Код документа: RU2176097C2
Настоящее изобретение относится к оптической системе для формирования пучков и к оптическому датчику, использующему то же самое, а более конкретно - к оптической системе для формирования светового пучка, выходящего и источника света, требуемой формы и к оптическому датчику, использующему то же самое.
Для оптического датчика оптической запоминающей среды, такой как компактный диск (CD) и цифровой универсальный диск (DVD), используется световой пучок, выходящий из лазерного источника, который имеет эллиптическое поперечное сечение. Световой пучок, выходящий из лазерного источника, генерируется активным слоем лазерного диода в форме расходящегося пучка. На фиг. 1 в упрощенном виде изображен процесс генерации лазерного излучения.
На фиг. 1 показан эллиптический световой пучок, выходящий из лазерного диода. Направление поверхность перехода в лазерном диоде, то есть направление, параллельное активному слою, показано символом "
Однако, поскольку линза объектива оптической запоминающей среды является круглой, то необходимо повышать эффективность использования светового пучка, имеющего круглое поперечное сечение. Известные способы формирования пучка, предложенные для решения этой проблемы, описаны ниже со ссылками на фиг. 2A - 4, а также в публикации 1989 Японской технологической компании "Технология оптических дисков".
Оптическая система, показанная на фиг. 2A и 2B включает в себя две цилиндрические линзы 11 и 12. На фиг. 2A показаны линзы 11 и 12, изображенные в плоскости, совпадающей с направлением "
На фиг. 3 изображена известная призма для формирования пучка. Световой пучок, падающий на призму (фиг. 3), представляет собой световой пучок эллиптической формы, выходящий из лазерного источника, и затем коллимируется при помощи коллимирующей линзы (фиг. 2A и 2B). Сколлимированный световой пучок падает на поверхность 23 призмы 21. В плоскости падения (фиг. 3) световой пучок в направлении малого диаметра, имеющий угол падения θi, преломляется на угол преломления θ0 при помощи призмы 21, которая имеет коэффициент преломления n, и затем выводится с поверхности 25. Призма 21 изменяет диаметр Wi светового пучка, падающего на плоскость падения (фиг. 3) в больший диаметр Wо. Однако призма 21 не вносит заметного изменения в диаметр светового пучка, падающего на другую плоскость падения, перпендикулярную плоскости падения. Таким образом световой пучок, выходящий с поверхности 25, становится по существу круглым.
Фиг. 4 изображает известную оптическую систему для формирования пучка, использующего микролинзу. Световой пучок, выходящий из активного слоя 41, имеет эллиптическое поперечное сечение, которое описано выше со ссылками на фиг. 1. Световой пучок падает на микролинзу 42, находящуюся на расстоянии нескольких микрометров от активного слоя 41. Микролинза 42 имеет такие оптические параметры, при которых световой пучок, падающий в направлении малого диаметра, которое на фиг. 4 соответствует штриховым линиям, передается, по существу, без преломления. Однако в направлении большого диаметра, которое показано соответственно сплошной линией, микролинза 42 отклоняет падающий световой пучок через выпуклую поверхность 421, который становится, по существу, параллельным световым пучком, и рассеивает световой пучок при прохождении через поверхность 423 для совпадения, по существу, с диаметром пучка в направлении диаметра маленького пучка.
Поскольку трудно изготовить вышеописанные цилиндрические линзы с низкой аберрацией волнового фронта и произвести юстировку оптической оси, то способ, основанный на использовании цилиндрических линз, используется редко.
В случае призмы, поскольку операцию по формированию пучка с требуемыми параметрами можно выполнить в случае, когда падает, по существу, параллельный световой пучок, то для коллимирования расходящегося светового пучка, который выходит из лазерного источника, необходима отдельная коллимирующая линза, которая приводит к увеличению расстояния оптического пути и создает трудности при изготовлении компактного оптического датчика.
В случае способа, основанного на использовании микролинзы, микролинзу необходимо собирать в выходном окне лазерного диода, что создает трудности при сборке микролинзы с лазерным диодом в отсутствие производителя лазерного диода и повышает стоимость изготовления. К тому же трудно изготовить микролинзу, имеющую высокие характеристики.
Для решения вышеуказанных проблем задачей настоящего изобретения является выполнение оптической системы для формирования пучка и для получения максимальной эффективности использования светового пучка и минимальной аберрации волнового фронта.
Другой задачей настоящего изобретения является выполнение оптического датчика, использующего вышеуказанную оптическую систему формирования пучка.
Для решения вышеуказанной задачи настоящего изобретения выполнена оптическая система для формирования пучка, которая содержит источник света, многочисленные пластины и цилиндрическую линзу, расположенную между источником света и многочисленными пластинами, в которой система имеет такую оптическую особенность, при которой световой пучок, выходящий из источника света, представляет собой сформированный пучок, имеющий требуемую форму в поперечном сечении светового пучка.
Также, выполнен оптический датчик для оптической запоминающей среды, который содержит лазерный источник, выходной световой пучок которого имеет по существу эллиптическое поперечное сечение в форме расходящегося пучка, многочисленные пластины, цилиндрическую линзу, расположенную между лазерным источником и многочисленными пластинами, и линзу объектива для фокусировки света, который распространяется из многочисленных пластин в оптическую запоминающую среду, в которой система имеет такую оптическую особенность, при которой свет, выходящий из источника света, представляет собой сформированный пучок, имеющий по существу круглую форму в поперечном сечении светового пучка.
Сущность изобретения иллюстрируется ссылкой на сопроводительные чертежи, на которых
фиг. 1 изображает лазерный источник для
вывода эллиптического светового пучка;
фиг. 2A и 2B изображают известную оптическую систему для формирования пучка с использованием цилиндрической линзы;
фиг. 3 изображает известную
призму для формирования пучка;
фиг. 4 изображает известную оптическую систему для формирования пучка с использованием микролинзы;
фиг. 5A и 5B изображают оптическую систему для
формирования пучка согласно варианту осуществления настоящего изобретения, при этом фиг. 5A показывает оптическую систему, изображенную в соответствии с направлением большого диаметром пучка,
выходящего из лазерного источника, и фиг. 5B показывает оптическую систему, изображенную в соответствии с направлением маленького диаметра пучка, выходящего из лазерного источника; и
фиг. 6
изображает оптическую систему, согласно варианту осуществления настоящего изобретения.
Ниже представлено подробное описание со ссылками на сопроводительные чертежи оптической системы и оптического датчика использующего то же самое согласно настоящему изобретению.
Фиг. 5A и 5B изображают различные виды, показывающие оптическую систему, согласно варианту осуществления настоящего изобретения. На фиг. 5A изображена оптическая система, показанная в соответствии с направлением большого диаметра светового пучка, выходящего из лазерного источника, и на фиг. 5B изображена оптическая система, показанная в соответствии с направлением малого диаметра светового пучка, выходящего из лазерного источника Направление большого диаметра светового пучка, выходящего из лазерного источника, совпадает с направлением "┴", которое было описано со ссылками на фиг. 1, в то время как направление малого диаметра светового пучка, выходящего из лазерного источника, совпадает с направлением "
Когда световой пучок падает из лазерного диода 51, цилиндрическая линза 53, имеющая вышеуказанную конфигурацию, преломляет падающий световой пучок, уменьшая при этом расходимость светового пучка, как показано на фиг. 5A, относительно направления "┴". Однако цилиндрическая линза 53 выводит падающий световой пучок, как показано не фиг. 5B, в соответствие с направлением "
Первая пластина 55, на которую поступает световой пучок из цилиндрической линзы 53, представляет собой плоскопараллельную пластину, поверхности 553 и 555 которой параллельны друг другу. Первая пластина 55 расположена так, чтобы иметь угол наклона θ на базе линии, параллельной оптической оси лазерного диода 51. В случае, когда преломление светового пучка, выполняемое цилиндрической линзой 53, сохраняется фиксированным, диаметр пучка относительно направления "┴", и диаметр пучка относительно направления "
Кому можно скорректировать с использованием пластины, которую устанавливают в виде пересечения в различных положениях вдоль оптического пути. Таким образом используют вторую пластину 57, которая включает в себя поверхность 573, обращенную к поверхности 555 первой пластины 55. Вторая пластина 57 также является плоскопараллельной пластиной, в которой поверхность 573 параллельна поверхности 575. Пластины 55 и 57 расположены так, чтобы между ними соблюдалось соотношение, позволяющее получить взаимное расположение симметричных поверхностей относительно поверхности, перпендикулярной оптической оси. Соотношение симметричных поверхностей показано на фиг. 5A. Таким образом, когда первая пластина 55 наклонена под углом не базе линии, параллельной оптической оси лазерного диода 51, вторая пластина 57 наклонена под углом - θ. Пластины 55 и 57 изготавливаются с использованием оптического материала, имеющего одинаковый показатель преломления, такого, например, как стекло. Между тем, астигматизм, возникающий при введении пластин 55 и 57, компенсируется с помощью цилиндрической линзы 53, которая используется в оптической системе. Цилиндрическая линза 53 также компенсирует астигматическую разность, описанную со ссылкой на фиг. 1, то есть астигматическую разность, возникающую из-за различных начальных точек, расположенных в области активного слоя, светового пучка, выходящего из лазерного диода.
Первая пластина 55 преломляет световой пучок, выходящий из цилиндрической линзы 53 через поверхность 553 пластины по направлению "┴" (фиг. 5A) и передает световой пучок, по существу, без отклонения по направлению "
Вышеописанные варианты осуществления со ссылками на фиг. 5A и 5B были описаны по отношению к лазерному источнику, из которого выходит световой пучок, имеющий по существу эллиптическое поперечное сечение. Однако существуют различные пучки белого или естественного света, которые необходимо формировать. Соответственно, специалистам очевидно, что различные модификации для формирования таких световых пучков возможно выполнить в рамках настоящего изобретения.
В качестве модификации вышеупомянутый лазерный диод 51 заменяется на источник света с выходным световым пучком имеющим круглое поперечное сечение. В этом случае световой пучок с круглым поперечным сечением формируют в световой пучок с эллиптическим поперечным сечением, который имеет длинный диаметр пучка по оси и короткий диаметр пучка по оси, один из которых может иметь такой же диаметр, как и выходной световой пучок.
В качестве альтернативной модификации источник света, из которого выходит световой пучок с эллиптическим поперечным сечением, может находиться в положении коллимирующей линзы 59. В этом случае световой пучок с эллиптическим поперечным сечением формируют в световой пучок с круглым поперечным сечением, который представляем собой то же самое, что и пучок с длинным по оси диаметром пучка и коротким по оси диаметром пучка с эллиптическим поперечным сечением.
Поскольку эти изменения очевидны специалистам, то дальнейшее объяснение этих модификаций будет опущено.
На фиг. 6 изображена оптическая система, использующая вышеописанные варианты осуществления со ссылками на фиг. 5A и 5B. На фиг. 6 изображен лазерный диод 51, цилиндрическая линза 53 и вторая пластина 57, которые расположены в том же самом виде и выполняют те же самые функции, как и те, которые показаны на фиг. 5. Однако поверхность 555 пластины первой пластины 55 передает световой пучок, выходящий из поверхности 553 пластины, и отражает световой пучок, выходящий из поверхности 573 второй пластины 57, отличным от описания со ссылками на фиг. 5A способом. То есть поверхность 555 пластины имеет хорошо известную оптическую особенность расщепителя пучка. Поэтому световой пучок, выходящий из поверхности 573 второй пластины, отражается от поверхности 555 пластины.
Оптический датчик, показанный на фиг. 6, включает в себя дополнительно к вышеописанным оптическим устройствам отражающее зеркало 58, линзу 60 объектива и фотодетектор 63. Оптический датчик (фиг. 6) расположен так, чтобы оптическая ось лазерного диода 51 не была параллельна оптической оси линзы 60 объектива, которая предназначена для фокусировки падающего светового пучка на поверхность для записи сигнала оптической записывающей среды. К тому же, отражающее зеркало 58 расположено так, чтобы световой пучок, выходящий из второй пластины 57, отражался по направлению к коллимирующей линзе 59. Таким образом, оптическая ось лазерного диода 51 перпендикулярна оптической оси линзы 60 объектива, благодаря чему можно изготовить компактный оптический датчик.
Световой пучок, отраженный от поверхности для записи сигнала оптической записывающей среды 61, поступает на линзу 60 объектива и коллимирующую линзу 59 и затем падает на отражающее зеркало 58. Световой пучок, падающий на отражающее зеркало 58, является сходящимся по форме и сходится благодаря коллимирующей линзе 59. Соответственно, световой пучок, отраженный от отражающего зеркала 58 и затем отраженный от второй пластины 57, является сходящимся по форме. Таким образом, световой пучок, отраженный от поверхности 555 пластины, передается в форме сходящегося пучка и имеет астигматизм. То есть сходящийся световой пучок, отраженный от поверхности 555 пластины, является пучком, который передается только через одну пластину 57, и отличается от светового пучка, который фокусируется на поверхность для записи сигнала оптической записывающей среды 61. Чтобы использовать астигматизм, которым обладает световой пучок, отраженный от поверхности 555 пластины при фокусировке с использованием сервопривода, в варианте осуществления используется фотодетектор 63, имеющий конструкцию, адаптированную под использование хорошо известного астигматического способа.
Как описано выше, оптические системы согласно вариантам осуществления изобретения используют цилиндрические линзы и пластины для формирования пучка, обеспечивая таким образом формирование пучка с эллиптической или круговой формой светового пучка, выходящего из источника света, с низкой стоимостью. Кроме того, формирование пучка относительно направления большого диаметра пучка выполнено с возможностью совпадения с пучком, соответствующим маленькому диаметру пучка относительно эллиптического светового пучка, выходящего из источника света, таким образом обеспечивая высокую эффективность использования и низкую аберрацию волнового фронта лазерного пучка. К тому же, поскольку световой пучок, который выводится из оптической системы, формирующей пучок, расходится и оптическая система использует многочисленные пластины, то световой пучок, отраженный от оптической записывающей среды, сходится и имеет такой же астигматизм. В результате, можно выполнить фокусировку с помощью сервопривода с использованием астигматического способа, и в этом случае отсутствует необходимость использования отдельной линзы, принимающей световой пучок, сходящийся на фотодетекторе. Кроме того, поскольку оптическая ось лазерного источника перпендикулярна оптической оси линзы объектива, можно выполнить компактный оптический датчик.
Хотя только отдельные варианты осуществления изобретения были специально описаны здесь, понятно, что многочисленные модификации можно выполнить без изменения сущности и объема изобретения.
Оптическая система включает источник света, плоскопараллельные пластины, которые имеют взаимное симметричное расположение относительно плоскости, перпендикулярной оптической оси источника света, фотодетектор для детектирования света, отраженного от оптической записывающей среды, и цилиндрическую линзу. Цилиндрическая линза расположена между источником света и плоскопараллельными пластинами. Первая плоскопараллельная пластина, на которую поступает световой пучок из цилиндрической линзы, пропускает этот световой пучок и отражает световой пучок, отраженный от оптической записывающей среды, по направлению к фотодетектору. Обеспечивается повышение эффективности использования светового пучка и минимальные аберрации волнового фронта. 3 с. и 25 з.п. ф-лы, 8 ил.