Код документа: RU2427065C2
Связанные заявки
Приоритет настоящей заявки заявлен на основании предварительной заявки на Патент США 60/760287, поданной 19 января 2006.
Область техники, к которой относится изобретение
Настоящее изобретение в общем случае относится к колесам энергопередачи и влагопередачи и, в частности, к усовершенствованиям в системах и способах контроля вращения таких колес в роторной энерговосстановительной системе «воздух-воздух», а также в системах активного и пассивного увлажнения и осушения.
Уровень техники
Колеса энерго- и влагопередачи хорошо известны для осуществления теплопередачи и/или влагопередачи между двумя противоточными воздушными потоками. Такие передающие колеса обычно используют для контроля температуры и/или влажности воздуха внутри зданий, в которых противоточными воздушными потоками являются поступающий и выходящий воздух.
Приводной электродвигатель обычно установлен рядом и соединен шкивом и приводным ремнем с передающим колесом таким образом, что колесо может вращаться вокруг своей оси во время эксплуатации. Кроме того, приводной электродвигатель обычно выбирают из большой группы двигателей, которые обычно применяют для подобных назначений, конкретный выбор зависит от множества факторов, таких как: размер и вес колеса, доступных, расположенных в здании источников питания, у которых значения напряжения переменного тока могут изменяться от 120 до 575 В, значения частот обычно равны 50 Гц или 60 Гц, и источники могут быть однофазными или трехфазными.
Соответственно желательно использовать одиночный двигатель, который может работать в пределах широкого спектра ожидаемых источников электропитания и рабочих частот, равно как и обеспечивать различные требуемые скорости вращения.
Сущность изобретения
Система и способ вращения передающего колеса, осуществляющего теплообмен и/или влагообмен между двумя противоточными воздушными потоками. Система включает в себя: раму; передающее колесо, содержащее передающую матрицу, установленную и закрепленную с возможностью вращения относительно рамы таким образом, что колесо может вращаться в двух противоточных воздушных потоках, и между этими двумя противоточными воздушными потоками может происходить теплопередача и/или влагопередача; первую совокупность элементов двигателя, неподвижно установленную относительно колеса таким образом, что элементы первой совокупности выполняют функцию ротора двигателя; вторую совокупность элементов двигателя, неподвижно установленную относительно рамы таким образом, что элементы второй совокупности выполняют функцию статора двигателя; в которой электроэнергия, подаваемая на элементы второй совокупности двигателя, заставляет передающее колесо вращаться в двух противоточных воздушных потоках.
Общее описание чертежей
Изобретение будет описано со ссылками на прилагаемые чертежи, на которых подобные элементы обозначены одинаковыми ссылочными обозначениями и на которых:
Фиг.1 - вид сбоку в поперечном сечении на противоточный теплообменник, размещенный в противоточной системе теплообмена и/или влагообмена, которая размещена внутри противоточной воздушной системы;
Фиг.2 - фронтальный вид рамы и колеса противоточной системы теплообмена и/или влагообмена;
Фиг.3 - общий вид в сборе устройства бесколлекторного двигателя постоянного тока для использования в противоточной системе теплообмена и/или влагообмена;
Фиг.4 - объемное изображение деталей устройства двигателя, представленного на Фиг.3;
Фиг.5 - главный вид устройства шагового двигателя для противоточной системы теплообмена и/или влагообмена;
Фиг.6А-6С - общий вид, вид сбоку и фронтальный вид узла полюсного наконечника, используемого в устройстве шагового двигателя, показанного на Фиг.5.
Подробное описание чертежей
Что касается Фиг.1 и 2, настоящее изобретение содержит теплопередающую и/или влагопередающую матрицу 10 для использования в качестве детали теплообменного и/или влагообменного колеса 12 в противоточной теплообменной и/или влагообменной системе 14. Передающее колесо 12 установлено с возможностью вращения вокруг оси вращения 18 внутри рамы 16. Передающая матрица 10 выполнена с узкими воздушными каналами таким образом, чтобы осуществлять передачу тепла и влаги между двумя противоточными воздушными потоками. Передающая матрица 10 может дополнительно включать в себя один или более влагопоглощающих материалов для усиления влагопередачи от более влажного воздуха к более сухому воздуху. Рама 16 содержит пластину одинарного уплотнения или многочисленные пластинчатые детали, по существу окружающие передающее колесо 12 таким образом, что по существу весь воздух противоточных воздушных потоков будет пропущен через передающую матрицу.
Как показано на Фиг.1 и 2, система обмена 14 размещена внутри системы воздушного потока 22. Система 22 может включать в себя канал потока 24 и канал противотока 26, отделенные друг от друга стенкой/стенками 28. Первый воздушный поток поступает в канал потока 24, тогда как второй воздушный поток поступает в канал противотока 26. Как предполагают названия каналов, каналы потока и противотока 24 и 26 направляют воздушные потоки в противоположных направлениях через колесо 12. Один воздушный поток более теплый и/или более влажный, чем другой, так что, поворачиваясь, колесо передает некоторое количество тепла и/или влаги. В другом варианте воздушная система может включать в себя камеру, выполненную так, что два противоточных потока воздуха проходят через нее, и сконструированную таким образом, что передающее колесо 12 и рама 16 установлены в ней.
Передающее колесо 12 установлено внутри системы воздушного потока 22 для одновременного вращения через канал потока 24 и канал противотока 26, внешняя окружность колеса 12 образует почти воздухонепроницаемое уплотнение между колесом 12 и рамой 16 так, чтобы обеспечить прохождение потока через матрицу, и между каналами потока и противотока 24 и 26 так, чтобы предотвратить утечку между каналами 24 и 26. Уплотнение по периметру колеса обеспечивает протекание воздушного потока через матрицу при вращении колеса.
Узкие воздушные каналы передающей матрицы 10 передающего колеса 12 расположены между поверхностями 30 и 32 колеса 12. Соответственно первый воздушный поток проходит через колесо 12 через вторую поверхность 32 к первой поверхности 30, тогда как второй воздушный поток проходит через колесо через первую поверхность 30 ко второй поверхности 32. При вращении колеса между двумя воздушными потоками может происходить теплообмен и/или влагообмен.
В соответствии с настоящим изобретением отдельный приводной двигатель, ремень и шкив удалены, а передающее колесо 12 и рама 16 сконструированы и скомпонованы таким образом, чтобы включать в себя элементы двигателя, неподвижно установленные как относительно колеса 12, так и относительно рамы 16, так что элементы двигателя, закрепленные относительно колеса, выполняют функцию ротора двигателя, тогда как элементы двигателя, закрепленные относительно рамы, выполняют функцию статора двигателя. При подаче электроэнергии на элементы статора двигателя колесо 12 вынуждено вращаться через два противоточных воздушных потока.
Используемые элементы двигателя будут зависеть от конструкции двигателя. Предпочтительно элементы двигателя, закрепленные относительно колеса 12, выполняют функцию ротора, а элементы двигателя, закрепленные относительно рамы 16, выполняют функцию статора. Предпочтительно статор работает только на определенном участке полной окружности колеса, составляющей 360 градусов, используя один или более электромагнитных полюсных пластин или наконечников. Это может быть также обозначено как «незамкнутый» статор или пластина статора. Существует много типов конструкций подобных двигателей. Например, конструкция бесщеточного двигателя может принимать форму бесщеточного двигателя постоянного тока с датчиками, двигателя постоянного тока без датчиков или шагового двигателя постоянного тока, который является разновидностью бесщеточного двигателя постоянного тока. Все подобные двигатели применяют электронный контроллер для осуществления желаемого распределения мощности. Одним из контроллеров для осуществления такого управления является контроллер МС33033, NCV33033, изготавливаемый компанией On Semiconductor. См. Контроллер бесщеточного двигателя постоянного тока, порядковый номер публикации: МС 33033/D, Апрель, 2004, обзор 7, опубликованный компанией On Semiconductor, стр.1-24.
На Фиг.3 и 4 показан вариант осуществления колеса 12 и рамы 16 противоточной обменной системы 14. Система изменена и содержит элементы двигателя для того, чтобы обеспечить работу бесщеточного двигателя постоянного тока. В частности, усовершенствованное колесо 12 содержит первую совокупность элементов двигателя, закрепленных относительно колеса так, чтобы элементы первой совокупности могли выполнять функцию ротора бесщеточного двигателя постоянного тока, тогда как вторая совокупность элементов двигателя закреплена относительно рамы так, чтобы элементы второй совокупности выполняли функцию статора этого двигателя. Силовой преобразователь 70, содержащий, в случае необходимости, трансформатор, устанавливается для преобразования доступной электроэнергии в электроэнергию, соответствующую параметрам для приведения в движение колеса 12. Силовой преобразователь показан прикрепленным к раме 16, хотя он может быть закреплен и в любом другом месте. Дополнительно, подобным образом установлен коммутирующий контроллер 72 и показан прикрепленным к раме 16. Катушки статора 74 и узел железной подложки 76 закреплены соответственно на раме 16. Применяют, по крайней мере, три катушки статора 74, и они прикреплены к рамке 16 таким образом, что три катушки 74 расположены смежно с ободом колеса 12. Крышку 82 используют для закрытия коммутирующего контроллера 72 и катушек 74. Наконец, совокупность датчиков коммутации 80 прикреплена соответственно к раме 16 для определения положения колеса 12, когда колесо вращается вокруг своей оси 18. Датчики 80 могут быть установлены таким образом, что они размещены на некотором расстоянии от катушек 74, как показано, или, по желанию, могут быть размещены между катушками 74 или среди них. Датчики 80 могут быть удалены, если применяют конструкцию бесщеточного бездатчикового двигателя постоянного тока, как будет затем описано ниже. Кроме того, для широких колес могут быть использованы дополнительные комплекты статорных катушек 74 с целью получения дополнительного крутящего момента. Предпочтительно, применяют, по крайней мере, три подобных датчика при использовании устройства трехфазного двигателя и, по крайней мере, два таких датчика, если установлен четырехфазный двигатель.
Колесо 12, показанное на Фиг.3 и 4, также изменено, оно содержит элементы двигателя. Предпочтительно, с целью функционирования в качестве бесщеточного двигателя постоянного тока, колесо, предпочтительно, снабжено сплошной полосой с изолирующей основой 84 в виде железной подложки или подобного ферромагнитного материала, непрерывно размещенного по ободу колеса, и магнитной полосой 86 гибкого сегментированного якоря для получения совокупности участков постоянных магнитов, распределенных по ободу. В качестве варианта полосы 86 колесо может быть снабжено совокупностью отдельных постоянных магнитов, распределенных по ободу. Основная полоса 84 обеспечивает прохождение магнитных линий для магнитной полосы или постоянных магнитов. Как можно наилучшим образом увидеть на фиг.3, магнитная полоса 86 (или если используют вариант размещения постоянных магнитов) обеспечивает электромагнитное переменное формирование северного и южного полюсов при движении вдоль обода колеса 12 (как наилучшим образом видно на Фиг.3).
При работе внешняя электроэнергия подается к силовому преобразователю 70, который, в свою очередь, обеспечивает соответствующей электроэнергией контроллер 72 в пределах заданных параметров. Контроллер 72 обеспечивает необходимыми приводными сигналами катушки статора 74 так, чтобы создать поле пульсирующего потока через обод колеса и, в частности, через магнитную полосу 86 и основную полосу 84. Все это создает электромагнитную силу (ЭМС), заставляющую колесо вращаться. Контроллер 72 может быть снабжен входом, чтобы можно было легко управлять вращательной скоростью колеса, в основном предоставляя все предусмотренные режимы работы обменной системы и обеспечивая неподвижность колеса, когда вращение нежелательно.
Бесщеточные двигатели постоянного тока с использованием датчиков и двигатели подобного типа без датчиков описаны на сайте http://en.wikipedia.org/wiki/Brushless_DC_electric_motor (12 января 2007). Как указано, контроллер применяют для управления вращением двигателя. Для конструкции с использованием датчиков контроллер снабжен устройством коммутационного датчика для определения ориентации/положения ротора (относительно катушек статора). В некоторых конструкциях используют датчики Холла, но можно также использовать другие устройства, такие как кодовый датчик угла поворота для непосредственного вычисления положения ротора. Другие конструкции контроллера позволяют замерить противоэлектродвижущую силу в невозбужденных катушках, чтобы определить положение ротора, исключая необходимость в отдельных коммутационных датчиках, и поэтому часто называются «бездатчиковыми» контроллерами.
Типичный контроллер бесщеточного двигателя постоянного тока датчикового типа и бездатчикового типа содержит 3 двунаправленных драйвера для управления сильноточной нагрузкой постоянного тока. Драйверы обычно управляются логической схемой. Простые контроллеры используют компараторы для определения, когда следует переместить выходную фазу, тогда как более современные контроллеры применяют микроконтроллер для управления ускорением, контроля скорости и точной регулировки кпд. Контроллеры для бездатчиковых двигателей постоянного тока, которые определяют положение ротора на основании противоэлектродвижущей силы, имеют особые затруднения в начале движения, потому что при неподвижном роторе нет противоэлектродвижущей силы. Обычно начинают вращение с произвольной фазы и затем, проскакивая до правильной фазы, если найденная фаза является ошибочной. Это может вызвать кратковременное движение двигателя назад, добавляя больше сложности к стартовому циклу.
Бесщеточные двигатели постоянного тока могут быть сконструированы в нескольких различных физических конфигурациях: в «обычной» конфигурации (известной также как «инраннер»), постоянные магниты установлены на вращающемся якоре (роторе). Многочисленные статорные обмотки выполнены рядом с колесом. Количество обмоток зависит от числа фаз и заданной мощности.
Как описано, конструкция бесщеточного двигателя, используемая в усовершенствованной обменной системе 14, может быть конструкцией шагового двигателя. Вариант осуществления противоточного теплообменника, выполненного как шаговый двигатель, показан на Фиг.5, в котором рама 16 служит опорой для устройств катушки и полюсного наконечника 90, а колесо 12 служит основанием для сплошной железной подложки 92 основной полосы (выполненной из ферромагнитных материалов) и магнитной полосы 94 (или как вариант постоянных магнитов). Полярность магнитной полосы (или переменных магнитов) меняется между северным и южным полюсом вокруг обода колеса. Устройства катушки полюсного наконечника подробно показаны на Фиг.6А-6С. Как показано, каждое устройство 90 содержит центральную катушку 96 с выводами 98. Катушки 96 размещены между двухполюсными зубцами 100, которые, будучи установленными на раме 16, радиально смещены друг относительно друга. Полюсные зубцы и переменные полярности магнитной полосы (или переменные магниты) смещены таким образом, что все зубцы не будут одновременно совмещены со всеми северными и южными полярностями магнитной полосы (или переменных магнитов). Сигналы переменного тока могут быть приложены к катушкам 96 от соответствующего силового преобразователя (не показан).
Как описано на http://en.wikipedia.org/wiki/Stepper__motor (12 января 2007), шаговые двигатели работают иначе, чем бесщеточные двигатели постоянного тока с датчиками. Бесщеточные двигатели постоянного тока с датчиками просто поворачиваются, когда напряжение приложено к катушкам возбуждения статора. Шаговые двигатели, с другой стороны, фактически имеют многочисленные электромагниты, размещенные вокруг центрального ротора. Для того, чтобы заставить вал двигателя повернуться, на первый электромагнит подают электроэнергию через катушку и устройство полюсного наконечника, установленные на статоре, что заставляет ротор поворачиваться на заранее определенное угловое приращение. Когда магнитные поля, созданные на полюсных наконечниках статора, совмещаются с полями, созданными на роторе, они слегка смещены по отношению к следующему электромагниту. Таким образом, когда следующий электромагнит включен, а первый электромагнит выключен, ротор слегка поворачивается, чтобы совместиться со следующим электромагнитом, и с этого момента процесс повторяется таким образом, чтобы осуществить вращение. Каждый из этих небольших поворотов называется «шаг». Таким путем двигатель может поворачиваться на точные угловые приращения, или путем приложения сигнала возбуждения переменного тока к катушкам, установленным на статоре, ротор может вращаться непрерывно. Существует два основных размещения электромагнитных катушек шагового двигателя: биполярная и униполярная.
Шаговый двигатель может быть рассмотрен как двигатель постоянного тока с увеличенным числом полюсов (одновременно и на роторе, и на статоре), принимая во внимание, чтобы у них не было общего знаменателя. Дополнительно, мягкий магнитный материал со многими зубцами на роторе и статоре позволяет дешево увеличить количество полюсов (реактивный синхронный электродвигатель). Он может быть идеально приведен в движение синусоидальным электрическим током, позволяя осуществлять бесшаговую работу. Широтно-импульсную модуляцию обычно используют для регулирования среднего значения тока. Биполярные контроллеры могут переключаться между позициями: подача напряжения, заземление и разъединено. Униполярные контроллеры могут только соединять или разъединять кабель, потому что напряжение уже жестко распределено. Для униполярных контроллеров необходимы обмотки с отводом в средней точке. Для достижения полного крутящего момента катушки в шаговом двигателе должны достичь своего полного расчетного тока во время каждого шага.
Таким образом, были описаны новая и усовершенствованная система теплообмена и/или влагообмена и способ ее осуществления согласно настоящему изобретению. Описанный примерный вариант осуществления изобретения представлен только в качестве иллюстрации и не имеет ограничительного значения, и различные модификации, комбинации и замены, не выходящие за рамки объема изобретения в его широких аспектах, как оно охарактеризовано в прилагаемой формуле изобретения, могут быть внесены специалистами. Таким образом, выполнение узлов двигателя на колесе 12 и раме 16 противоточной системы теплообмена и/или влагообмена исключает необходимость использования приводного двигателя, приводного ремня и шкива. Кроме того, необходимы несколько вариантов конструкции для того, чтобы охватить все возможные применения, включая целый ряд возможных размеров колеса и возможных источников электроэнергии. Кроме того, колесо 12 может управляться наилучшим образом, начиная с нулевого значения скорости до максимального расчетного значения оборотов в минуту.
Описанные новые усовершенствованные система теплообмена и способ и все их элементы попадают в область, по меньшей мере, одного из следующих пунктов формулы изобретения. Ни один из элементов заявленной системы и способа не предусматривает возможности отказа и не предназначен для обязательного ограничения толкования формулы изобретения. Упоминание элемента в формуле изобретения в единственном числе не следует истолковывать как то, что он является "одним и только одним", если только это не указано специально, а скорее как "один или более". Все конструктивные и функциональные эквиваленты элементов различных описанных вариантов изобретения, которые известны специалистам сейчас или станут известны в будущем, включены в данный документ путем ссылки и подпадают под объем формулы изобретения. Кроме того, ничего из описанного в данном документе не предназначается для общего достояния, несмотря на то, что данное раскрытие ясно охарактеризовано в формуле изобретения. Ни один из элементов формулы не следует толковать в соответствии с положениями главы 35 Свода Законов США, § 112, шестой абзац, если только этот элемент не охарактеризован в явной форме с использованием фразы "средство для" или, в случае притязания на способ, элемент охарактеризован фразой "этап для…".
Изобретение относится к системам активного и пассивного увлажнения и осушения, в частности к системе и способу вращения передающего колеса, обеспечивающего теплопередачу и/или влагопередачу между двумя противоточными воздушными потоками. Система включает в себя: раму, передающее колесо, содержащее передающую матрицу, установленную и закрепленную с возможностью вращения на раме таким образом, что колесо может вращаться через два противоточных воздушных потока, и между двумя противоточными воздушными потоками может происходить теплопередача и/или влагопередача; первую совокупность элементов двигателя, неподвижно установленную относительно колеса таким образом, что элементы первой совокупности выполняют функцию ротора двигателя; и вторую совокупность элементов двигателя, неподвижно установленных относительно рамы таким образом, что элементы второй совокупности выполняют функцию статора двигателя; в которой электроэнергия, подаваемая на элементы двигателя второй совокупности, вызывает вращение передающего колеса через два противоточных воздушных потока. Изобретение позволяет упростить систему теплообмена. 2 н. и 8 з.п. ф-лы, 6 ил.
Способ и устройство теплообмена
Способ и устройство для управления теплообменом в вентиляционном аппарате или в аппарате для кондиционирования воздуха