Код документа: RU2592791C2
Настоящее изобретение относится к усовершенствованной системе дополнительной обработки выхлопных газов и, в частности, к системе дополнительной обработки для дизельных двигателей (двигателей компрессионного зажигания).
Дизельные двигатели находят сейчас широкое применение в личных автомобилях и легких коммерческих транспортных средствах, а также в более традиционных применениях, таких как автобусы и грузовые автомобили, благодаря их более низкому расходу горючего, чем у транспортных средств на бензиновом горючем. Дизельные двигатели работают способом, который приводит к возникновению выхлопа, который по-прежнему содержит значительные количества кислорода, а также продуктов горения и побочных продуктов, включая CO2, H2O, NOx и частицы. Также имеются малые количества не сгоревших углеводородов (HC) и CO, которые присутствуют в выхлопе.
Правила, регулирующие выбросы для транспортных средств, введены в большинстве стран для улучшения качества воздуха, особенно в больших и малых городах. Среди выхлопов, которые регулируются, особенно трудно обрабатывать NOx в дизельных выхлопах из-за сложности химического восстановления компонентов выхлопных газов в присутствии избытка кислорода. Некоторый контроль NOx может быть достигнут с помощью конструкции двигателя, хотя обычно - за счет увеличения содержания других загрязняющих веществ или посредством накопления NOx на компоненте а и управления двигателем для обеспечения отклонения режима работы от нормального состояния в обогащенном состоянии для высвобождения накапливаемых NOx и для того, чтобы вызвать химическое восстановление NOx. Современные системы дополнительной обработки выхлопных газов теперь включают стадию селективного каталитического восстановления (SCR). SCR включает добавление восстановительного агента, обычно мочевины, который производит аммиак при использовании, с восстановлением NOx до N2 во время прохождения газов над ом SCR. Наряду с дополнительной сложностью хранения и подачи на борту транспортного средства и связанной с этим инфраструктуры, многие катализаторы SCR имеют скорее узкий диапазон температур для работы. Проблемы хранения и подачи на борту и инфраструктуры могли бы, вероятно, быть устранены, если бы был предложен для использования другой восстановительный агент, в особенности само дизельное топливо. Такое "SCR HC" предложено, и предложения включают использование цеолитов для накопления несгоревших HC с высвобождением в рабочем диапазоне температур а SCR. Несмотря на множество привлекательных особенностей, SCR HC, как показано, является слишком сложным для использования в рабочей ситуации реального применения двигателя.
Риформинг углеводородов с образованием синтез газа (H2 и CO), возможно, в сочетании с реакцией конверсии водяного газа для повышения выхода H2, является хорошо известным способом, осуществляемым в промышленном масштабе.
Имеются некоторые предложения, относящиеся к риформингу горючего, по отношению к моторизированным транспортным средствам. Возможно, самые ранние предложения относятся к получению H2 для снабжения топливом транспортных средств на топливных элементах. Осложнением при этом является необходимость в исключении введения значительных количеств CO в топливный элемент, поскольку Pt катализаторы, используемые в топливном элементе, отравляются под действием CO. После этого появились предложения относительно осуществления риформинга горючего и/или выхлопных газов для одной или обеих из двух целей: (a) для извлечения тепла и увеличения эффективности (с помощью уменьшения потребления горючего, и тому подобное) посредством преобразования горючего и компонентов выхлопа в горючее с более высокой теплотворной способностью, при соответствующем уменьшении выбросов двигателя; (b) для генерирования H2 и CO с целью использования каталитической дополнительной обработки выхлопных газов, для уменьшения регулируемых правилами выбросов.
Выхлопные газы от двух главных типов двигателей внутреннего сгорания (двигателей искрового зажигания, или двигателей на бензиновом топливе, и компрессионного зажигания или дизельных двигателей) содержат большие количества паров воды, но в основном значительно различаются. Выхлопы бензиновых двигателей имеют высокую температуру, порядка 600-800°C, и содержат относительно мало кислорода. Дизельные выхлопы имеют низкую температуру (иногда всего 150°C, в маломощных дизельных двигателях, работающих в городских условиях) и имеют относительно высокие уровни кислорода. Низкие температуры дизельных выхлопов доставляют проблемы для устройств для каталитической дополнительной обработки, поскольку скорость всех химических реакций изменяется с температурой, и показано, что сложно "запустить" для всех необходимых различных реакций. Температура "пуска", как считается, представляет собой такую температуру, при которой имеет место 50% реакции.
В отличие от крупномасштабного промышленного риформинга, где контролируются температуры и другие параметры, такие как количество пропускаемого материала, выхлопы от транспортных средств могут изменяться в широких пределах по объему и массе пропускаемого материала и по температуре. По этой причине, как показано, очень трудно конструировать и осуществлять работу эффективной дополнительной обработки для дизельных двигателей, включающей риформинг выхлопных газов, хотя имеются некоторые, в основном академические, предложения.
Известно получение водорода для улучшения дополнительного контроля выбросов после дополнительной обработки внутри цилиндров самого двигателя посредством контроля впрыска и горения горючего.
Energy & Fuels 2005, 19, 744-752 описывает систему для поддерживаемого выхлопом риформинга дизельных топлив. Эта статья относится в основном к рециклированию риформата на входную сторону двигателя. Хотя использование риформата при дополнительной обработке и рассматривается во введении, никаких деталей относительно его эффективного достижения не приводится.
Известно, что водород является эффективным для восстановления NO над ом на основе Pt при относительно низких температурах (которые представляют собой условия холодного запуска бензинового двигателя): J. Catalysis 208, 435-447 (2002). Также известно, что добавление водорода к смеси NO/O2/пропан облегчает SCR HC над определенными катализаторами на основе серебра, но не надо всеми: см. Applied Catalysis B: Environmental 51 (2004) 261-274. Патент США № 5921076 описывает выхлопную систему, которая использует добавление водорода и/или углеводорода для облегчения восстановления NOx в выхлопах дизельных двигателей. Хотя рассматривается возможность применения одного и нескольких дополнительных катализаторов и предполагается, что такой (катализаторы) может хранить и высвобождать углеводороды, не предполагается, что какой-либо вариант осуществления описывается или предлагается в рамках настоящего изобретения.
Остается необходимость в улучшении каталитической дополнительной обработки выхлопов дизельных двигателей, в частности, для удовлетворения вызывающих все больше проблем регулирующих правил относительно выбросов, которые вводятся, при реалистичных рабочих условиях.
Настоящее изобретение предлагает способ улучшения восстановления NOx в выхлопах дизельных двигателей посредством селективного каталитического восстановления с использованием восстановительных агентов, содержащих углеводороды, включающий прохождение выхлопных газов через ряд зон, указанные зоны содержат первую зону, в которой расположен первый , который ускоряет SCR HC, с получением первого газообразного продукта; вторую зону, через которую проходит первый газообразный продукт и в которой расположен второй , который ускоряет H2-ускоряемую реакцию SCR HC, с получением второго газообразного продукта, и третью зону, через которую проходит второй газообразный продукт и в которой расположен третий , который ускоряет CO/H2 SCR с получением конечных NOx-обедненных выхлопных газов, и смешивание газообразного риформата, содержащего CO и H2, с одним или несколькими компонентами из выхлопных газов, первого газообразного продукта и второго газообразного продукта.
Неожиданно было обнаружено, что такой ряд из трех каталитических зон является эффективным для работы в реальных рабочих условиях, с достижением при этом хорошего восстановления NOx.
По этой причине настоящее изобретение предлагает также систему ов, содержащую ряд катализаторов SCR, содержащих первый , который ускоряет SCR HC, второй , который ускоряет H2-ускоряемую реакцию SCR HC, и третий , который ускоряет CO/H2 SCR.
В настоящем изобретении, газообразный риформат формируется посредством риформинга выхлопных газов двигателя, дополняемых топливом, желательнее всего, дополняемых дизельным топливом, смешивается с одним или несколькими компонентами из выхлопных газов и первого и второго газообразных продуктов. В первом варианте осуществления, газообразный риформат смешивают с выхлопными газами перед тем, как они поступают в первую зону. Во втором варианте осуществления газообразный риформат смешивают с первым и вторым газообразными продуктами посредством введения газообразного риформата в указанные первый и второй потоки газообразных продуктов.
Считается, что введение газообразного риформата вместе с выхлопными газами в первую зону могло бы в некоторых обстоятельствах ускорять паразитную реакцию, а именно окисление HC с помощью O2. Рекомендуется, чтобы осуществлялись рутинные эксперименты в индивидуальных случаях, чтобы установить, являются ли такие паразитные реакции проблемой для конкретных условий первого а и первой зоны, и для того, чтобы после этих исследований устанавливалась конечная конструкция. В экспериментах, описанных далее, риформат смешивают с синтетическими выхлопными газами дизельного двигателя перед тем, как он поступает в первую зону.
Способ получения риформата не является особенно критичным. Желательно, однако, чтобы он получался из дизельного горючего в устройстве такого типа, как описано в ожидающей совместного решения заявке авторов (AA 1876). Это изобретение смешивает горючее с малым количеством (меньше 10%, предпочтительно, примерно 1-2%) выхлопных газов перед прохождением его над ом риформинга.
Первая зона представляет собой при работе зону высокотемпературного восстановления HC NOx. Пригодным для использования является такой катализатор, как металл-цеолит, например, Cu/ZSM5.
Вторая зона, принимающая газы, выходящие из первой зоны, предпочтительно, смешанные с соответствующим количеством газообразного риформата для получения оптимизированного отношения H2:HC, действует для ускорения восстановления H2-HC- NOx; соответствующий основывается на Ag/Al2O3. Такой обычно подвержен ингибированию под действием HC и закоксовыванию, но присутствие H2 может сводить к минимуму такие проблемы.
Удобно, чтобы третья зона включала низкотемпературный для реакции устранения NOx, который использует CO-H2 для ускорения восстановления NOx. Удобно, чтобы такой представлял собой PGM, который может содержать Pt или Pd. Может быть преимущественным инжектирование относительно большого количества газообразного риформата для получения высокой степени преобразования NOx на этой стадии. Такой Pt или Pd катализатор может дополнительно действовать в качестве а очистки для любых непреобразованных HC и CO.
Удобно, чтобы катализаторы наносились обычным образом на единые или раздельные проточные носители. Современные технологии нанесения покрытий делают возможным точное зонирование осаждений на металлические или керамические подложки.
Риформер для выхлопных газов может вводиться в систему по настоящему изобретению или выход может разделяться между системой и потоком, который вводится на вход двигателя.
Теперь настоящее изобретение будет описываться с помощью конкретного примера, но оно не должно рассматриваться как ограничиваемое им.
Синтетические выхлопные газы дизельного двигателя, содержащие 8% O2, 5% CO2, 5% H2O и 200 м.д. NOx по объему, пропускают через риформер, вместе с 0,07 мл/мин дизельного горючего US06, и риформер работает при 375°C и при отношении O/C 3,35. риформера имеет общий объем 2,6 см3 и состоит из Pt-Rh/CeO2-ZrO2/Al2O3. Выходной продукт риформера содержит приблизительно 2% H2. Риформат смешивается при скорости 2 л/мин с другим потоком синтетических выхлопных газов, при 15 л/мин, с получением газовой смеси, имеющей композицию 8% O2, 5% CO2, 5% H2O, 200 м.д. NOx, 1000 м.д. H2, 1500 м.д. CO и 1000 м.д. C1 HC. Эту газовую смесь пропускают в каталитическую систему. Перед каталитической системой не инжектируют дополнительных HC.
Система использует первый Cu/ZSM5, второй Ag/Al2O3 и третий промышленный Pd , осажденный на равных отрезках 1 дюйм × 3 дюйм (2,25 см × 6,75 см) цилиндрической подложки. Степень преобразования NOx измеряют в диапазоне температур 200-450°C и она находится в пределах от 33% при 200°C до максимума 66% при 300°C.
Система достигает пригодной для использования степени преобразования NOx в широком диапазоне температур.
Известная из литературы обычная система SCR, использующая NH3, подающийся как мочевина, способна достигать примерно 100% степени преобразования NOx в пределах примерно между 200 и 500°C, но требует бортового хранилища для мочевины.
Изобретение относится к системе дополнительной обработки выхлопных газов дизельных двигателей. Способ включает пропускание выхлопных газов через первую зону с катализатором металл/цеолит, ускоряющим SCR НС, с получением первого газообразного продукта. Первый газообразный продукт пропускают через вторую зону, в которой расположен катализатор Ag/AlO, ускоряющий Н-ускоряемую реакцию SCR НС с получением второго газообразного продукта. Второй газообразный продукт пропускают через третью зону, в которой расположен катализатор на основе благородного металла, который ускоряет SCR СО/Нс получением конечных, NO-обедненных, выхлопных газов. Смешивание газообразного риформата, содержащего СО и Н, с одним или более из выхлопных газов первого газообразного продукта и второго газообразного продукта. Применение ряда катализаторов предлагает привлекательную альтернативу для SCR на основе мочевины, без необходимости в источнике и запасах мочевины. 4 з.п. ф-лы.
Устройство и способ для обработки отработавших газов, образующихся при работе двигателя на бедных смесях, селективным каталитическим восстановлением окислов азота