Код документа: RU2627683C1
Предлагаемый вертолетный радиотехнический комплекс относится к области авиации и может быть использован для поиска, обнаружения и определения местоположения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу.
Во время катастрофы вместе с самолетом падает на землю и "черный ящик" и при ударе о землю у него выходят из строя составные части, которые затем с большим трудом восстанавливаются. А если катастрофа самолета произошла над морем, тогда "черный ящик" вместе с самолетом падает в море, который без соответствующей сигнализации в нем невозможно отыскать в глубинах моря.
Такое произошло при крушении самолета А-330 над морем. Поиск "черного ящика" осуществлялся на ощупь, так как он не издавал никаких сигналов для поиска. И по этой причине поиск не увенчался успехом.
Аналогичная негативная ситуация возникает и при катастрофе самолета в горах и в труднодоступных местах.
Известны вертолетные радиотехнические комплексы (патент РФ №№2.150.178, 2.275.746, 2.321.177, 2.419.991, 2.465.733; патенты США №№3.806.926, 3.891.989, 3.896.439, 4.328.496, 5.841.872, 7.318.368; патент Великобритании №2.180.728; патенты Германии №№2.538.014, 3.346.155; патент Франции №2.447.041 и другие).
Из известных систем и устройств наиболее близкой к предлагаемому является "Станция радиотехнического контроля" (патент РФ №2.465.733, Н04K 3/00, 2011), которая и выбрана в качестве прототипа.
Технической задачей изобретения является повышение оперативности и достоверности обнаружения самолета, потерпевшего катастрофу, путем использования двух дополнительных пеленгаторных каналов и "черного ящика" с сигнализацией.
Поставленная задача решается тем, что вертолетный радиотехнический комплекс для обнаружения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу, содержащий, в соответствии с ближайшим аналогом, последовательно включенные антенное устройство, приемник, анализатор параметров принимаемого сигнала, устройство запоминания и обработки полученной информации, второй вход которого через пеленгаторное устройство соединен с выходом антенного устройства, и телеметрическое устройство, выход которого является выходом комплекса, при этом приемник выполнен в виде последовательно включенных приемной антенны, первого смесителя, второй вход которого через первый гетеродин соединен с выходом блока перестройки, усилителя первой промежуточной частоты, обнаружителя, второй вход которого соединен с его выходом через первую линию задержки, ключа, второй вход которого соединен с выходом первой промежуточной частоты, второго смесителя, второй вход которого соединен с выходом второго гетеродина, и усилителя второй промежуточной частоты, выход которого является выходом приемника, управляющий вход блока перестройки соединен с выходом обнаружителя, который выполнен в виде последовательно подключенных к выходу усилителя первой промежуточной частоты третьей линии задержки, четвертого перемножителя, второй вход которого соединен с выходом усилителя первой промежуточной частоты, первого фильтра нижних частот, первого квадратора, сумматора и порогового блока, второй вход которого через первую линию задержки соединен с его выходом, а выход подключен к управляющему входу блока перестройки и к первому входу ключа, последовательно подключенных к выходу усилителя первой промежуточной частоты первого фазовращателя на 90°, пятого перемножителя, второй вход которого через второй фазовращатель на 90° соединен с выходом третьей линии задержки, второго фильтра нижних частот и второго квадратора, выход которого соединен с вторым входом сумматора, пеленгаторное устройство выполнено в виде двух пеленгаторных каналов, каждый из которых состоит из последовательно включенных приемной антенны, смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, перемножителя, второй вход которого соединен с выходом усилителя второй промежуточной частоты, и узкополосного фильтра, к выходу первого узкополосного фильтра последовательно подключены третий перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, третий узкополосный фильтр и первый фазометр, к выходу второго узкополосного фильтра последовательно подключены вторая линия задержки, первый фазовый детектор, второй вход которого соединен с выходом второго узкополосного фильтра, и второй фазометр, вторые входы фазометров соединены с выходом опорного генератора, а выходы подключены к устройству запоминания и обработки полученной информации, антенное устройство содержит три приемные антенны, приемная антенна приемника размещена над втулкой винта вертолета, приемные антенны пеленгаторного устройства размещены на концах первой и второй лопастей несущего винта вертолета, двигатель кинематически связан с винтом вертолета и опорным генератором, отличается от ближайшего аналога тем, что он снабжен двумя дополнительными пеленгаторными каналами и "черным ящиком" с сигнализацией, причем каждый из дополнительных пеленгаторных каналов состоит из последовательно включенных приемной антенны, смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, перемножителя, второй вход которого соединен с выходом усилителя второй промежуточной частоты, и узкополосного фильтра, к выходу четвертого узкополосного фильтра последовательно подключены шестой перемножитель, второй вход которого соединен с выходом пятого узкополосного фильтра, шестой узкополосный фильтр и третий фазометр, к выходу пятого узкополосного фильтра последовательно подключены четвертая линия задержки, второй фазовый детектор, второй вход которого соединен с выходом пятого узкополосного фильтра, и четвертый фазометр, вторые входы третьего и четвертого фазометров соединены с выходом опорного генератора, а выходы подключены к устройству запоминания и обработки полученной информации, приемные антенны дополнительных пеленгаторных каналов размещены на концах третьей и четвертой лопастях несущего винта, "черный ящик" с сигнализацией, который в случае катастрофы самолета выбрасывается с парашютом из отсека и приземляется или приводняется на морской поверхности, излучая при этом электромагнитные волны и звуковые сигналы, помещен в отсеке хвостовой части самолета и выбрасывается автоматически, при этом во время раскрытия парашюта открывается кран и через патрубки воздухопровода из камеры сжатый воздух поступает в резиновую камеру, которая надувается и превращается в амортизатор-подушку, излучаемые "черным ящиком" электромагнитные волны и звуковые сигналы также излучаются на глубине, "черный ящик" содержит последовательно включенные дуплексер, вход-выход которого связан с приемопередающей антенной, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, второй перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, первый перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, фильтр нижних частот, вычислительный блок, блок формирования модулирующего кода, линии задержки, сумматор, второй вход которого соединен с выходом генератора псевдослучайной последовательности, фазовый манипулятор, второй вход которого соединен с выходом узкополосного фильтра, и усилитель мощности, выход которого соединен с вторым входом дуплексера.
Геометрическая схема расположения приемных антенн на вертолете изображена на фиг. 1. Структурная схема "черного ящика" с сигнализацией представлена на фиг. 2. Временные диаграммы, поясняющие работу "черного ящика", с сигнализацией, изображены на фиг. 3. Структурная схема бортовой аппаратуры вертолета представлена на фиг. 4.
"Черный ящик" с сигнализацией 47 содержит последовательно включенные дуплексер 50, вход-выход которого связан с приемопередающей антенной 49, смеситель 52, второй вход которого соединен с выходом гетеродина 51, усилитель 53 промежуточной частоты, второй перемножитель 56, второй вход которого соединен с выходом фильтра 58 нижних частот, узкополосный фильтр 52, первый перемножитель 55, второй вход которого соединен с выходом усилителя 53 промежуточной частоты, фильтр 58 нижних частот, вычислительный блок 59, блок 60 формирования модулирующего кода, линия 61 задержки, сумматор 63, второй вход которого соединен с выходом генератора 62 псевдослучайной последовательности (ПСП), фазовый манипулятор 64, второй вход которого соединен с выходом узкополосного фильтра 57, и усилитель 65 мощности, выход которого соединен с вторым входом дуплексера 56.
Перемножители 55 и 56, узкополосный фильтр 52 и фильтр 58 нижних частот образуют демодулятор 54 ФМН сигналов.
Смеситель 52, гетеродин 51, усилитель 53 промежуточной частоты и демодулятор 54 ФМН сигналов образуют приемник 48 GPS-сигналов.
Бортовая аппаратура вертолета содержит последовательно включенные антенное устройство 1, приемник 2, анализатор 4 параметров принимаемого сигнала, устройство 5 запоминания и обработки полученной информации, второй вход которого через пеленгаторное устройство 3 соединен с выходом антенного устройства 1, и телеметрическое устройство 6, выход которого является выходом комплекса.
Приемник 2 содержит последовательно включенные приемную антенну 7, первый смеситель 12, второй вход которого через первый гетеродин 11 соединен с выходом блока 10 перестройки, усилитель 17 промежуточной частоты, обнаружитель 20, второй вход которого через первую линию 21 задержки соединен с его выходом, ключ 22, второй вход которого соединен с выходом усилителя 17 промежуточной частоты, второй смеситель 24, второй вход которого соединен с выходом второго гетеродина 23, и усилитель 25 второй промежуточной частоты, выход которого является выходом приемника 2 и подключен к входу анализатора 4 параметров принимаемого сигнала.
При этом обнаружитель 20 выполнен в виде последовательно подключенных к выходу усилителя 17 первой промежуточной частоты третьей линии задержки 37, четвертого перемножителя 38, второй вход которого соединен с выходом усилителя 17 первой промежуточной частоты, первого фильтра 41 нижних частот, первого квадратора 43, сумматора 45 и порогового блока 46, второй вход которого соединен через первую линию задержки 21 с его выходом, а выход подключен к управляющему входу блока 10 перестройки и к первому входу ключа 22, последовательно подключенных к выходу усилителя 17 первой промежуточной частоты первого фазовращателя 36 на 90°, пятого перемножителя 40, второй вход которого через второй фазовращатель 36 на 90° соединен с выходом третьей линии задержки 37, второго фильтра 42 нижних частот и второго квадратора 44, выход которого соединен с вторым входом сумматора 45.
Пеленгаторное устройство 3 содержит четыре пеленгаторных канала, каждый из которых содержит последовательно включенные приемную антенну 8 (9, 66, 67), смеситель 13 (14, 68, 69), второй вход которого соединен с выходом первого гетеродина 1, усилитель 18 (19, 70, 71) первой промежуточной частоты, перемножитель 26 (27, 72, 73), второй вход которого соединен с выходом усилителя 25 второй промежуточной частоты, и узкополосный фильтр 28 (29, 74, 75). При этом к выходу первого узкополосного фильтра 28 последовательно подключены третий перемножитель 30, второй вход которого соединен с выходом второго узкополосного фильтра 29, третий узкополосный фильтр 32 и первый фазометр 34, к выходу второго узкополосного фильтра 29 последовательно подключены вторая линия задержки 31, первый фазовый детектор 33, второй вход которого соединен с выходом второго узкополосного фильтра 29, и второй фазометр 35. К выходу четвертого узкополосного фильтра 74 последовательно подключены шестой перемножитель 76, второй вход которого соединен с выходом пятого узкополосного 75 фильтра, шестой узкополосный фильтр 78 и третий фазометр 80. К выходу пятого узкополосного фильтра 75 последовательно подключены четвертая линия задержки 77, второй фазовый детектор 79, второй вход которого соединен с выходом пятого узкополосного фильтра 75, и четвертый фазометр 81. Вторые входы фазометров 34, 35, 80 и 81 соединены с выходом опорного генератора 16, а выходы подключены к устройству 5 запоминания и обработки полученной информации.
Антенное устройство 1 содержит пять приемных антенн 7-9, 66 и 67, приемная антенна 7 приемника 2 размещена над втулкой винта вертолета, приемные антенны 8 и 9, 66 и 67 пеленгаторного устройства 3 размещены на концах лопастей несущего винта вертолета (фиг. 1). Двигатель 15 кинематически связан с винтом вертолета и опорным генератором 16.
Вертолетный радиотехнический комплекс для обнаружения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу, работает следующим образом.
При катастрофе самолета из его отсека, находящегося в хвостовой части, выбрасывается "черный ящик" с сигнализацией, с парашютом. Когда "черный ящик" достигает определенной высоты от земли или от поверхности моря, парашют автоматически раскрывается и включается приемник 47 GPS-сигналов, а также наполняется резиновая камера сжатым воздухом. Камера надувается и превращается в амортизатор-подушку при приземлении "черного ящика" на землю, а при приводнении его на море резиновая камера послужит как поплавок для "черного ящика" и будет удерживать его на плаву. Парашют и резиновая камера не показаны на чертежах.
Когда "черный ящик" выбрасывается из отсека самолета, то включается его электропитание и принимается сложный сигнал с фазовой манипуляцией (ФМН), излучаемый спутником системы GPS
U1(t)=V1cos[ω1t+ϕK1(t)+ϕ1], 0≤t≤T1,
где V1, ω1, ϕ1, T1 - амплитуда, несущая частота, начальная фаза и длительность сигнала;
ϕK1(t) {0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t) (фиг 3.а), причем ϕK1(t)=const при kτэ
τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью T1 (T1=N⋅τэ, для системы GPS N=(023)), который с выхода антенны 49 через дуплексер 50 поступает на вход смесителя 52, на второй вход которого подается напряжение гетеродина 51.
UГ (t)=VГ⋅cos(ωГt+ϕГ).
На выходе смесителя 52 образуется напряжение комбинационных частот. Усилителем 53 выделяется напряжение промежуточной частоты (фиг. 3.б)
Uпр(t)=Vпр⋅cos[ωпрt+ϕК1(t)+ϕпр], 0≤t≤T1,
где
ωпр=ω1-ωГ - промежуточная (разностная) частота;
ϕпр=ϕ1-ϕГ,
которое поступает на первые входы перемножителей 55 и 56. На второй вход первого перемножителя 55 подается опорное напряжение с выхода узкополосного фильтра 57 (фиг. 3.в)
U0(t)=V0⋅cos(ωпрt+ϕпр).
На выходе перемножителя 55 образуется напряжение
U2(t)=Vн⋅соsϕК1(t)+Vн⋅cos[2ωпрt+ϕК1(t)+2Uпр],
где
из которого фильтром 58 нижних частот выделяется низкочастотное напряжение (фиг. 3.г)
Uн(t)=Vн⋅cosϕК1(t), 0≤t≤T1,
пропорциональное модулирующему коду M(t) (фиг. 3.а). Это напряжение поступает на вход вычислительного блока 59, где на основании информации от других спутников системы GPS определяются координаты (долгота и широта) "черного ящика", которые формируются в виде модулирующего кода M1(t) в формирователе 60 модулирующего кода.
Напряжение Uн(t) с выхода фильтра 58 нижних частот одновременно подается на второй вход второго перемножителя 56, на выходе которого образуется напряжение
U0(t)=V2⋅cos(ωпрt+ϕпр)+V2⋅cos[(ωпрt+2ϕК1(t)+ϕпр]=2V2⋅cos(ωпрt+ϕпр)=V0⋅cos(ωпрt+ϕпр),
где
2Uк1(t)={0, 2π}.
Модулирующий код M1(t) поступает через линию задержки 61 на первый вход сумматора 63, на второй вход которого подается модулирующий код M2(t) с выхода генератора 62 псевдослучайной последовательности (ПСП). На выходе сумматора 63 образуется суммарный код (фиг. 3, д)
MΣ(t)=M1(t)+M2(t).
Причем время задержки τз линии 61 задержки выбирается равным длительности Т1 модулирующего кода M1(t) (τз=Т1).
Модулирующий код M2(t) является идентификационным номером "черного ящика" и содержит всю необходимую информацию о самолете, потерпевшем катастрофу.
Суммарный модулирующий код MΣ(t) (фиг. 3.д) поступает на второй вход фазового манипулятора 64, на первый вход которого подается гармоническое колебание U0(t) (фиг. 3.е) с выхода узкополосного фильтра 57. На выходе фазового манипулятора 64 формируется сложный сигнал с фазовой манипуляцией (фиг. 3.е)
U2(t)=V2⋅[ω2(t)+ϕК2(t)+ ϕ2], 0≤t≤T2,
где ω2=ωпр; ϕ2=ϕпр
ϕК2(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с суммарным модулирующем кодом MΣ(t) (фиг. 3.д).
Данный сигнал после усиления в усилителе 65 мощности через дуплексер 50 поступает в приемопередающую антенну 49, излучается ею в эфир, улавливается приемными антеннами 7-9, 66, 67 вертолета:
U3(t)=V3⋅cos[ω2±Δω)t+ϕК2(t)+ϕ3],
где - V3-V7 - амплитуды сигнала,
±Δω - нестабильность несущей частоты сигнала, обусловленная эффектом Доплера и другими дестабилизирующими факторами;
R - радиус окружности, на которой размещены антенны 8, 9, 66, 67;
λ - длина волны;
Ω=2πR - скорость вращения приемных антенн 8, 9, 66, 67 вокруг приемной антенны 7 (скорость вращения винта вертолета);
α, β - азимут и угол места "черного ящика" ЧЯ (фиг. 1).
Указанный сигнал поступает на первые входы смесителей 12-14, 68, 69, на вторые входы которых подается напряжение первого гетеродина 11 линейно-изменяющейся частоты
UГ1(t)=VГ1⋅cos(ωГ1(t)+πγt2+ϕГ1], 0≤t≤TП,
где
Следует отметить, что поиск ФМН сигналов, излучаемых "черным ящиком", в заданном диапазоне частот Д1 осуществляется с помощью блока 10 перестройки, который периодически с периодом Тп по пилообразному закону изменяет частоту ωГ1 первого гетеродина 11. В качестве блока 10 перестройки может использоваться генератор пилообразного напряжения.
Следует также отметить, что поиск ФМН сигналов, излучаемых "черным ящиком", осуществляется в районе предполагаемого места катастрофы самолета, куда и направляется вертолет.
На выходе смесителей 12-14, 68 и 69 образуется напряжение комбинационных частот. Усилителями 17-19, 70 и 71 выделяются напряжения первой промежуточной частоты:
Uпр1(t)=Vпр1⋅cos[(ωпр1±Δω)t+ϕК(t)-πγt2+γпр1],
где
ωпр1=ω2-ωГ1 - первая промежуточная частота;
ϕпр1=ϕ3-ϕГ1;
напряжение Uпр1(t) можно представить в следующем виде:
Uпр1(t)=Vпр1⋅cos[(ωпр1±Δω)t+ϕК(t)-πγt2+ϕпр1]=Vпр1⋅MΣ(t)⋅cos[(ωпр1±Δω)t-πγt2+ϕпр1],
где MΣ(t) - суммарный модулирующий код, в соответствии с которым манипулируется фаза гармонического колебания.
Это напряжение поступает на вход обнаружителя 20, а именно на вход линии задержки 37, перемножителя 38 и фазовращателя 36 на 90°. На выходе последнего образуется напряжение
Uпр6(t)=Vпр1⋅M(t)⋅cos[(ωпр1±Δω)t-πγt2+ϕпр1+90°]=Vпр1⋅M(t)⋅sin[(ωпр1±Δω)t-πγt2+ϕпр1],
которое поступает на первый вход перемножителя 40.
На выходе линии задержки 37 образуется напряжение
Uпр7(t)=Vпр1⋅M(t-τ1)⋅cos[(ωпр1±Δω)(t-τ1)-πγ(t-τ)2+ϕпр1],
где τ1 - время задержки линии задержки 37.
Время задержки τ1 линии задержки 37 выбирается из следующих соображений:
τ1<τ7, (ωпр1±Δω)τ1=2πK, K=1, 2, 3,
где τ7 - длительность элементарных посылок (тактовый период).
Задержанное напряжение Uпр7(t) поступает на вход второго фазовращателя 39 на 90°, на выходе которого образуется напряжение
Uпр8(t)=Vпр1⋅M(t-τ1)⋅sin[(ωпр1±Δω)(t-τ1)-πγ(t-τ)2+ϕпр1].
Это напряжение поступает на второй вход перемножителя 40. Результатом перемножения напряжений Uпр1(t) и Uпр7(t), Uпр6(t) и Uпр8(t) являются сложные колебания, из которых фильтрами 41 и 42 нижних частот выделяются следующие низкочастотные напряжения:
UH1(t)=VH⋅M(t)⋅M(t-τ1)⋅cos[(ωпр1±ω)τ1],
UH2(t)=VH⋅M(t)⋅M(t-τ1)⋅sin[(ωпр1±ω)τ1],
где
Эти напряжения после квадраторов 43 и 44 приобретают следующий вид:
и поступают на два входа сумматора 45, на выходе которого образуется суммарное напряжение:
которое поступает на вход порогового блока 46, где осуществляется его сравнение с пороговым напряжением Vпор и в случае его превышения принимается решение об обнаружении ФМН сигнала.
При обнаружении ФМН сигнала "черного ящика" на выходе обнаружителя 20 формируется постоянное напряжение, которое поступает на управляющий вход блока 10 перестройки, выключая его, на управляющий вход ключа 22, открывая его, и на вход линии задержки 21. Ключ 22 в исходном состоянии всегда закрыт.Время задержки х3 линии задержки 21 выбирается таким образом, чтобы можно было зафиксировать обнаруженный ФМН сигнал и проанализировать его параметры.
При выключении блока 10 перестройки усилителями 17-19, 70 и 71 выделяются следующие напряжения:
Uпр9(t)=Vпр1⋅cos[(ωпр1±Δω)t+ϕК(t)+ϕпр1],
Напряжение Uпр9(t) с выхода усилителя 17 первой промежуточной частоты через открытый ключ 22 поступает на первый вход смесителя 24, на второй вход которого подается напряжение второго гетеродина 23 со стабильной частотой ωГ2
UГ2(t)=VГ2⋅cos(ωГ2t+ϕГ2).
На выходе смесителя 24 образуются напряжения комбинационных частот. Усилитель 25 выделяет напряжение второй промежуточной частоты
Uпр14(t)=Vпр14⋅cos[(ωпр2±Δω)t+ϕК(t)+ϕпр2],
где
ωпр2=ωпр1-ωГ2 - вторая промежуточная частота;
ϕпр2=ϕпр1-ϕГ2,
которое поступает на вход анализатора 4 параметров принимаемого ФМН сигнала, где определяются длительность τэ элементарных посылок, из которых составлен ФМН сигнал, их количество N (Tc=N⋅τэ) и закон фазовой манипуляции в соответствии с суммарным модулирующим кодом MΣ(t). Это позволяет оценить идентификационные данные самолета, потерпевшего катастрофу, и его местоположение.
Напряжение Uпр14(t) с выхода усилителя 25 второй промежуточной частоты одновременно подается на вторые входы перемножителей 26, 27, 72 и 73 пеленгаторных каналов, на первые входы которых поступают напряжения Uпр10(t), Uпр11(t), Uпр12(t) и Uпр13(t) с выходов усилителей 18, 19, 70 и 71, первой промежуточной частоты соответственно. На выходах перемножителей 26, 27, 72 и 73 образуются фазомодулированные (ФМ) напряжения на стабильной частоте ωГ2 второго гетеродина 23:
где
которые выделяются узкополосными фильтрами 28, 29, 74 и 75 с частотой настройки ωH=ωГ2.
Знаки "+" и "-" перед величинами
Следовательно, полезная информация об азимуте α и угле места β "черного ящика" переносится на стабильную частоту ωГ2 второго гетеродина 23. Поэтому нестабильность ±Δω несущей частоты, вызванная эффектом Доплера и другими дестабилизирующими факторами, и вид модуляции (манипуляции) принимаемого ФМН сигнала, излучаемого "черным ящиком", не влияют на результат пеленгации, тем самым повышается точность определения местоположения "черного ящика".
Причем величина, входящая в состав указанных колебаний
Пеленгаторное устройство 3 тем чувствительнее к изменению углов α и β, чем больше относительный размер измерительной базы R/λ. Однако с ростом R/λ уменьшаются значения угловых координат α и β, при которых разность фаз превосходит значение 2π, т.е. наступает неоднозначность отсчета углов α и β.
Следовательно, при R/λ>1/2 наступает неоднозначность отсчета углов α и β. Устранение указанной неоднозначности путем уменьшения соотношения R/λ обычно себя не оправдывает, так как при этом теряется основное достоинство широкобазовой системы. Кроме того, в диапазоне метровых и особенно дециметровых волн брать малые значения R/λ частью не удается из-за конструктивных соображений.
Для повышения точности пеленгации "черного ящика" в горизонтальной (азимутальной) и вертикальной (углолинейной) плоскостях приемные антенны 8 и 9, 66 и 67 размещаются на концах лопастей несущего винта вертолета. Смещение сигналов от двух диаметрально противоположных антенн 8 и 9, 66 и 67, находящихся на одинаковом расстоянии R от оси вращения несущего винта, вызывает фазовую модуляцию, получаемую с помощью двух приемных антенн, вращающихся по кругу, радиус R1 которых в два раза больше (R1=2R).
Действительно, на выходе перемножителей 30 и 76 образуются гармонические напряжения:
U12(t)=V12⋅cos(Ω-α)t,
U13(t)=V13⋅cos(Ω-α)t,
где
с индексом фазовой модуляции
которые выделяются узкополосными фильтрами 32, 78 и поступают на первый вход фазометров 34 и 80, на второй вход которых подается напряжение опорного генератора 16
U0(t)=V0⋅cosΩt.
Фазометры 34 и 80 обеспечивают точное, но неоднозначное измерение азимута α и угла места β. Для устранения возникающих при этом неоднозначностей отсчета углов α и β необходимо уменьшить индекс фазовой модуляции без уменьшения отношения R/λ. Это достигается использованием автокорреляторов, состоящих из линий задержки 31 и фазового детектора 33, из линии задержки 77 и фазового детектора 79, что эквивалентно уменьшению индекса фазовой модуляции до величины
где d1 На выходе автокорреляторов образуются напряжения: U14(t)=V12⋅cos(Ω-α)t, U15(t)=V13⋅cos(Ω-α)t, с индексом фазовой модуляции Δϕш2, которые поступают на первый вход фазометров 35 и 81 соответственно, на второй вход которых поступает напряжение U0(t) опорного генератора 16. Фазометры 35 и 81 обеспечивают грубое, но однозначное измерение азимута α и угла места β. По измеренным значениям азимута α и угла места β, зная высоту h полета вертолета, легко определяется местоположение "черного ящика" самолета, потерпевшего катастрофу (фиг. 1). Телеметрическое устройство 6 предназначено для передачи полученной информации в службу спасения, где принимаются определенные меры по изъятию "черного ящика". По истечении времени τз постоянное напряжение с выхода линии задержки 21 поступает на управляющий вход обнаружителя 20 (порогового блока 46) и сбрасывает его содержимое на нулевое значение. При этом ключ 22 закрывается, а блок 10 телеметрии включается, т.е. они переводятся в свои исходные положения. При обнаружении следующего "черного ящика" в районе катастрофы другого самолета работа предполагаемого комплекса происходит аналогичным образом. Таким образом, предполагаемый комплекс по сравнению с прототипом и другими техническими решениями аналогичного значения обеспечивает повышение оперативности и достоверности обнаружения самолета, потерпевшего катастрофу. Это достигается использованием двух дополнительных пеленгационных каналов и "черного ящика" с сигнализацией. Причем два дополнительных пеленгационных канала позволяют определить угол места β "черного ящика". Измерив азимут α и угол места β и зная высоту полета h вертолета, можно определить местоположение "черного ящика". А наличие сигнализации позволяет это сделать оперативно и достоверно. При этом пеленгаторное устройство, размещенное на борту вертолета, инвариантно к виду модуляции (манипуляции) и нестабильности несущей частоты принимаемых ФМН сигналов, излучаемых "черным ящиком".
Изобретение относится к области авиации и может быть использовано для поиска, обнаружения и определения местоположения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу. Достигаемый технический результат - повышение оперативности и достоверности обнаружения самолета, потерпевшего катастрофу, путем использования двух дополнительных пеленгаторных каналов и "черного ящика" с сигнализацией. Указанный результат достигается за счет того, что вертолетный радиотехнический комплекс содержит бортовую аппаратуру и "черный ящик" с сигнализацией, при этом бортовая аппаратура содержит антенное устройство, приемник, пеленгаторное устройство, анализатор параметров принимаемого сигнала, устройство запоминания и обработки полученной информации, телеметрическое устройство, приемные устройства, блок перестройки, гетеродины, смесители, усилители первой промежуточной частоты, двигатель, опорный генератор, обнаружитель, линии задержки, усилитель второй промежуточной частоты, перемножители, узкополосные фильтры, линии задержки, фазовые детекторы, фильтры нижних частот, фазовращатели на 90°, квадраторы, сумматор, пороговый блок, фазометры, причем "черный ящик" содержит приемник GPS-сигналов, приемопередающую антенну, дуплексер, гетеродин, смеситель, усилитель промежуточной частоты, демодулятор, перемножители, узкополосный фильтр, фильтр нижних частот, вычислительный блок, формирователь модулирующего кода, линию задержки, генератор псевдослучайной последовательности, сумматор, фазовый манипулятор и усилитель 65 мощности. Перечисленные средства определенным образом выполнены и соединены между собой. 4 ил.