. Однако 4,6-дифторпиримидин получают из 4,6-дихлорпиримидина галогенообменной реакцией, которая требует использования дорогих реагентов и расхода большого количества энергии.
Поэтому задачей настоящего изобретения является создание способа получения несимметричных 4, 6-бис(арилокси)пиримидинов, который бы устранял недостатки известных способов.
Краткое изложение сущности изобретения
Настоящее изобретение относится к способу получения
несимметричного 4,6-бис(арилокси)пиримидина, имеющего структурную формулу I
Преимуществом данного способа является то, что способ по настоящему изобретению дает несимметричные бис(арилокси)пиримидины с более высоким выходом, чем известные способы, устраняет проблему смешанного замещения, связанную с использованием в известном способе 4,6-дихлорпиримидина, и позволяет использовать менее дорогие реагенты, чем известный способ с использованием 4, 6-дифторпиримидина.
Подробное описание изобретения
Способ предпочтительно включает взаимодействие описанного выше 4,6-дигалопиримидина формулы II с одним молярным эквивалентом
описанного выше первого фенола формулы III и по крайней мере одним молярным эквивалентом первого основания в присутствии первого растворителя предпочтительно при температуре в интервале примерно от 0
до 100oС с получением 4-гало-6-(арилокси)пиримидина формулы IV, описанного выше, взаимодействие соединения формулы IV с по крайней мере примерно одним молярным эквивалентом описанного выше
амина в присутствии второго растворителя предпочтительно при температуре в интервале примерно от 0 до 100oC с получением описанного выше соединения галогенида аммония формулы V и
взаимодействие соединения формулы V с одним молярным эквивалентом второго фенола формулы VI и по крайней мере примерно одним молярным эквивалентом второго основания в присутствии третьего растворителя
предпочтительно при температуре в интервале примерно от 0 до 100oС c получением целевого несимметричного 4,6-бис(арилокси)пиримидина формулы I. Схема реакций показана на схеме реакции II (в
конце описания).
Несимметричные 4,6-бис(арилокси)пиримидины могут быть выделены разбавлением реакционной смеси водой и фильтрованием из водной смеси продукта формулы I. Полученные соединения формулы I можно также выделить экстрагированием водной смеси подходящим растворителем. Подходящие растворители для экстрагирования включают по существу не смешивающиеся с водой растворители, такие как диэтиловый эфир, этилацетат, толуол, метиленхлорид и тому подобное.
Галогениды аммония являются особенно важным признаком настоящего изобретения. При взаимодействии галогенида аммония с вторым фенолом смешанного замещения арилоксигруппами не происходит. Неожиданным образом настоящее изобретение устранило недостаток, заключающийся в смешанном замещении арилоксигруппами без использования 4,6-дифторпиримидина.
Амины, которые могут быть использованы в способе по настоящему изобретению для получения галогенидов аммония, представляют собой алкиламины, 5-6-членные насыщенные и 5-14-членные ненасыщенные гетероциклические амины, необязательно замещенные одной-тремя С1-С4-алкильными группами или С1 -С4-алкоксигруппами. Предпочтительными аминами являются С1-С4-триалкиламины, 5- или 6-членные насыщенные гетероциклические амины и 5-14-членные ненасыщенные гетероциклические амины, в которых гетероциклическая кольцевая система содержит один-три атома азота и необязательно имеет в кольце атомы серы или кислорода.
Наиболее предпочтительные амины включают триметиламин, насыщенные гетероциклические амины, включающие пиридины, пиколины, пиразины, пиридазины, триазины, хинолины, изохинолины, имидазолы, бензотиазолы и бензимидазолы, необязательно замещенные одним-тремя С1-С4-алкильными группами или С1-С4-алкоксигруппами, и ненасыщенные гетероциклические амины, такие как пирролидины, пиперидины, пиперазины, морфолины, тиазолидины и тиаморфолины.
Первые и вторые основания, пригодные для использования в способе по настоящему изобретению, включают карбонаты щелочных металлов, такие как карбонат натрия и карбонат калия, карбонаты щелочноземельных металлов, такие как карбонат кальция и карбонат магния, гидроксиды щелочных металлов, такие как гидроксид натрия и гидроксид калия, и гидроксиды щелочноземельных металлов, такие как гидроксид кальция и гидроксид магния, причем предпочтительными являются карбонаты щелочных металлов.
Пригодные для использования первые растворители включают простые эфиры, такие как диэтиловй эфир, тетрагидрофуран и диоксан, амиды карбоновых кислот, такие как N,N-диметилформамид и N,N-диметилацетамид, галогенированные углеводороды, такие как 1,2-дихлорэтан, тетрахлорид углерода, метиленхлорид и хлороформ, сульфоксиды, такие как диметилсульфоксид, кетоны, такие как ацетон и N-метилпирролидон, и их смеси. Вторые растворители, пригодные для использования в способе по настоящему изобретению, включают ароматические углеводороды, такие как толуол, ксилолы и бензол, галогенированные ароматические углеводороды, такие как хлорбензол и дихлорбензолы, и их смеси. Третьи растворители, пригодные для использования в предлагаемом способе, включают амиды карбоновых кислот, такие, как и N, N-диметилформамид и N,N-диметилацетамид, сульфоксиды, такие, как диметилсульфоксид и их смеси.
Предпочтительные первые растворители включают амиды карбоновых кислот и кетоны. Предпочтительные вторые растворители включают ароматические углеводороды. И предпочтительные третьи растворители включают амиды карбоновых кислот.
В приведенной выше формуле I подходящей алкильной группой является группа с неразветвленной или разветвленной цепью, содержащая до 8 углеродных атомов, например до 6 углеродных атомов. В соответствии с предпочтительным вариантом изобретения алкильная группа содержит до 4 углеродных атомов. Алкильный фрагмент, образующий часть другой группы, например алкил галогеналкильной группы или каждый алкил алкоксиалкильной группы, является подходящим, когда имеет до 6 углеродных атомов, но предпочтительно содержит до 4 атомов углерода.
В приведенной выше формуле галогеном является фтор, хлор, бром или иод. Галогеналкил и галогеналкокси представляют собой, в частности, трифторметил, пентафторэтил и трифторметокси.
Способ по настоящему изобретению особенно полезен для получения
несимметричных 4,6-бис(арилокси)пиримидинов формулы I, где
R и R8 одинаковы и каждый представляет водород или фтор;
R1 и R7 каждый независимо
представляет водород, галоген, циано, нитро или С1-С4-алкил;
R2 и R6 каждый независимо представляет водород, фтор, хлор, С1-С4
-алкил, С1-С4-галоалкил, С1-С4-галоалкокси, С2-С4-галоалкенил, С1-С4-алкоксикарбонил или нитро;
R3 и R5 каждый независимо представляет водород, галоген или С1-С4-алкил и
R4 представляет водород, С1-С4-галоалкил,
С1-С4-алкилтио, С1-С4-алкилсульфинил или фенил;
при условии, что по крайней мере один из радикалов R2 и R6 не является
водородом и что арилоксигруппы не одинаковы.
В частности, способ по настоящему изобретению используют для получения несимметричных 4,6-бис(арилокси)пиримидинов формулы I, где
R, R3, R4, R5 и R8 представляют водород;
один из радикалов R1 и R7 представляет водород, хлор или циано, а другой фтор и
R2 и R8 представляют трифторметил.
Для лучшего понимания изобретения ниже представлены примеры, иллюстрирующие его более конкретно. Данные примеры не должны ограничивать объем изобретения, определенный в пунктах формулы изобретения.
ПРИМЕР 1
Получение 4[(4-хлор-α,α,α,-трифтор-м-толил)окси]-6-[(α,α
,α,4-тетрафтор-м-толил)окси]пиримидина - способ по настоящему изобретению
а) Получение 4-хлор-6[(α,α,α,4-тетрафтор-м-толил)окси]-пиримидина
b) Получение триметил{ 6[(α,α,α,4-тетрафтор-м-толил)окси]-4-пиримидил} аммонийхлорида
с) Получение 4-[(4-хлор-α,α,α,-трифтор-м-толил)окси]-6-[(α,α,α,4-тетрафтор-м-толил)окси] пиримидина
Как можно видеть из данных примера 1, целевой продукт получили с выходом 55% при использовании в качестве исходного реагента 4, 6-дихлорпиримидин.
ПРИМЕР 2
Получение4-[(4-хлор-α,α,α,-трифтор-м-толил)окси]-6-[(α,α,α,4-тетрафтор-м-толил)окси] пиримидина
- известный способ с использованием 4,6-дифторпиримидина
а) Получение 4,6-дифторпиримидина
b) Получение 4[(4-хлор-α,α,α,
-трифтор-м-толил)окси]-6-фторпиримидина
с) Получение 4-[(4-хлор-α,α,α-трифтор-м-толил)окси]-6-[(α,α,α,4-тетрафтор-м-толил)окси]пиримидина \\6
Как можно видеть из данных в примере 2, известный способ с использованием 4,6-дифторпиримидина, с использованием в качестве исходного реагента 4,6-дихлорпиримидина дает целевой продукт с выходом 40%.
ПРИМЕР 3
Получение 4[(4-хлор-α,α,α-трифтор-м-толил)окси] -6-[(α,α
,α,4-тетрафтор-м-толил)окси] пиримидина - известный способ с использованием 4,6-дихдорпиримидина
а) Получение 4-хлор-6[(α,α,α,
4-тетрафтор-м-толил)окси]-пиримидина
b) Получение 4-[(4-хлор-α,α,α-трифтор-м-толил)окси]-6-[(α,
α,α,4-тетрафтор-м-толил)окси]пиримидина
Таким образом, преимущество способа по настоящему изобретению заключается в том, что он обеспечивает значительно более высокий выход (55% вместо 40% и 30%) 4-[(4-хлор-α,α,α-трифтор-м-толил)окси]-6[(α,α,α,4-тетрафтор-м-толил)-окси]пиримидина по сравнению с известными способами.
ПРИМЕР 4
Получение 4-[(α,α,α-трифтор-4-нитро-м-толил)окси]-6-[(α,α,α-трифтор-м-толил)окси] пиримидина - способ по настоящему изобретению
а) Получение
4-хлор-6[(α,α,α-трифтор-м-толил)окси] пиримидина
b) Получение триметил 6[(α,α,α-трифтор-м-толил)окси]-4-пиримидил аммонийхлорида
с)Получение4-[(α,α,α-трифтор-4-нитро-м-толил)окси]-6-[(α,α,α
-трифтор-м-толил)окси]пиримидина
Как можно видеть из данных в примере 4, способ по настоящему изобретению обеспечивает получение целевого продукта из 4,6-дихлорпиримидина с выходом 64%.
ПРИМЕР 5
Получение4-[(α,α,α-трифтор-4-нитро-м-толил)окси]-6-[(α,α,α-трифтор-м-толил)окси] пиримидина - известный способ с использованием 4,
6-дифторпиримидина
а) Получение 4,6-дифторпиримидина
b) Получение 4-фтор-6-[(α,α,α-трифтор-м-толил)окси]пиримидина
с)Получение4-[(α,α,α
-трифтор-4-нитро-м-толил)окси]-6-[(α,α,α-трифтор-м-толил)окси]пиримидина
Как можно видеть из данных в примере 5, известный способ с использованием 4,6-дифторпиримидина, с использованием в качестве исходного реагента 4,6-дихлорпиримидина дает получение целевого продукта с выходом 35%.
Таким образом, преимущество способа по настоящему изобретению состоит в том, что он обеспечивает значительно более высокий выход (64% вместо 35%) 4-[(α,α,α-трифтор-4-нитро-м-толил)окси] -6-[(α,α,α-трифтор-м-толил)окси] пиримидина по сравнению с известным способом.
Изобретение относится к усовершенствованному способу получения несимметричного 4,6-бис(арилокси)пиримидина формулы I, которые находят применение в сельском хозяйстве в качестве пестицидов, и к новому промежуточному соединению формулы II для его получения. Способ получения соединения формулы I, где значения радикалов указаны в формуле изобретения, при условии, что по крайней мере один из R2 и R6 не является водородом и арилоксигруппы не одинаковы, включает взаимодействие 4,6-дигалогенпиримидина формулы III, где Х означает С1, Вr или I, с одним или менее молярным эквивалентом первого фенола формулы IV и первым основанием в присутствии первого растворителя, с получением 4-гало-6-(арилокси)пиримидина формулы V, которое взаимодействует примерно с одним мольным эквивалентом С1-С4-триалкиламина, в присутствии второго растворителя, с получением соединения формулы II, где Q означает группу R9R10R11N+-, и взаимодействие галогенида аммония с по крайней мере одним молярным эквивалентом второго фенола формулы VI и вторым основанием в присутствии третьего растворителя. Способ позволяет увеличить выход целевого продукта, исключает проблему смешанного замещения и позволяет использовать менее дорогие реагенты, чем в известных способах. 2 с. и 8 з.п.ф-лы.
Способ получения производных пиримидина