Код документа: RU2631479C1
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих седативным действием, отличающийся тем, что в качестве оболочки нанокапсул используется геллановая камедь, а в качестве ядра - настойки пустырника, валерьяны, пиона уклоняющегося.
Отличительной особенностью предлагаемого метода является получение нанокапсул с использование геллановой камеди в качестве оболочки нанокапсул и настоек лекарственных растений, обладающих седативным действием - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул лекарственных растений, обладающих седативным действием.
ПРИМЕР 1. Получение нанокапсул настойки пустырника, соотношение ядро : оболочка 1:3
5 мл настойки пустырника добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул настойки пустырника, соотношение ядро : оболочка 1:1
5 мл настойки пустырника добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул настойки пустырника, соотношение ядро : оболочка 5:1
25 мл настойки пустырника добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул настойки пустырника, соотношение ядро : оболочка 1:5
5 мл настойки пустырника добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:3
5 мл настойки валерьяны добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:1
5 мл настойки валерьяны добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 5:1
25 мл настойки валерьяны добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул настойки валерьяны, соотношение ядро:оболочка 1:5
5 мл настойки валерьяны добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 9. Получение нанокапсул настойки пиона уклоняющегося, соотношение ядро:оболочка 1:3
10 мл настойки пион уклоняющий добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 10. Получение нанокапсул настойки пиона уклоняющегося, соотношение ядро:оболочка 1:5
10 мл настойки пиона уклоняющегося добавляют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 11. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном b ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.
Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих седативным действием. Указанный способ характеризуется тем, что 5 мл настойки валерьяны или пустырника добавляют в суспензию, содержащую 1, 3 или 5 г геллановой камеди в петролейном эфире, или 25 мл настойки пустырника или валерьяны добавляют в суспензию, содержащую 1 г геллановой камеди в петролейном эфире, или 10 мл настойки пиона уклоняющегося добавляют в суспензию, содержащую 3 или 5 г геллановой камеди в петролейном эфире, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, а также увеличение их выхода по массе. 3 ил., 11 пр.