Код документа: RU2790266C1
Изобретение относится к СВЧ-микроэлектронике, а точнее к технологиям синтеза анизотропных (с осью легкого намагничивания, направленной перпендикулярно поверхности) пленок BaFe12O19 методами осаждения из газовой фазы. Такие пленки могут быть использованы при разработке планарных невзаимных СВЧ-устройств с эффектом самосмещения и в устройствах спинтроники в качестве магнитного диэлектрика.
Задача изготовления пленок гексагонального феррита бария с высокой степенью кристаллографической текстуры и, соответственно, анизотропией магнитных свойств - весьма нетривиальна.
Известны следующие способы получения пленок ферритов: «Способ получения наноразмерных пленок феррита-граната, содержащих Bi» (см. патент Украины №66219. Прокопов А.Р., Шапошников А.Н., Каравайников А.В., Бюл. №24, 2011 г.) и «Способ получения наноразмерных пленок Bi-содержащих феритов-гранатов» (патент РФ №2532185. Костишин В.Г., Читанов Д.Н., Комлев А.С., Юданов Н.А., Трухан В.М., Шелковая Т.В.). Однако, эти способы обладают следующими недостатками:
1) указанными способами не могут быть получены толстые пленки ферритов;
2) указанными способами не могут быть получены пленки гексагональных ферритов.
Наиболее близким к предлагаемому является «Способ получения наноразмерных пленок феррита» (см. патент РФ №2532187. Костишин В.Г., Панина Л.В., Морченко А.Т., Читанов Д.Н., Юданов Н.А. и Адамцов А.Ю.; бюл. №30, 27.10.2014 г.). Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки титаната стронция ионами аргона, распыление мишени на подогретую до температуры 700-750°С подложку и отжиг полученной пленки в атмосфере кислорода в течение 1,0 часа при температуре 500-550°С при нормальном атмосферном давлении.
Настоящий способ обладает следующими недостатками:
1) указанным способом не могут быть получены пленки гексагональных ферритов;
2) указанным способом не могут быть получены пленки гексаферрита BaFe12O19 с осью легкого намагничивания, перпендикулярной поверхности пленки;
3) указанным способом не могут быть получены толстые (толщина ~1 мкм и более) пленки гексаферрита BaFe12O19 с осью легкого намагничивания, перпендикулярной поверхности пленки.
Цель настоящего изобретения - разработать способ получения толстых (толщина ~1 мкм и более) анизотропных пленок гексагональных ферритов BaFe12O19 с направлением магнитного момента перпендикулярно плоскости пленки.
Поставленная цель достигается тем, что в предлагаемом способе получения пленок феррита, включающем изготовление мишени гексаферрита BaFe12O19, использование монокристаллической подложки Al2O3 кристаллографической ориентации (001), обработку подложки ионами аргона, распыление мишени на подогреваемую подложку с дальнейшим кристаллизационным отжигом пленки процесс нанесения пленки, проводимый при относительно низких температурах подложки (около 300°С) периодически прерывается.
Принципиально получение анизотропной пленки гексаферрита по предлагаемой технологии возможно любым методом ионного нанесения. В качестве общих требований к тому или иному методу можно привести следующее: 1) использование условий (химический состав мишени, остаточное давление в камере, рабочее давление в камере и другие), обеспечивающих получение на подложке пленки, максимально приближенной по составу к стехиометрическому BaFe12O19; 2) использование в качестве подложки монокристаллической пластины Al2O3 кристаллографической ориентации (001). После выполнения этих базовых условий возможно использование непосредственно предлагаемого метода, который заключается в следующем: после нагрева подложки до 300-350°С производится нанесение 70-90 нм пленки гексаферрита бария. После достижения указанной толщины процесс напыления прерывается, и пленка выдерживается в течение 5 минут при той же температуре 300-350°С. Пленка требуемой толщины получается после многократного повторения предыдущих операций: нанесение 70-90 нм и выдержка при 300-350°С в течение 5 минут. После этого необходимо провести кристаллизационный отжиг пленки на воздухе при 800-900°С в течение 1-3 ч.
Сущность предлагаемого технического решения состоит в следующем.
При нагреве до 300°С из аморфной системы Ba-Fe-О начинает кристаллизоваться гематит Fe2O3. Сам по себе гематит характеризуется поверхностной кристаллизацией, а кроме того, спонтанно формируется с текстурой (001). Наличие у монокристаллической подложки Al2O3 кристаллографической ориентации (001) только усилит формирование текстуры (001). Предоставление 5-ти минутного интервала необходимо для того, чтобы кристаллиты успели сформироваться, поскольку в противном случае налетающие частицы (атомы, кластеры атомов, отраженные ионы и др.) будут разрушать образующиеся связи и лимитировать кристаллизацию. При нанесении дополнительного слоя пленки на его поверхности также происходит образование зародышей гематита (001). В конце процесса нанесения пленка будет состоять из аморфной матрицы и включений кристаллитов гематита (001) по всему ее объему, которые послужат «шаблоном» для роста гексаферрита (001) при кристаллизационном отжиге. Отклонения таких параметров как толщина одного слоя, время выдержки и температура подложки от рекомендованных нежелательны, так как могут спровоцировать увеличение вероятности образования неориентированных кристаллитов, что приведет к ухудшению степени текстуры конечной пленки.
Способ реализуется следующим образом. Методом керамической технологии изготавливается мишень гексаферрита BaFe12O19. Монокристаллическую подложку Al2O3 обрабатывают в вакуумной камере ионами аргона 10-20 эВ. Монокристаллическую подложку кристаллографической ориентации (001) помещают в держатель подложки с нагревателем. В вакуумной камере создают рабочее давление (газ Ar) (0,5-0,7) мТорр. С помощью нагревателя подложку нагревают до температуры (300-350)°С. Далее производят осаждение материала мишени на подложку путем распыления мишени пучком аргона с помощью ионного источника тока. С целью облегчения кристаллизации стехиометрического гексаферрита BaFe12O19 в область подложки подается с помощью источника ионов контролируемый поток ионов кислорода. После нанесения на подложку 70-90 нм пленки гексаферрита бария процесс напыления прекращается, и пленка выдерживается в течение 5 мин при температуре подложки 300-350°С. Пленка требуемой толщины получается после многократного повторения предыдущих операций: нанесение 70-90 нм и выдержка при 300-350°С в течение 5 минут. После этого необходимо провести кристаллизационный отжиг пленки на воздухе при 800-900°С в течение 1-3 час.
На фиг. 1 изображена рентгеновская дифрактограмма пленки, полученной по предложенной технологии на монокристаллической подложке Al2O3 (001). Как видно, рефлексы гексаферрита представлены лишь семейством (001).
Предлагаемое техническое решение обладает следующими отличительными признаками:
1. Используется монокристаллическая подложка Al2O3 кристаллографической ориентации (001);
2. Подложка в процессе напыления подогрета до температуры 300-350°С;
3. Процесс напыления пленки прерывается каждые 70-90 нм, после чего осуществляется выдержка пленки в течение 5 мин при температуре подложки;
4. Количество напыленных слоев 70-90 нм определяется необходимой толщиной пленки;
5. Кристаллизационный отжиг осуществляется на воздухе при температуре 800-900°С в течение 1-3 час.
Использование указанных признаков для осуществления поставленной цели авторам неизвестно.
Пример.
По предложенной технологии получали пленки гексаферрита бария на подложке Al2O3 (001). В качестве метода синтеза использовалось ионно-лучевое напыление. Мишенью служил диск стехиометрического BaFe12O19, полученный по стандартной керамической технологии. Расстояние от подложки до мишени составляло 37 мм, остаточное давление - 0,08 мТорр, рабочее давление (газ Ar) - 0,6 мТорр, напряжение ионного источника - 1,4 кВ, ток разряда - 30 мА, ток катода-компенсатора - 2,8 А, скорость нанесения - 20 нм/мин. Толщина одного слоя составляла 80 нм, количество слоев - 13 (итоговая толщина ~1 мкм), температура подложки 300-320°С, время выдержки между нанесением каждого слоя - 5 мин. Кристаллизационный отжиг проводился в муфельной печи на воздухе при температуре 900°С в течение 2 ч (скорость нагрева 300°С/ч, остывание естественное).
На фиг. 1 представлено изображение рентгеновской дифрактограммы полученной пленки, отражающее наличие высокой степени текстуры гексаферрита типа (001). На фиг. 2 представлен снимок поверхности пленки, полученной по предложенной технологии, на фиг. 3 - снимок образца полученного без прерывания процесса напыления и толщиной только 600 нм. Как видно из фиг. 3, отсутствие прерываний процесса напыления привело к формированию в пленке разноориентированных зерен. В то же время, у пленки, полученной по предложенной технологии, поверхность состоит из сросшихся плоских зерен гексагональной формы, подтверждающей их ориентацию типа (001).
Изобретение относится к технологии синтеза анизотропных (с осью легкого намагничивания, направленной перпендикулярно плоскости пленки) пленок BaFe12O19 методами осаждения из газовой фазы. Такой материал может быть использован при разработке планарных невзаимных СВЧ-устройств с эффектом самосмещения, в устройствах спинтроники в качестве магнитного диэлектрика. Способ получения пленок феррита включает изготовление мишени, обработку монокристаллической подложки ионами аргона, распыление мишени на подогретую подложку, подачу в область подложки контролируемого потока ионов кислорода, дальнейший кристаллизационный отжиг пленки, при этом для получения пленки гексаферрита бария BaFe12O19 используют мишень того же состава, монокристаллическую подложку Al2O3 кристаллографической ориентации (001), подложку в процессе напыления подогревают до температуры 300-350°С, после нанесения на подложку 70-90 нм пленки процесс напыления прерывают, после чего осуществляют выдержку пленки в течение 5 мин при температуре подложки, далее многократно повторяют напыление слоев 70-90 нм и выдержку при температуре 300-350°С в течение 5 мин до необходимой толщины пленки, а кристаллизационный отжиг осуществляют на воздухе при температуре 800-900°С в течение 1-3 ч. Технический результат - получение качественных толстых (до ~1 мкм и более) анизотропных пленок гексагональных ферритов BaFe12O19 с направлением магнитного момента перпендикулярно плоскости пленки. 3 ил., 1 пр.
Комментарии