Код документа: RU2444676C1
Изобретение относится к средствам светоизлучения и может быть использовано в системах освещения.
Широко известно применение в качестве источников наружного и внутреннего освещения ламп накаливания. Электрические и оптические характеристики некоторых моделей ламп наливания российского производства представлены в таблице 1.
Анализ представленных данных позволяет выявить один из существенных недостатков применения ламп накаливания в качестве источников освещения, а именно - их высокое энергопотребление (при параллельном включении ламп в электрические сети напряжением 127 и 220 В общая мощность потребления составляет порядка 1800 Вт для среднего жителя России).
Для решения подобной и иных проблем в последнее время все более широкое применение в качестве источников освещения находят светодиодные лампы на основе полупроводниковых излучателей, расчет электрических и оптических характеристик светодиодных ламп на основе полупроводниковых излучателей представлены в таблице 2.
Анализ представленных данных позволяет выделить ряд основных преимуществ светодиодных ламп на основе полупроводниковых излучателей над остальными источниками света, а именно:
надежность - в настоящий время светодиоды различных конструкций имеют срок службы до 50000 часов и более, в то время как лампы накаливания и люминесцентные лампы имеют срок службы не более 10000 часов;
световая отдача светодиодов в настоящий момент превышает 80 лм/Вт и постоянно растет, тогда как световая отдача ламп накаливания и люминесцентных ламп находится в пределах 10-120 лм/Вт;
излучение светодиодов близко к монохроматическому излучению и имеет широкий спектр цветов, что позволяет использовать их в различных устройствах без применения светофильтров.
Опыт применения полупроводниковых светодиодных источников излучения в различных системах освещения подтвердил вышеперечисленные преимущества таких источников над традиционными лампами накаливания, однако и выявил ряд специфических недостатков, обусловленных особенностями конструкции, а именно - необходимость постоянного отвода тепла от области P-N перехода для обеспечения стабильной работы источника излучения. Действительно, расчет тепловых сопротивлений для кристалла излучателя с помощью метода эквивалентов (Захаров А.Л., Асвадурова Е.И., Расчет тепловых параметров полупроводниковых приборов: Метод эквивалентов. - М.: Радио и связь, 1983. - 184 с.), а также расчет остальных тепловых сопротивлений на основе известных данных по теплопроводности слоев и геометрии излучателя с использованием известного уравнения теплопередачи
где: Q - рассеиваемая мощность, Вт;
k - теплопроводность, Вт/см·K;
А - площадь радиатора, см2;
Т - температура, K;
показал, что основная величина, определяющая отток тепла от кристалла излучателя на воздух, - площадь радиатора. Тепловое сопротивление на воздух любого излучателя площадью 1 см2 при свободной конвекции составляет ≈200 K/Вт. Таким образом, для эффективного отвода тепла от кристалла, площадь радиатора должна составлять не менее 100 см2.
Существующие способы отвода тепла от области P-N перехода заключаются либо в естественной конвекции с применением радиаторов и тепловых труб, либо применении импульсных источников питания. Однако увеличение тока через излучающий элемент, в импульсных системах питания, приводит к увеличению плотности тока и, как следствие, к резкому увеличению Оже-рекомбинации.
Частично проблема отвода тепла решена в известном патенте РФ на изобретение №2170995 светодиодном источнике излучения, содержащем несколько полупроводниковых излучателей света оптического диапазона, объединенных электрической цепью, в, по меньшей мере, один базовый элемент, держатель базового элемента с присоединительными выводами, покровную линзу и радиатор для отвода тепла от базового элемента. Однако недостатком подобных светодиодных источников излучения является наличие схем управления непосредственно в корпусе светодиодной лампы, работающих в импульсном режиме, что не позволяет, во-первых, в полной мере реализовать высокий внешний квантовый выход источника излучения, во-вторых, удорожает продукт и, в-третьих, снижает надежность лампы в целом, что видно на примерах светодиодных ламп и энергосберегающих ламп на основе паров ртути, когда причиной выхода лампы из строя является выход из строя элементов схемы.
Задача, решаемая при создании настоящего изобретения, состоит в создании светодиодного излучающего устройства, эксплуатационные возможности которого, с одной стороны, сочетают в себе все достоинства ламп накаливания (например, величина светового потока, отсутствие необходимости отвода тепла), а с другой, имеют значительно больший ресурс, присущий светодиодным источникам излучения. Технический результат, достигаемый при решении поставленной задачи, состоит в создания источника излучения, являющегося аналогом лампы накаливания со всеми достоинствами полупроводниковых излучателей света.
Для достижения поставленного результата предлагается в светодиодном источнике излучения, содержащем корпус с установленными в нем, по меньшей мере, четырьмя полупроводниковыми излучателями света оптического диапазона, объединенными последовательно электрической цепью, с присоединительными выводами и покровной линзой, согласно изобретению, электрическую схему выполнить в виде двухполупериодного моста из светодиодных источников излучения с включенной нагрузкой также из двух включенных последовательно светодиодных источников излучения, а корпус использовать в качестве радиатора для отвода тепла от базового элемента.
Предлагаемая согласно изобретению конструкция, для увеличения количества излучающих элементов предполагает возможность параллельного присоединения к каждому источнику излучения еще одного источника излучения. Таким образом, базовый элемент может состоять из шести, двенадцати, восемнадцати и т.д. источников излучения. В предлагаемой электрической схеме нет необходимости в стабилизирующих ток резисторах - система регулирует ток в зависимости от вида вольтамперной характеристики в области оптимальных токов через источники излучения. Для примера, базовый элемент, состоящий из шести чипов, в любой полуволне состоит из четырех чипов, следовательно, прямое падение на каждом чипе не может быть более 3,5 В и менее 2,5 В, а при тщательном подборе чипов по прямому напряжению и токе 0,3 А, этот разброс можно уменьшить до 10%.
Предпочтительные, но не обязательные варианты реализации заявленного светодиодного источника излучения предполагают выполнение полупроводниковых излучателей света одноцветного либо разноцветного излучения; выполнение радиатора площадью не менее 100 см2, что обеспечивает минимальную температуру p-n перехода; при необходимости, дополнительное наличие стабилизирующего сопротивления для базового элемента, что позволяет при резких изменениях напряжения в сети сохранять расчетное значение тока через p-n переход; установку покровной линзы и излучателя света с зазором друг относительно друга, в котором размещен прозрачный или рассеивающий герметизирующим эластичный компаунд, имеющий коэффициент преломления ≥1,3. Компаунд и его указанные свойства обеспечивают герметичность, увеличение выхода излучения наружу, и при изменении внешней температуры малые взаимные действующие силы; выполнение покровной линзы плоской, сферической или в виде линзы Френеля; для увеличения мощности, светодиодный источник может содержать несколько (по меньшей мере, четыре) P-N переходов, а полупроводниковые излучатели света могут быть покрыты люминофором, трансформирующим излучение полупроводниковых излучателей света в излучение белого цвета толщиной не более 1 мкм; для получения равномерного освещения от предлагаемой лампы предлагается определенная топология размещения чипов на плате - а именно отсутствие в центре чипа или чипов в зависимости от площади занимаемой окружающими чипами из условия отношения не светящейся части источника излучения к светящейся от 15 до 40%.
Изобретение поясняется рисунками, где на рис.1 и 2 приведен общий вид заявляемого светодиодного источника излучения, на рис.3-5 - примеры электрических цепей светодиодного излучателя с одним (рис.3) и несколькими (рис.4 и 5) базовыми элементами.
Светодиодный источник излучения содержит полупроводниковые излучатели света 1 одноцветного или разноцветного излучения, покрытые люминофором толщиной не более 1 мкм, трансформирующим излучение полупроводниковых излучателей света в излучение белого цвета. Излучатели света размещены на стеклотекстолитовой плате 2 с топологией (электрической цепью), объединяющей полупроводниковые излучатели света в базовый элемент.
Базовый элемент - четыре последовательно соединеных кристалла излучающих элементов, в каждой полуволне, на основе гетероструктур AIIIBV, размером 1×1 мм и прямом падении напряжения от 2,8 до 3,5 В при номинальном токе 0,35 А. Для стабилизации тока через излучающие элементы, последовательно, может быть включено сопротивление. Надежность подобно собранных ламп определяется надежностью представленных элементов и составляет порядка 50000 часов. Размер светодиодных источников излучения определяется мощностью, потребляемой лампой исходя из соотношения размеров радиатора от рассеиваемой мощности - 20 см2 площади на 1 Вт потребляемой мощности.
Конструкция включает также штатный патрон 3 для ламп освещения и корпус 4, одновременно являющийся радиатором для отвода тепла от излучателей света, которые сверху накрыты покровной линзой 5, выполняемой плоской, сферической или в виде линзы Френеля. Покровная линза и излучатели света могут быть установлены с зазором друг относительно друга, предполагающим размещение в нем прозрачного или рассеивающего герметизирующего эластичного компаунда 6 с коэффициентом преломления ≥1,3.
Вариант конструкции источника излучения предполагает исполнение его таким образом, что отношение его не светящейся части к светящейся составляет от 15 до 40%. По не светящейся частью следует понимать площадь окружности с диаметром d (рис.2), под светящейся - площадь кольца с наружным диаметром D и внутренним d.
Заявленный светодиодный источник излучения питается от общего блока питания напряжением 12 вольт, установленного в распределительном щите каждого потребителя. Наличие полупроводниковых излучателей света размером 1×1 мм2, с высоким значением кпд преобразования электрической энергии в световую, специальный радиатор, позволяющий эффективно отводить тепло от кристаллов, принципиальная электрическая схема и соотношение основных параметров базового элемента позволяют сохранить кпд и повысить эффективность светодиодного источника излучения.
Изобретение относится к средствам светоизлучения и может быть использовано в системах освещения. Техническим результатом является расширение эксплутационных возможностей. Светодиодный источник излучения содержит корпус с установленными в нем, по меньшей мере, четырьмя полупроводниковыми излучателями света оптического диапазона, объединенными электрической цепью, в, по меньшей мере, один базовый элемент. Электрическая цепь выполнена в виде двухполупериодного моста из светодиодных источников излучения с включенной нагрузкой также из двух включенных последовательно светодиодных источников излучения. 10 з.п. ф-лы, 2 табл., 5 ил.
Комментарии