Код документа: RU2433499C2
Область техники
Заявленное изобретение относится к радиочастотным (РЧ) переключателям, выполненным посредством микроэлектромеханических систем (МЭМС).
Уровень техники
Микроэлектромеханические системы (МЭМС) в настоящее время широко используются в радиочастотных (РЧ) коммуникационных системах, например в фазированных антенных решетках, фазовращателях, переключаемых настраивающих элементах и т.д.
РЧ МЭМС-переключатели, по существу, являются миниатюрными устройствами с применением механического перемещения, вызванного электрическим воздействием, с целью замыкания или размыкания цепи в РЧ линии передачи. Таким образом, РЧ МЭМС-переключатели, по существу, содержат два отдельных устройства:
- микромеханическое устройство, которое, в общем, будем называть «переключающим устройством», и которое может быть приведено в два различных положения: положение отключения, соответствующее отключенному состоянию переключателя, т.е. состоянию, при котором линия передачи разомкнута и не может быть использована для передачи РЧ сигнала, и положению включения, соответствующему включенному состоянию переключателя, т.е. состоянию, при котором линия передачи «замкнута» и может быть использована для передачи РЧ сигнала;
- электрическое устройство, которое будет, в общем, будем называть «активирующим устройством»; причем указанное активирующее устройство обычно служит для создания силы, прилагаемой к механическим переключающим устройствам, чтобы перевести последние в положение включения и/или в положение отключения.
РЧ МЭМС-переключатели можно разделить на несколько категорий в зависимости от применяемых электрических активирующих устройств, а именно электростатические, электромагнитные, пьезоэлектрические или электротермические активирующие устройства. Электростатическая активация является основным, используемым на сегодняшний день, техническим средством, поскольку она позволяет достигать более короткого времени переключения (обычно менее 200 мкс) и практически нулевого потребления энергии. Кроме того, в конструкции РЧ МЭМС-переключателей могут быть скомбинированы различные технологии активации (например, электростатическая блокировка напряжения может быть скомбинирована с термическим приводом).
РЧ МЭМС-переключатели можно также разделить на две категории в зависимости от типа контакта, используемого для переключения линии передачи, а именно «переключатели с контактом металл-металл» или «переключатели с емкостным контактом». Так называемые переключатели с контактом металл-металл (также называемые «переключатели с омическим контактом») обычно используют для переключения сигнала в диапазоне от постоянного тока до 60 ГГц. Емкостные переключатели используют в основном для переключения РЧ сигнала в диапазоне 6 ГГц-120 ГГц.
В настоящее время РЧ МЭМС-переключатели можно также подразделить на две основные категории в зависимости от конструкции микромеханического переключающего устройства.
Первая основная категория включает в себя РЧ МЭМС-переключатели, микромеханическое переключающее устройство которых содержит гибкую мембрану, прикрепленную к подложке переключателя. Вторая категория включает в себя РЧ МЭМС-переключатели, микромеханическое переключающее устройство которых содержит ненагруженный жесткий стержень, свободно установленный на подложке переключателя.
РЧ МЭМС-переключатели с гибкой прикрепленной мембраной
В первой конфигурации гибкая мембрана прикреплена к подложке с обоих концов и, таким образом, образует мостик. МЭМС-переключатели, в которых в качестве переключающего элемента использован гибкий мостик, раскрыты, например, в следующих патентных документах: патентной заявке США No 2004/0091203, патенте США No 6,621,387, европейской патентной заявке ЕР 1343189, заявке PCT WO 2004/076341.
Во второй конфигурации гибкая мембрана прикреплена к подложке только с одного конца и, таким образом, образует консоль. МЭМС-переключатели, в которых в качестве переключающего элемента использована консоль, раскрыты, например, в патенте США No 5,638,946.
Использование РЧ МЭМС-переключателей, имеющих в качестве переключающего элемента прикрепленную гибкую мембрану (мостик или консоль), имеет следующие основные недостатки. Эти переключатели являются очень чувствительными к изменениям температуры и к механическим и/или термическим деформациям подложки (первый основной недостаток). В процессе активации, когда прикрепленная переключающая мембрана деформируется под воздействием силы, созданной активирующим устройством, эта мембрана подвергается высокой механической нагрузке, которая, в свою очередь, значительно сокращает срок службы такого РЧ МЭМС-переключателя (второй основной недостаток).
РЧ МЭМС-переключатели, имеющие ненагруженный и жесткий стержень
РЧ МЭМС-переключатели, имеющие ненагруженный и жесткий стержень, раскрыты, например, в европейской патентной заявке ЕР 1489 639. В этой публикации переключающий элемент представляет собой жесткий стержень, который может свободно перемещаться между положением включения и положением выключения в плоскости, параллельной подложке. В другом варианте жесткий стержень может быть плавающим стержнем, который может свободно перемещаться между положением включения и положением отключения в направлении, перпендикулярном подложке.
В этом типе переключателей успешно устранены указанные выше недостатки РЧ МЭМС-переключателей, имеющих прикрепленную переключающую мембрану. В свою очередь у этих РЧ МЭМС-переключателей, имеющих ненагруженный и жесткий стержень, время переключения (т.е. время, необходимое для перемещения переключающего стержня между положением включения и положением отключения) длиннее. Кроме того, они являются более чувствительными к механическим сотрясениям или вибрациям.
Цели изобретения
Главной целью заявленного изобретения является создание новой конструкции РЧ МЭМС-переключателя.
Дополнительной целью заявленного изобретения является создание нового РЧ МЭМС-переключателя, в котором устранены указанные выше недостатки РЧ МЭМС-переключателей, использующих прикрепленную гибкую мембрану.
Дополнительной целью заявленного изобретения является создание нового РЧ МЭМС-переключателя, с коротким временем переключения по сравнению с вышеуказанными РЧ МЭМС-переключателями, имеющими ненагруженный и жесткий стержень.
Дополнительной целью заявленного изобретения является создание нового РЧ МЭМС-переключателя, менее чувствительного к механическим сотрясениям и вибрациям по сравнению с вышеуказанными РЧ МЭМС-переключателями, имеющими ненагруженный и жесткий стержень.
Сущность изобретения
По меньшей мере, основной вышеуказанной цели достигают посредством РЧ МЭМС-переключателя согласно п.1.
РЧ МЭМС-переключатель согласно изобретению содержит:
- микромеханическое переключающее устройство, выполненное с возможностью приведения в действия между двумя положениями: первым положением (отключенное состояние) и вторым положением (включенное состояние), и
- активирующее устройство, предназначенное для приведения переключающего устройства в соответствующее положение.
Согласно одному главному новому признаку заявленного изобретения микромеханическое переключающее устройство содержит гибкую мембрану, свободно поддерживаемую опорным устройством и способную отгибаться под воздействием активирующего устройства и свободно скользить относительно опорного устройства (3) во время своего перемещения изгиба.
Использованное здесь (в описании и в формуле изобретения) выражение «свободно поддерживаемая» означает, что переключающая мембрана может свободно скользить относительно опорного устройства во время переключающего перемещения мембраны между положением отключения и положением включения.
Краткое описание чертежей
Другие признаки и преимущества заявленного изобретения будут более понятны из последующего подробного описания, приведенного с использованием не исчерпывающего и не ограничивающего примера, и со ссылками на прилагаемые чертежи, на которых:
- на фиг.1 представлен в разрезе (в плоскости I-I на фиг.3) вид емкостного РЧ МЭМС-переключателя согласно изобретению, причем переключатель находится в отключенном состоянии,
- на фиг.2 представлен в разрезе вид переключателя, показанного на фиг.1, причем переключатель находится во включенном состоянии,
- на фиг.3 представлен вид сверху емкостного РЧ МЭМС-переключателя, показанного на чертежах, и
- на фиг.4 представлен в разрезе вид переключателя в процессе его изготовления, непосредственно перед последним шагом освобождения.
Подробное раскрытие
На фиг.1-3 показан емкостной РЧ МЭМС-переключатель, выполненный в соответствии с предпочтительным вариантом осуществления заявленного изобретения. Однако для большей ясности следует понимать, что объем заявленного изобретения не ограничен лишь емкостным РЧ МЭМС-переключателем, но включает в себя также РЧ МЭМС-переключатели с омическим контактом. Емкостной РЧ МЭМС-переключатель согласно фиг.1-3 имеет новую конструкцию, которая далее будет раскрыта подробно, и может быть изготовлен с использованием традиционных способов микрообработки поверхности.
Представленный на фиг.1 РЧ МЭМС-переключатель содержит плату 1 (например, изготовленную из кремния), образующую подложку переключателя. На поверхность указанной платы 1 нанесен тонкий диэлектрический слой 2. На диэлектрическом слое 2 переключатель содержит:
- два отстоящих друг от друга и параллельных боковых опорных элемента 3, проходящих в поперечном направлении согласно фиг.1 (см. фиг.3 - направление Y);
- один центральный опорный элемент 4, проходящий в направлении, по существу, параллельном основному направлению боковых опорных элементов 3 (т.е. в поперечном направлении согласно фиг.1 - см. фиг.3), причем указанный центральный опорный элемент 4 расположен между двумя боковыми опорными элементами 3 и предпочтительно посередине между боковыми опорными элементами 3.
В противоположность боковым опорным элементам 3 верхняя поверхность центрального опорного элемента 4 покрыта тонким диэлектрическим слоем 5.
Два боковых опорных элемента 3 и диэлектрический слой 2 образуют компланарный волновод (КПВ), причем два боковых опорных элемента 3 соответствуют линиям заземления. Центральный опорный элемент 4 образует линию сигнала, предназначенную для передачи РЧ электрического сигнала по компланарному волноводу (КПВ).
Боковые и центральные опорные элементы 3, 4 выполнены, например, из такого металла, как золото. Диэлектрический материал для слоев 2 и 5 может быть любым материалом, в частности полимером с очень низкой электрической проводимостью. Например, диэлектрические слои 2 и 5 выполняют из нитрида кремния.
РЧ МЭМС-переключатель дополнительно содержит емкостной переключающий элемент, образованный тонкой гибкой мембраной 6, выполненной из металла, например такого, как алюминий, золото или любой проводящий сплав. Гибкая переключающая мембрана 6 свободно поддерживается, по меньшей мере, боковыми опорными элементами 3.
Представленная на фиг.3 гибкая переключающая мембрана 6 имеет основную центральную часть 6а и два противоположных концевых участка в форме пластинок 6b. В конкретном варианте осуществления, представленном на чертежах, центральная часть 6а является прямоугольной и проходит в поперечном направлении (X) над боковыми опорными элементами 3. Пластинки 6b в поперечном направлении (Y) опорных элементов 3 имеют размер (Е), который превышает ширину (е) прямоугольной части 6а. Форма гибкой мембраны 6 для заявленного изобретения несущественна.
Каждый опорный элемент 3 дополнительно содержит в своей верхней части перемычку 3а с формированием прохода 3b, в котором свободно установлена центральная часть 6а мембраны. Пластинки 6b мембран в сочетании с перемычкой 3а служат средствами крепления для удержания мембраны на опорных элементах 3, не препятствуя свободному перемещению мембраны 6 относительно опорных элементов 3 в процессе нормальной эксплуатации переключателя.
РЧ МЭМС-переключатель дополнительно содержит электростатическое активирующее устройство, предназначенное для изгибания мембраны 6 и образованное двумя боковыми закрытыми электродами 7. В предпочтительном варианте осуществления, представленном на фиг.1-3, закрытые электроды предпочтительно расположены снаружи компланарного волновода (КПВ) под двумя пластинками 6b переключающей мембраны 6. Верхняя поверхность каждого из электродов 7 покрыта диэлектрическим слоем 8 для предотвращения любого омического контакта между пластинками 6b мембраны и электродами 7. Диэлектрический слой 8 может быть заменен любым аналогичным средством, позволяющим избежать омического контакта между пластинками мембраны 6b и электродами 7.
Отключенное состояние
На фиг.1 показана конфигурация РЧ МЭМС-переключателя в отключенном состоянии. В данной конфигурации отключенного состояния никакой электрический активирующий сигнал на электроды 7 не поступает.
В отключенном состоянии мембрана 6 переключателя находится в состоянии покоя и в контакте с диэлектрическим слоем 5. Линия 4 сигнала разомкнута и не может пропускать по компланарному волноводу (КПВ) никакой РЧ сигнал.
Предпочтительно на центральный опорный элемент 4 подается сигнал постоянного тока, предназначенный для приложения к мембране 6 малой электростатической силы (F1) и поддержания хорошего контакта между мембраной 6 и диэлектрическим слоем 5. Указанное напряжение постоянного тока отключенного состояния предпочтительно может быть очень низким (низкое потребление).
Этот подмагничивающий сигнал постоянного тока также эффективен в том случае, если между электрическим слоем 5 и мембраной 6 будет очень маленький начальный зазор, когда мембрана находится в состоянии покоя. В этом случае напряжение подмагничивающего сигнала постоянного тока должно быть достаточным для приложения контактной силы F1 (фиг.1) к центральной части мембраны 6, превосходящей противоположно направленную силу, действующую на мембрану, находящуюся в состоянии покоя.
В отключенном положении мембрана 6 предпочтительно поддерживается в устойчивом положении тремя опорными элементами 3, 4 и, следовательно, является менее чувствительной к механическим вибрациям или сотрясениям по сравнению с РЧ МЭМС-переключателями, в которых использован ненагруженный жесткий стержень (публикация ЕР 1489639).
Предпочтительно, когда мембрана 6 находится в положении отключения, между пластинками 6b и перемычкой 3а боковых опорных элементов 3 все еще остается малый зазор [фиг.3 - размеры (d)]. Следовательно, опорные элементы 3 только поддерживают мембрану 6 в вертикальном направлении (направление Z на фиг.1) и не прикладывают никакого механического усилия к мембране в плоскости (X, Y). Следовательно, в мембране 6 не вызывается никакого механического напряжения со стороны боковых опорных элементов 3, когда мембрана 6 находится в положении выключения.
Включенное состояние
На фиг.2 показана конфигурация РЧ МЭМС-переключателя во включенном состоянии. В этой конфигурации включенного состояния мембрана 6 выгнута в направлении, противоположном подложке 1, и больше не находится в контакте с диэлектрическим слоем 5; линия РЧ сигнала может быть использована для передачи РЧ сигнала.
В этом изогнутом состоянии жесткость мембраны в направлении вне плоскости повышена, что, в свою очередь, повышает устойчивость переключающей мембраны 6 к вибрациям и сотрясениям.
Из выключенного состояния во включенное состояние
Для получения конфигурации включенного состояния к электродам 7 прикладывают сигнал постоянного тока с целью создания электростатических сил (F2) между электродами 7 и пластинками 6b мембраны. Указанные электростатические силы F2 в сочетании с боковыми опорными элементами 3 вызывают такое изгибание мембраны (фиг.2), что центральная часть 6а мембраны 6 отодвигается от диэлектрического слоя 5 (замыкая линию РЧ сигнала).
Следует отметить, что во время такого переключающего перемещения мембраны 6 (а также во время обратного переключающего перемещения из включенного состояния в выключенное состояние) мембрана 6 абсолютно свободно скользит относительно опорных элементов 3 внутри проходов 3b указанных опорных элементов 3.
Благодаря такому свободному перемещению мембраны 6 во время операций переключения в мембране 6 вызывается меньшее механическое напряжение со стороны опорных элементов 3 по сравнению с известными из уровня техники РЧ переключателями, в которых мембрана (мостик или консоль) закреплена на опорной системе. Таким образом, устраняются механическая усталость и ползучесть металла, возникающие при циклических нагрузках в крайних участках мембраны 6, и срок службы мембраны значительно повышается по сравнению с известными из уровня техники РЧ переключателями, в которых используется прикрепленная к подложке мембрана.
Благодаря тому, что мембрана 6 двигается свободно относительно опорных элементов, при воздействии на РЧ МЭМС-переключатель изменений температуры расширение и возвращение в исходное состояние переключающей мембраны 6 не влечет за собой дополнительного прогиба мембраны. Таким образом, РЧ МЭМС-переключатель согласно изобретению не является температурно-зависимым в отличие от известных из уровня техники РЧ МЭМС-переключателей, в которых используется прикрепленная к подложке мембрана.
Кроме того, благодаря использованию абсолютно свободной мембраны 6 эта конструкция не зависит от кривизны подложки (платы). В частности, малые деформации подложки 1, возникшие, например, под воздействием изменений температуры или других механических напряжений или в процессе ее изготовления, не окажут негативного влияния на операции переключения. Следовательно, РЧ МЭМС-переключатель согласно изобретению является менее чувствительным к деформациям подложки по сравнению с известными из уровня техники РЧ переключателями, в которых используется прикрепленная к подложке мембрана.
Обычно, в емкостных МЭМС-переключателях часто случается, что переключающий элемент прилипает к диэлектрическому слою в отключенном состоянии из-за наличия влаги или электростатического заряда диэлектрического слоя. В переключателе согласно изобретению благодаря применению активирующей силы (электростатическая сила F2) для перемещения мембраны 6 в положение включения, проблема прилипания мембраны к диэлектрическому слою 5 решена.
Из включенного состояния в выключенное состояние
Когда приводящий во включенное состояние сигнал постоянного тока электродов 7 ниже заданного порога (напряжение отключения), то к краям (пластинкам 6b) мембраны 6 больше не приложены электростатические активирующие силы F2, и мембрана 6 отгибается назад в положение отключения, показанное на фиг.1. Перемещение мембраны 6 из положения включения (фиг.2) в положение выключения (фиг.1) вызвано силой упругости мембраны 6, имеющей место благодаря естественной жесткости мембраны 6.
Благодаря использованию естественной жесткости мембраны перемещение из включенного состояния в выключенное состояние происходит очень быстро и не требует высоких затрат электроэнергии. Таким образом, время переключения (из положения включения в положение выключения в случае конкретного примера осуществления на фиг.1-3) РЧ МЭМС-переключателя согласно изобретению является очень коротким и не требует никаких затрат электроэнергии по сравнению с РЧ МЭМС-переключателями, в которых использован ненагруженный жесткий переключающий стержень (публикация ЕР 1489639).
Фиг.4 / процесс изготовления
РЧ МЭМС-переключатель, изображенный на фиг.1-3, может быть изготовлен с использованием традиционных технологий микрообработки поверхности (т.е. посредством нанесения и структурирования нескольких слоев на плату).
На фиг.4 представлен РЧ МЭМС-переключатель сразу после процесса изготовления и перед шагом освобождения. Были использованы три жертвенных слоя 9, 10 и 11. Эти жертвенные слои могут быть выполнены из любого материала (металла, полимера, диэлектрического материала).
Один первый жертвенный слой 9 служит для нанесения мембраны 6 на диэлектрический слой 2. На последнем шаге освобождения при удалении жертвенного слоя 9 освобождаются пластинки 6b мембраны 6 и часть мембраны 6, расположенная между боковыми опорными элементами. Другие защитные слои 10 и 11 служат для освобождения мембраны 6 от диэлектрического слоя 5 и от боковых опорных элементов 3 (линии заземления).
В ходе процесса изготовления расстояние между мембраной 6 и диэлектрическим слоем 5 (т.е. толщина жертвенного слоя 10) очень мало. Обычно это расстояние меньше 0,1 мкм. Этим преимущественно обусловлено то, что профиль мембраны 6 и профиль диэлектрического слоя 5 одинаковы. Поскольку в выключенном состоянии мембрана находится в состоянии покоя и не деформирована, а профиль мембраны 6 и профиль диэлектрического слоя 5 одинаковы, то в выключенном положении мембраны 6 между мембраной и диэлектрическим слоем 5 обеспечивается идеальный контакт поверхностей.
Изобретение не ограничено предпочтительным вариантом осуществления, представленным на фиг.1-3, но может быть распространено на все РЧ МЭМС-переключатели, содержащие гибкую переключающую мембрану, которая свободно поддерживается на подложке посредством опорных элементов или подобных им, и которая может выгибаться под воздействием приводного устройства.
Активирующее устройство предпочтительно, но не обязательно представляет собой электростатическое устройство.
Изобретение позволяет создать емкостной РЧ МЭМС-переключатель, имеющий очень низкие параметры активирующего устройства, очень быстрое переключение и улучшенные рабочие РЧ характеристики. Изобретение более конкретно предназначено и представляет основной интерес для создания емкостных РЧ МЭМС-переключателей, которые можно использовать при очень высокой частоте радиосигнала и особенно для радиочастот более 25 ГГц.
Однако изобретение не ограничено только лишь емкостными РЧ МЭМС-переключателями, но может также быть использовано для создания РЧ МЭМС-переключателей с омическими контактами (также обычно называемые «РЧ МЭМС-переключатели с контактом металл-металл»). В РЧ МЭМС-переключателях с омическими контактами согласно изобретению гибкая и свободно поддерживаемая мембрана 6, например, выполнена так, чтобы создавать в положении включения замыкание между одним первым металлическим контактом, расположенным между боковыми опорными элементами 3, и вторым металлическим контактом, который, например, может постоянно находиться в соприкосновении с мембраной 6. В положении отключения мембрана не соприкасается с указанным первым металлическим контактом.
В случае емкостного РЧ МЭМС-переключателя диэлектрический слой 5 может находиться на мембране 6, а не обязательно на линии 4 сигнала. В альтернативном варианте диэлектрический слой может находиться как на линии 4 сигнала, так и на мембране 6.
В предпочтительном варианте осуществления, представленном на фиг.1-3, приводящие электроды 7 расположены под мембраной 6 (т.е. между диэлектрическим слоем 2 и мембраной 6) и за пределами компланарного волновода (КПВ), образованного боковыми опорными элементами 3. Данное расположение электродов имеет следующие преимущества. В конфигурации включенного состояния не существует опасности взаимодействия между электростатическими силами (F2), используемыми для приведения в определенное положение мембраны 6, и РЧ сигналом, передаваемым по компланарному волноводу. Следовательно, поверхность электродов 7 может быть большой, и, в свою очередь, «напряжение включенного состояния», прикладываемое к электродам 7, может быть очень низким. Данное расположение электродов 7, однако, является лишь предпочтительным признаком данного изобретения. В другом варианте изобретения РЧ МЭМС-переключатель может быть выполнен, например, таким образом, что приводящие электроды 7 расположены над мембраной 6.
Изобретение относится к области радиотехники и может быть использовано в радиочастотных коммуникационных системах. РЧ МЭМС-переключатель содержит микромеханическое переключающее устройство, размещенное на подложке и выполненное с возможностью приведения в действие между двумя положениями: первым положением (отключенное состояние) и вторым положением (включенное состояние), и активирующее устройство, предназначенное для приведения переключающего устройства в соответствующее положение. При этом микромеханическое переключающее устройство содержит гибкую мембрану (6), свободно поддерживаемую опорным устройством (3) и выполненную с возможностью изгибаться под воздействием активирующего устройства (7) и свободно скользить относительно опорного устройства (3) во время своего перемещения изгиба. 24 з.п. ф-лы, 4 ил.
Мембранный переключатель