Код документа: RU2643560C2
Изобретение относится к устройству, системе и способу обработки газа.
Фотокатализ позволяет ускорить химическую реакцию, протекающую на поверхности вещества, называемого «фотокатализатором», когда эта поверхность поглощает фотоны. Как правило, фотокатализатором является диоксид титана.
Фотокатализ применяют для уничтожения органических загрязняющих веществ, присутствующих в воздухе. Лампа излучает ультрафиолетовое излучение, освещающее фотокатализатор, который при этом становится мощным окислителем, разрушающим летучие органические соединения (ЛОС). В частности, при облучении УФ-излучением фотокатализатор высвобождает кислородсодержащие радикалы на своей поверхности, которые разлагают органические соединения, пока углерод углеродных цепей полностью не преобразуется в двуокись углерода.
В документе WO-2009/007588 раскрыта установка для фотокаталитической обработки газа, содержащая плоскую диэлектрическую подложку, каждая из двух сторон которой содержит проводящую полосу, образующую электрод. Электрический генератор подает питание на электроды, которые генерируют поверхностную плазму напротив фотокатализатора. Во время работы поверхностная плазма образует стабильный источник излучения, которое активирует катализатор. Таким образом, функция плазмы является такой же, как и функция УФ-излучения лампы. Однако эффективность плазмы ниже по сравнению с излучением лампы, поэтому эта установки обработки имеет низкую производительность.
В документе WO-2007/051912 раскрыто устройство обработки газообразных отходов, в котором активацию фотокатализатора осуществляют одновременно лампами, распределенными снаружи устройства и излучающими ультрафиолетовое излучение, и холодной плазмой, генерируемой электродами, получающими питание от электрического генератора. Эффективность этого устройства обработки выше, чем эффективность установки из WO-2009/007588, в которой катализатор активируется только холодной плазмой. Кроме того, фотокатализатор можно расположить перпендикулярно к электродам и к воздушному потоку, и в этом случае он представляет собой проницаемую подложку, например, выполненную в виде сотовой структуры. В альтернативном варианте фотокатализатор расположен параллельно электродам и воздушному потоку и выполнен в виде последовательных параллельных слоев. Изготовление такого устройств занимает относительно много времени и требует больших затрат, учитывая структуру фотокатализатора. Кроме того, ультрафиолетовое излучение ламп не обеспечивает оптимального облучения фотокатализатора, так как лампы находятся снаружи устройства и имеют ограниченный радиус действия, поскольку освещают фотокатализатор локально.
Задача изобретения состоит в устранении вышеуказанных недостатков за счет создания и устройства обработки газа, в котором объединена обработка посредством фотокатализа и при помощи плазмы и которое сочетает в себе эффект ультрафиолетового облучения фотокатализатора и холодной поверхностной плазмы. Изобретением предлагается эффективное устройство для быстрого снижения концентрации загрязняющих веществ, которое можно легко и быстро изготовить и которое характеризуется низкой себестоимостью.
В связи с этим объектом изобретения является устройство обработки газа, содержащее:
- диэлектрический канал, содержащий вход и выход газа,
- лампу, генерирующую, по меньшей мере, частично ультрафиолетовое излучение и установленную внутри канала,
- первый электрод, расположенный на наружной стенке канала,
- второй электрод, расположенный внутри канала,
- съемный фотокаталитический элемент, расположенный на внутренней стенке канала и содержащий подложку, на которой находится фотокатализатор.
Второй электрод образован спиральной металлической нитью, содержащей витки, которые прижимают фотокаталитический элемент к внутренней стенке канала.
Благодаря изобретению, установка фотокаталитического элемента внутри канала является легкой и быстрой за счет второго электрода, который прижимает фотокаталитический элемент к стенке канала. Обработка газа является эффективной, учитывая геометрию второго электрода, которая позволяет основной части ультрафиолетового излучения достигать фотокатализатора.
Согласно предпочтительным, но неограничивающим вариантам осуществления изобретения, такое устройство обработки газа может иметь один или несколько следующих отличительных признаков, взятых в любой технически допустимой комбинации:
- Фотокаталитический элемент выполнен в виде гибкого листа.
- Лампа находится внутри кварцевой трубки.
- Сечение канала и витки второго электрода являются круглыми.
- Канал, по меньшей мере, частично изготовлен из боросиликатного стекла.
- Лампа имеет удлиненную форму и центрована по продольной оси канала.
- Подложка фотокаталитического элемента, по меньшей мере, частично выполнена из стекловолокон.
Объектом изобретения является также система обработки газа, которая содержит:
- описанное выше устройство обработки газа,
- первый электрический генератор переменного тока, питающий лампу,
- второй электрический генератор переменного тока, питающий электроды,
- средство создания разрежения, которое заставляет газ циркулировать между входом и выходом канала.
Наконец, объектом изобретения является способ обработки газа при помощи такой системы, который содержит следующие этапы:
a) средство создания разрежения заставляет циркулировать газ между входом и выходом канала,
b) электроды генерируют холодную поверхностную плазму напротив передней стороны фотокаталитического элемента,
c) лампа генерирует ультрафиолетовое излучение в направлении передней стороны фотокаталитического элемента.
Предпочтительно этапы являются одновременными.
Изобретение и его другие преимущества будут более очевидны из нижеследующего описания системы, устройства и способа обработки газа в соответствии с изобретением, представленного исключительно в качестве примера со ссылками на прилагаемые чертежи.
На фиг.1 представлена схема системы обработки газа в соответствии с изобретением;
на фиг.2 показан схематичный увеличенный вид детали II фиг.1.
На фиг.1 показана система 10 обработки газа, содержащая устройство 1, соединенное с двумя электрическими генераторами 8 и 9 переменного тока. Устройство 1 содержит канал 2 удлиненной формы, проходящий вдоль центральной продольной оси X и изготовленный из диэлектрического материала, например, из боросиликатного стекла, такого как Pyrex (зарегистрированный товарный знак). Канал 2 является цилиндрическим, имеет круглое сечение и содержит цилиндрические внутреннюю поверхность 21 и наружную поверхность 22 с круглым сечением, находящиеся соответственно внутри и снаружи внутреннего объема V канала 2. Непоказанное средство создания разрежения, такое как вентилятор, заставляет обрабатываемый газ циркулировать в объеме V между входом E и выходом S канала 2, что показано стрелками F.
Лампа 3, имеющая удлиненную форму и излучающая ультрафиолетовое излучение УФ, расположена в объеме V канала 2. Лампа 3 центрована по оси X канала 2 и получает питание от генератора 8, который соединен с лампой 3 электрическими проводами C3, проходящими в кварцевой трубке 7, расположенной вокруг лампы 3 и пропускающей излучение лампы 3. Лампа 3 является цилиндрической, имеет круглое сечение, и ее диаметр меньше внутреннего диаметра канала 2 и диаметра кварцевой трубки 7.
Кварцевая трубка 7 обеспечивает герметичность канала 2 на уровне его концов. Кроме того, система соединений лампы 3 защищена от химических реакций, происходящих в канале 2, кварцевой трубкой 7. Кварцевая трубка 7, по меньшей мере, частично пропускает УФ-излучение, изучаемое лампой 3.
К внутренней поверхности 21 канала 2 прилегает фотокаталитический элемент 6. Фотокаталитический элемент 6 выполнен в виде гибкого листа, содержащего заднюю сторону 61 и переднюю сторону 62. Фотокаталитический элемент 6 содержит диэлектрическую, то есть непроводящую подложку, на которой находится фотокатализатор, распределенной на передней стороне 62. Например, подложка выполнена из стекловолокон, а фотокатализатором является диоксид титана TiO2.
Фотокаталитический элемент 6 выполнен посредством намотки, что придает ему цилиндрическую форму с круглым сечением. Когда фотокаталитический элемент 6 устанавливают внутри канала 2, его задняя сторона 61 входит в поверхностный контакт с внутренней поверхностью 21 канала 2, а его передняя сторона 62 обращена к лампе 3. Предпочтительно стороны 61 и 62 не перекрывают друг друга, и края фотокаталитического элемента доходят друг до друга, то есть входят друг с другом в контакт. В случае необходимости, края могут перекрываться на несколько миллиметров, или между краями может оставаться свободное пространство.
На наружной стороне 22 канала 2 расположен трубчатый электрод 4. Внутренний диаметр электрода 4 равен, с учетом рабочего зазора, диаметру наружной поверхности 22 канала 2. Таким образом, трубчатый электрод 4 входит в поверхностный контакт с наружной поверхностью 22 канала 2.
Внутри канала 2 между кварцевой трубкой 7 лампы 3 и фотокаталитическим элементом 6 расположен спиральный электрод 5. Спиральный электрод 5 выполнен из намотанной нити, образующей несколько круглых витков 51, 52, 53 и 54 с шагом p. Нить является упругодеформирующейся и, когда спиральный электрод 5 не подвергается действию механических усилий, он вписывается в цилиндрическую огибающую, наружный диаметр которой слегка превышает внутренний диаметр канала 2. Когда спиральный электрод 5 располагают внутри канала 2, он упруго деформируется, и его наружный диаметр уменьшается, поэтому витки 51-54 прижимают в радиальном направлении фотокаталитический элемент 6 к каналу 2, обеспечивая поверхностный контакт между задней стороной 61 фотокаталитического элемента 6 и внутренней стенкой 21 канала 2. При этом витки 51-54 спирального электрода 5 входят в контакт с передней стороной 62 фотокаталитического элемента 6, на которой находится фотокатализатор.
Электроды 4 и 5 изготовлены из проводящего материала и получают питание от генератора 9 через электрические провода C4 и C5. Например, спиральный электрод 5 выполнен из нержавеющей стали, что позволяет ему противостоять окислению в ходе химических реакций, протекающих в канале 2, и что придает ему гибкость и упругость, позволяющие ему прижимать фотокаталитический элемент 6 к каналу 2. Трубчатый электрод 4 выполнен, например, из меди, что позволяет ему легко прижиматься к наружной поверхности 22 канала 2.
Во время работы вентилятор заставляет обрабатываемый газ циркулировать между входом E и выходом S канала 2. Генератор 8 питает лампу 3, которая генерирует ультрафиолетовое излучение УФ на переднюю сторону 62 фотокаталитического элемента 6, что приводит к реакции фотокатализа.
Одновременно, генератор 9 создает разность электрических потенциалов между трубчатым электродом 5 и спиральным электродом 4. Таким образом, напротив передней стороны 62 фотокаталитического элемента 6 вокруг витков 51-54 образуется холодная поверхностная плазма 11. Поверхностная плазма 11 создает ионный ветер, способствующий гомогенизации обрабатываемого газа, что повышает эффективность фотокатализа.
Как показано на фиг.2, шаг p спирального электрода 5 рассчитан таким образом, чтобы поверхностная плазма 11, генерируемая вокруг каждого витка 51-54, не перекрывала поверхностную плазму 11, генерируемую смежным витком. Кроме того, поверхностная плазма 11, генерируемая каждым витком 51-54, примыкает или по существу примыкает к поверхностной плазме 11, генерируемой смежным или смежными витками. Таким образом, фотокаталитический элемент 6 оказывается полностью или почти полностью покрытым поверхностной плазмой 11.
Разрушение органических соединений, присутствующих в обрабатываемом газе, связано с комбинированным эффектом фотокатализа, происходящего при активации фотокатализатора УФ-излучением, и поверхностной плазмы. Это увеличивает скорость химической реакции разложения присутствующих в газе органических соединений.
Под ультрафиолетовым излучением следует понимать излучение, длина волны которого находится в ультрафиолетовой области, то есть от 100 нм до 400 нм. Длину волны можно выбирать в зависимости от природы уничтожаемых загрязнителей.
Лампа 3 находится в центре канала 2, что позволяет получать однородную мощность облучения фотокатализатора. За счет этого улучшается эффект ультрафиолетового излучения УФ.
В другом, не показанном варианте осуществления, канал 2 имеет не круглое сечение. Например, канал 2 может представлять собой трубу прямоугольного или квадратного сечения. В этом случае витки 51-54 спирального электрода 5 имеют соответствующую форму, чтобы прижимать фотокаталитический элемент 6 к внутренней стенке 21 канала 2. Например, витки 51-54 могут иметь форму четырехконечной звезды, вершины которой опираются на кромки внутренней стенки 21 канала 2.
Излучаемое лампой 3 излучение может иметь единую длину волны или может иметь разные значения в диапазоне длин волн. В этом случае излучение является, по меньшей мере, частично ультрафиолетовым, то есть длины его волн, по меньшей мере, частично находятся в ультрафиолетовой области.
Монтаж устройства 1 обработки газа является простым и быстрым: достаточно вставить спиральный электрод 5 в канал 2 для обеспечения удержания в положении фотокаталитического элемента 6.
В рамках изобретения описанные варианты осуществления можно, по меньшей мере, частично комбинировать между собой.
Группа изобретений относится к области фотокаталитической очистки газов и может быть использована для уничтожения органических загрязняющих веществ, присутствующих в воздухе. Устройство (1) для обработки газа содержит диэлектрический канал (2), содержащий: вход (Е) и выход (S) газа; установленную внутри канала (2) ультрафиолетовую лампу (3); электроды (4 и 5); съемный фотокаталитический элемент (6). Электрод (4) расположен на наружной стенке (22) канала (2). Электрод (5) расположен внутри канала (2). Фотокаталитический элемент (6) расположен на внутренней стенке (21) канала (2) и содержит подложку, на которой находится фотокатализатор. Электрод (5) образован спиральной металлической нитью, содержащей витки (51, 52, 53, 54), прижимающие фотокаталитический элемент (6) к внутренней стенке (21) канала (2). Система обработки газа содержит: устройство (1); электрические генераторы (8 и 9) переменного тока; средство создания разрежения. Генератор (8) питает лампу (3). Генератор (9) питает электроды (4 и 5). Обеспечивается повышение эффективности и скорости снижения концентрации загрязняющих веществ, упрощение конструкции. 3 н. и 14 з.п. ф-лы. 2 ил.