Способ изготовления продукта из минеральной ваты, содержащего множество ламелей, и изделие такого типа - RU2757920C1

Код документа: RU2757920C1

Чертежи

Описание

Область применения изобретения

Настоящее изобретение относится к способу изготовления продукта из минеральной ваты, содержащего множество ламелей, и изделию такого типа.

Предпосылки создания изобретения

В некоторых продуктах из минеральной ваты, таких как продукт сэндвич-панели, продукт из минеральной ваты является сердцевиной так называемой сэндвич-панели. Сердцевину сэндвич-панели можно изготавливать общим способом, в котором отвержденное полотно из минеральной ваты разрезают продольно на элементы, являющиеся ламелями, и таким образом сформированные ламели поворачивают на 90° вокруг их продольной оси, после чего ориентированные таким образом панели связывают друг с другом адгезивом для формирования паутиноподобного изделия, которое затем разрезают с учетом необходимой длины для формирования плитных элементов. Из-за поворота ламелей волокна готовых плит в основном будут ориентированы в плоскости, перпендикулярной поверхностям плит, и в результате этого будут получаться плиты, имеющие значительную жесткость и прочность перпендикулярно поверхностям плит. Пример такой сборки ламелей и технологии их изготовления известен, например, из WO 2005/068574 A1.

В WO 2005/068574 A1 описан способ изготовления плиты с использованием термоплавкого адгезива для склеивания волокнистых элементов из минеральной ваты друг с другом. Элементы связывают друг с другом термоплавким адгезивом, который отверждают, нагревая связанную структуру до температуры приблизительно 150-185°C.

Альтернативный способ формирования ламельных плит известен из DE 32 23 246 A1. В указанном описании ламельную плиту формируют, приклеивая валяные листы друг на друга с последующим отрезанием куска.

При использовании такого ламельного изделия в качестве сердцевины сэндвич-панели эту сердцевину снабжают металлическими листами на основных поверхностях панели, например, путем приклеивания их адгезивом, для получения продукта сэндвич-панели.

Ламельное изделие можно также использовать для изоляции фасадов (например, Fasrock XL) или плоских кровель, где важным параметром является прочность на сжатие.

Связывание друг с другом или ламинирование элементов используют для различных целей соответствующим образом для достижения улучшенной изоляции, прочности, устойчивости, внешнего вида или других свойств.

Изолирующие характеристики готовых панелей, помимо прочего, зависят от того, как индивидуальные панели устанавливают и/или связывают друг с другом на строительной площадке. Чем больше требуется малых панелей для формирования нужной поверхности, тем большим будет количество боковин, которыми панели будут взаимно соприкасаться. Чем большим будет количество боковин, которыми панели будут соприкасаться друг с другом, тем больше тепловых мостов будет формироваться на изолированной поверхности в результате неаккуратной укладки, неправильного выравнивания отдельных панелей, а также в результате повышенного риска загрязнения контактных поверхностей.

В прошлом для связывания друг с другом элементов из минеральной ваты в качестве адгезивных композиций использовали экономичные в изготовлении фенолформальдегидные смолы.

Однако эти адгезивы имеют недостаток, заключающийся в содержании формальдегида, и, следовательно, они являются потенциально опасными в обращении и требуют защитных мер при обращении с ними на объекте.

Связующими веществами, которые не являются фенолформальдегидными и которые можно использовать в качестве адгезивов, являются связующие вещества на основе сахара, такие как, например, композиции, описанные в EP 2990494 A1, PCT/EP 2015/080758, WO 2007/014236, WO 2011/138458 и WO 2009/080938.

Однако все эти связующие вещества при использовании в качестве адгезивов для связывания друг с другом поверхностей элементов из минеральной ваты будут иметь недостаток, состоящий в том, что для отверждения им требуются высокие температуры, что приведет к необходимости подавать тепло к подлежащим связыванию друг с другом элементам в течение длительного периода времени. Эта работа не только требует дополнительного оборудования, но также может быть пожароопасной, например при соединении друг с другом элементов изоляции для утепления кровли на месте эксплуатации. Кроме того, высокотемпературное отверждение этих известных адгезивов может вызвать выделение вредных или вызывающих раздражение паров, что может потребовать применения средств защиты при обращении с этими веществами.

Другим типом адгезива, который использовали для склеивания элементов из минеральной ваты друг с другом или с другими элементами, такими как стекловолоконный флис или металлический лист, является адгезив на полиуретановой основе. Это может быть однокомпонентный или двухкомпонентный адгезив. Такие адгезивы не обязательно нужно отверждать при высоких температурах. Однако эти адгезивы также могут быть вредными при обращении с ними и не имеют натуральных ингредиентов в качестве основы.

Другие адгезивы имеют в качестве основы ПВА, битум, неорганические полиуретановые связующие вещества и/или полиакрилаты.

Изложение сущности изобретения

Соответственно, целью настоящего изобретения было обеспечение способа изготовления волоконных плит из минеральной ваты, содержащих множество ламелей, причем в способе применяют адгезив, отверждение которого не требует высоких температур, и при этом в процессе обращения, нанесения и отверждения адгезива воздействие опасных веществ сведено к минимуму, а меры защиты не являются обязательными.

Цель достигается способом изготовления продукта из минеральной ваты, содержащего множество ламелей, причем указанный способ включает:

- обеспечение отвержденного полотна из минеральной ваты;

- разрезание указанного полотна из минеральной ваты на множество ламелей,

- связывание ламелей друг с другом путем нанесения адгезива на поверхности двух смежных ламелей,

- отверждение адгезива, причем адгезив содержит по меньшей мере один гидроколлоид.

Изготовление продукта из минеральной ваты путем вырезания ламелей и связывания ламелей друг с другом является очень гибким в производственном отношении, так как можно связывать друг с другом любое количество ламелей, а взаимное положение соседних ламелей можно регулировать для формирования шахматного порядка для изготовления большого продукта из минеральной ваты, например, имеющего длину, превышающую длину отдельной ламели. Шахматный порядок ламелей в продукте из минеральной ваты может обладать тем преимуществом, что не имеет точек разрыва по одной линии поперек продукта из минеральной ваты, так как такие точки разрыва снижают прочность.

В соответствии с альтернативным вариантом осуществления адгезив наносят на поверхность отвержденного полотна из минеральной ваты перед разрезанием полотна из минеральной ваты на ламели. Этот вариант осуществления должен пониматься как включающий в себя вариант осуществления, включающий связывание множества полотен из минеральной ваты друг с другом для формирования ламината и разрезание кусков ламината. Куски при этом будут сформированы из множества связанных друг с другом ламелей. Этот вариант осуществления может быть предпочтительным для изготовления стандартного изделия с длиной, которая равна длине индивидуальной ламели или меньше нее.

Этот вариант осуществления должен также пониматься как включающий в себя вариант осуществления, включающий последовательные этапы нанесения адгезива на отвержденное полотно из минеральной ваты, разрезания полотна из минеральной ваты на ламели и связывания этих ламелей друг с другом. Этот вариант осуществления может иметь преимущество, состоящее в том, что адгезив легче наносить на относительно большую поверхность полотна из минеральной ваты, чем на относительно малую поверхность ламели.

Под ламелями понимается то, что полотно из минеральной ваты разрезают на относительно длинные и тонкие полосы, например размером 1200 × 200 мм. Ламели можно вырезать поперек полотна или вдоль продольной оси полотна. По существу преобладающим направлением волокна в полотне из минеральной ваты является плоскость, более или менее параллельная основным поверхностям полотна.

В соответствии с изобретением найден обладающим преимуществом конкретный тип адгезива, особенно если он обладает предложенными предпочтительными признаками, так как при этом могут быть обеспечены особенно долговечные соединения ламелей.

Неожиданно было обнаружено, что с использованием описанного способа можно связать друг с другом поверхности не только элементов из минеральной ваты, но также одного или более других типов элементов, таких как металлические листы. Дополнительное преимущество заключается в том, что используемый адгезив можно отверждать при относительно низких температурах. Кроме того, поскольку адгезив, использованный в способе, в некоторых вариантах осуществления обычно не содержит никаких вредных веществ и обычно не выделяет никаких вредных веществ при отверждении, способ может осуществить любой человек на месте без каких-либо средств защиты и без необходимости в специальном обучении осуществлению способа.

Соответственно, продукт из минеральной ваты предпочтительно представляет собой сердцевину сэндвич-панели.

Чтобы достичь устойчивого к сжатию изделия, преимущественным было бы продольное разрезание полотна из продукта из минеральной ваты на ламели и поворачивание сформированных таким образом ламелей на 90° вокруг их продольной оси, после чего ламели с такой ориентацией связывались бы друг с другом адгезивом. Это считается преимуществом, так как ориентация волокна волокнистой плиты минеральной ваты сможет находиться по существу в плоскости, перпендикулярной поверхностям продукта из минеральной ваты после связывания. Поверхности продукта из минеральной ваты предпочтительно являются поверхностями, предназначенными для того, чтобы быть обращенными к строительной конструкции или обращенными прочь от конструкции.

Полотна из минеральной ваты обычно производят, собирая получаемые на горизонтальном конвейере волокна, и в полученном таким образом полотне из минеральной ваты направление волокна обычно в основном является горизонтальным. Когда такие полотна из минеральной ваты разрезают на ламели (или удлиненные полосы), повернутые на 90° вокруг их горизонтальной оси, основное направление волокна ламелей будет по существу параллельным вертикальной плоскости.

В предпочтительном варианте осуществления адгезив соответствует связующему веществу в волокнистом продукте из минеральной ваты. Таким образом, можно достичь особенно сильного связывания.

В соответствии со способом настоящего изобретения этап отверждения предпочтительно включает процесс сушки, включающий продувку воздуха или газа над продуктом из минеральной ваты /через него и/или путем повышения температуры. Предпочтительно этап отверждения выполняют при температурах 5-95°C, например 10-80°C, например 20-60°C, например 40-50°C.

В некоторых предпочтительных вариантах осуществления изобретения плотность волокнистого продукта из минеральной ваты составляет 50-300 кг/м3, предпочтительно приблизительно 50-200 кг/м3, более предпочтительно приблизительно 65-100 кг/м3.

Во втором аспекте изобретения обеспечивается продукт из минеральной ваты, содержащий множество ламелей, такой как сердцевина сэндвич-панели, причем указанное изделие содержит

- множество ламелей, вырезанных из полотна из минеральной ваты и связанных друг с другом путем нанесения адгезива на поверхности двух смежных ламелей для формирования паутиноподобного изделия, причем адгезив содержит по меньшей мере один гидроколлоид.

В изделии волокна ламелей в основном ориентированы в плоскости, перпендикулярной основным плоскостям паутиноподобного изделия. Волокнистый продукт из минеральной ваты предпочтительно представляет собой отвержденный волокнистый продукт из минеральной ваты.

Плотность продукта из минеральной ваты является неоднозначным показателем, так как повышение плотности повышает не только прочность, но и стоимость. Относительно теплоизолирующих свойств оптимальные значения плотности зависят от материалов, диаметра волокна и т. п., но для изоляции с использованием каменной ваты наилучшие теплоизолирующие свойства обычно демонстрируются при значениях плотности в диапазоне 65-80 кг/м3. Подходящие диапазоны плотности продукта из минеральной ваты составляют 50-300 кг/м3, предпочтительно приблизительно 50-200 кг/м3, более предпочтительно приблизительно 65-100 кг/м3.

Подробное описание предпочтительных вариантов осуществления

Далее настоящее изобретение описывается со ссылкой на некоторые предпочтительные варианты осуществления и сопроводительные чертежи, причем:

на Фиг. 1 представлен схематический вид в перспективе ламельного изделия перед процессом связывания, и

на Фиг. 2 представлено то же изделие, но после связывания ламелей друг с другом.

Изделие для изоляции фасадов

В одном варианте осуществления продукт из минеральной ваты представляет собой изделие для изоляции фасадов, такое как Наружная теплоизоляционная многослойная система (ETICS). Такое наружное утепление зданий обладает особенным преимуществом для существующих зданий, требующих реновации. Утепление здания снаружи целиком является наиболее эффективным способом защиты от потерь тепловой энергии, так как полностью предотвращает образование тепловых мостов. Затем непосредственно на минеральную вату может быть нанесено штукатурное покрытие (финишный слой или кроющий слой строительного раствора), визуально освежающее фасад.

Изделие для изоляции фасадов можно изготовить, например, из двух ламелей 1200 × 200 мм, повернутых на 90° вокруг их продольного направления и склеенных друг с другом сторонами для формирования плиты 1200 × 400 мм. Толщина может варьироваться при необходимости, например от 80 мм до 200 мм. При склеивании ламелей друг с другом количество потенциальных тепловых мостов между ламелями сводится к минимуму, и также сводится к минимуму время, необходимое для монтажа изоляции, по сравнению с монтажом индивидуальных ламелей.

Изделие для плоской кровли

В другом варианте осуществления продукт из минеральной ваты представляет собой изделие для изоляции плоской кровли. Такие изделия для изоляции плоской кровли могут быть выполнены из двух или более ламелей, склеенных друг с другом аналогично тому, как описано выше для изделия для изоляции фасадов.

Продукт сэндвич-панели

Как показано на иллюстрациях на фигурах, в одном варианте осуществления продукт из минеральной ваты является сердцевиной так называемой сэндвич-панели. Сердцевину сэндвич-панели можно изготовить общим способом, в котором отвержденное полотно из минеральной ваты разрезают продольно на элементы, являющимися ламелями 1, и таким образом сформированные ламели поворачивают на 90° вокруг их продольной оси, после чего ориентированные таким образом ламели связывают друг с другом адгезивом для формирования паутиноподобного изделия, которое затем разрезают с учетом необходимой длины для формирования плитных элементов. Из-за поворота ламелей волокна готовых плит в основном будут ориентированы в плоскости, перпендикулярной поверхностям плит, и в результате этого будут получаться плиты, имеющие значительную жесткость и прочность перпендикулярно поверхностям плит.

Для обеспечения продукта сэндвич-панели сердцевину снабжают, например, металлическими листами (не показаны) на основных поверхностях панели путем приклеивания их адгезивом 2.

Адгезив на поверхности ламелей 1 можно наносить, например, распылением или другим способом нанесения. После того как заданное количество ламелей будет выровнено, ламели связывают друг с другом смежными поверхностями двух соседних ламелей, контактирующих друг с другом, а затем обеспечивают отверждение адгезива.

В соответствии с изобретением подразумевается, что продукт из минеральной ваты также может быть неотвержденным продуктом из минеральной ваты, если ламели будут изготовлены из неотвержденной минеральной ваты.

Адгезив для применения в способе настоящего изобретения

В одном варианте осуществления адгезив содержит по меньшей мере один гидроколлоид.

В одном варианте осуществления по меньшей мере один гидроколлоид выбран из группы, состоящей из желатина, пектина, крахмала, альгината, агар-агара, каррагинана, геллановой камеди, гуаровой камеди, гуммиарабика, камеди бобов рожкового дерева, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза, арабиноксилана, целлюлозы, курдлана, β-глюкана.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой полиэлектролитный гидроколлоид.

В одном варианте осуществления по меньшей мере один гидроколлоид выбран из группы, состоящей из желатина, пектина, альгината, каррагинана, гуммиарабика, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза.

В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере один другой гидроколлоид выбран из группы, состоящей из пектина, крахмала, альгината, агар-агара, каррагинана, геллановой камеди, гуаровой камеди, гуммиарабика, камеди бобов рожкового дерева, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза, арабиноксилана, целлюлозы, курдлана, β-глюкана.

Гидроколлоид

Гидроколлоиды представляют собой гидрофильные полимеры растительного, животного, микробного или искусственного происхождения, которые обычно содержат много гидроксильных групп и могут являться полиэлектролитами. Они широко применяются для контроля функциональных свойств пищевых продуктов на водной основе.

Гидроколлоиды могут представлять собой белки или полисахариды, полностью или частично растворимые в воде и используемые главным образом для повышения вязкости непрерывной фазы (водной фазы), т.е. в качестве желирующего агента или загустителя. Их также можно применять в качестве эмульгаторов, поскольку их стабилизирующее влияние на эмульсии обусловлено увеличением вязкости водной фазы.

Гидроколлоид обычно состоит из смесей сходных, но не идентичных молекул, и его можно получать из разных источников и с применением разных способов получения. На характерные для него физические свойства влияет термообработка и, например, такие факторы, как содержание солей, pH и температура. В описаниях гидроколлоидов часто представлены идеализированные структуры, но поскольку они являются натуральными продуктами (или их производными) со структурами, определяемыми, например, стохастическим действием ферментов, в точности не заложенным в генетическом коде, структура может отличаться от идеализированной структуры.

Многие гидроколлоиды представляют собой полиэлектролиты (например, альгинат, желатин, карбоксиметилцеллюлоза и ксантановая камедь).

Полиэлектролиты - это полимеры, в которых существенное количество повторяющихся звеньев несет электролитную группу. Полиэлектролитами являются поликатионы и полианионы. Эти группы диссоциируют в водных растворах (в воде), в результате чего полимеры становятся заряженными. По свойствам полиэлектролиты, таким образом, сходны как с электролитами (соли), так и полимерами (высокомолекулярные соединения), и иногда их называют полисолями.

Заряженные группы обеспечивают сильную гидратацию, особенно применительно к молекулам. Присутствие противоионов и соионов (ионов с тем же зарядом, что у полиэлектролита) вносит сложное поведение, которое является ионоспецифичным.

Часть противоионов остается плотно связанной с полиэлектролитом в результате захвата его электростатическим полем, в результате чего их активность и подвижность уменьшается.

В одном варианте осуществления адгезив содержит один или более противоионов, выбранных из группы, состоящей из Mg2+, Ca2+, Sr2+, Ba2+.

Другим свойством полиэлектролита является высокая линейная плотность заряда (количество заряженных групп на единицу длины).

По существу нейтральные гидроколлоиды являются менее растворимыми, тогда как полиэлектролиты являются более растворимыми.

Многие гидроколлоиды также образуют гели. Гели представляют собой содержащие жидкую воду сети, демонстрирующие поведение, сходное с поведением твердых веществ, с характеристической прочностью, зависящей от концентрации, и твердостью и хрупкостью, зависящими от структуры присутствующего(-их) гидроколлоида (-ов).

Гидрогели являются гидрофильными поперечносшитыми полимерами, которые способны набухать, поглощая и удерживая большие количества воды. Особенно известно их применение в средствах гигиены. Часто применяются такие материалы, как полиакрилаты, но гидрогели можно получить путем поперечного сшивания растворимых гидроколлоидов с получением нерастворимого, но эластичного и гидрофильного полимера.

К примерам гидроколлоидов относятся: агар-агар, альгинат, арабиноксилан, каррагинан, карбоксиметилцеллюлоза, целлюлоза, курдлан, желатин, геллан, β-глюкан, гуаровая камедь, гуммиарабик, камедь бобов рожкового дерева, пектин, крахмал, ксантановая камедь. В одном варианте осуществления по меньшей мере один гидроколлоид выбран из группы, состоящей из желатина, пектина, крахмала, альгината, агар-агара, каррагинана, геллановой камеди, гуаровой камеди, гуммиарабика, камеди бобов рожкового дерева, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза, арабиноксилана, целлюлозы, курдлана, β-глюкана.

Примеры полиэлектролитных гидроколлоидов содержат желатин, пектин, альгинат, каррагинан, гуммиарабик, ксантановую камедь, производные целлюлозы, такие как карбоксиметилцеллюлоза.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой полиэлектролитный гидроколлоид.

В одном варианте осуществления по меньшей мере один гидроколлоид выбран из группы, состоящей из желатина, пектина, альгината, каррагинана, гуммиарабика, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой гелеобразующий агент.

В одном варианте осуществления по меньшей мере один гидроколлоид используется в форме соли, например соли Na+, K+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+.

Желатин

Желатин получают путем химического разложения коллагена. Желатин является водорастворимым и имеет молекулярную массу от 10,000 до 500,000 г/моль, например от 30,000 до 300,000 г/моль, в зависимости от степени гидролиза. Желатин является широко применяемым пищевым продуктом, и, следовательно, по существу общепринято, что это вещество совершенно не токсично, и поэтому при работе с желатином не требуются меры предосторожности.

Желатин является гетерогенной смесью одноцепочечных и многоцепочечных полипептидов, обычно демонстрирующих спиральные структуры. Как правило, тройная спираль коллагена типа I, полученного из кожи и костей, являющихся источником желатина, состоит из двух α1(I) и одной α2(I) цепей.

В растворах желатина могут происходить превращения типа клубок-спираль.

Желатины типа A получают при обработке кислотой. Желатины типа В получают при обработке основанием.

В желатин можно вводить химические поперечные связи. В одном варианте осуществления используют трансглутаминазу для связывания остатков лизина и глутамина; в одном варианте осуществления используют глутаральдегид для связывания лизина с лизином; в одном варианте осуществления используют танины для связывания лизиновых остатков.

Желатин также можно подвергать дополнительному гидролизу до более мелких фрагментов вплоть до 3000 г/моль.

При охлаждении раствора желатина могут образовываться коллаген-подобные спирали.

Другие гидроколлоиды также могут содержать спиральные структуры, такие как коллаген-подобные спирали. Желатин может образовывать спиральные структуры.

В одном варианте осуществления отвержденный адгезив содержит гидроколлоид, имеющий спиральные структуры.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой низкопрочный желатин, например желатин с прочностью геля 30-125 по Блуму.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой среднепрочный желатин, например желатин с прочностью геля 125-180 по Блуму.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой высокопрочный желатин, например желатин с прочностью геля 180-300 по Блуму.

В предпочтительном варианте осуществления желатин предпочтительно происходит из одного или более источников из группы, состоящей из видов млекопитающих и птиц, таких как корова, свинья, лошадь, домашняя птица, и/или из чешуи, кожи рыб.

В одном варианте осуществления к адгезивам в соответствии с настоящим изобретением может добавляться мочевина. Авторы изобретения обнаружили, что добавление даже небольших количеств мочевины приводит к денатурации желатина, а это может замедлять гелеобразование, что может быть желательным в некоторых вариантах осуществления. Добавление мочевины также может приводить к размягчению продукта.

Авторы изобретения обнаружили, что группы карбоновых кислот в желатинах эффективно взаимодействуют с трех- и четырехвалентными ионами, например с солями алюминия. Особенно это касается желатинов типа B, которые содержат больше групп карбоновых кислот, чем желатины типа A.

Авторы настоящего изобретения обнаружили, что в некоторых вариантах осуществления отверждение/сушку адгезивов в соответствии с настоящим изобретением, которые содержат желатин, не следует начинать при очень высоких температурах.

Авторы изобретения обнаружили, что запуск отверждения при низких температурах может приводить к получению более прочных продуктов. Без ограничений, накладываемых какой-либо конкретной теорией, авторы изобретения предполагают, что запуск отверждения при высоких температурах может приводить к образованию непроницаемой внешней оболочки из адгезива, которая затрудняет высвобождение воды под ней.

Неожиданно было обнаружено, что адгезивы в соответствии с настоящим изобретением, содержащие желатины, имеют очень высокую термостойкость. Авторы настоящего изобретения обнаружили, что в некоторых вариантах осуществления отвержденные адгезивы могут выдерживать температуры вплоть до 300°C без разложения.

Пектин

Пектин представляет собой гетерогенную группу кислотных структурных полисахаридов, содержащихся в фруктах и овощах, образующих стабильные в кислых условиях гели.

По существу пектины не обладают точной структурой, и они могут содержать до 17 разных моносахаридов и более 20 разных типов связей.

Большую часть молекул образуют остатки D-галактуроновой кислоты.

Прочность геля увеличивается при повышении концентрации Ca2+, но уменьшается с увеличением температуры и кислотности (pH < 3).

Пектин может образовывать спиральные структуры.

Гелеобразующая способность двухвалетных катионов аналогична таковой у альгинатов (для Mg2+ намного меньше, чем для Ca2+, для Sr2+ меньше, чем для Ba2+).

Альгинат

Альгинаты представляют собой каркасные полисахариды, образуемые бурыми морскими водорослями.

Альгинаты представляют собой линейные неразветвленные полимеры, содержащие связанные β-(1,4)-связями остатки D-маннуроновой кислоты (M) и связанные α-(1,4)-связями остатки L-гулуроновой кислоты (G). Альгинат также может представлять собой бактериальный альгинат, такой как бактериальный альгинат, который дополнительно является O-ацетилированным. Альгинаты не являются случайными сополимерами, но, в зависимости от водоросли-источника, состоят из блоков сходных и строгим образом чередующихся остатков (т.е. MMMMMM, GGGGGG и GMGMGMGM), каждый из которых имеет свои конформационные предпочтения и поведение. Можно получать альгинаты с широким диапазоном средней молекулярной массы (50-100 000 остатков). Свободные карбоновые кислоты содержат молекулу воды H3O+, прочно связанную водородной связью с карбоксилатом. Ионы Ca2+ могут заместить эту водородную связь, стехиометрически соединяя между собой цепи гулуроната, но не маннуроната, в так называемую ячеечную конформацию. Для получения специализированных альгинатов можно использовать рекомбинантные эпимеразы с разными специфичностями.

Альгинат может образовывать спиральные структуры.

Каррагинан

Каррагинан - это общий термин для каркасных полисахаридов, полученных путем экстракции щелочью (и модификации) из красных морских водорослей.

Каррагинаны являются линейными полимерами, содержащими около 25 000 производных галактозы с регулярными, но не точно определенными структурами, зависящими от источника и условий экстракции.

κ-каррагинан (каппа-каррагинан) получают путем щелочного элиминирования из μ-каррагинана, выделяемого главным образом из тропической морской водоросли Kappaphycus alvarezii (также имеющей название Eucheuma cottonii).

ι-каррагинан (йота-каррагинан) получают путем щелочного элиминирования из ν-каррагинана, выделяемого главным образом из филиппинской морской водоросли Eucheuma denticulatum (также именуемой Spinosum).

λ-каррагинан (лямбда-каррагинан) (выделяемый главным образом из Gigartina pistillata или Chondrus crispus) превращают в θ-каррагинан (тета-каррагинан) путем щелочного элиминирования, но при гораздо меньшей скорости, чем скорость, которая приводит к получению ι-каррагинана и κ-каррагинана.

Самые прочные гели κ-каррагинана формируют с использованием K+, а не Li+, Na+, Mg2+, Ca2+ или Sr2+.

Все каррагинаны могут образовывать спиральные структуры.

Гуммиарабик

Гуммиарабик - это сложная и вариабельная смесь арабиногалактановых олигосахаридов, полисахаридов и гликопротеинов. Гуммиарабик состоит из смеси полисахарида с низкой относительной молекулярной массой и более высокомолекулярного гликопротеина, богатого гидроксипролином, при широкой вариабельности.

В гуммиарабике одновременно присутствует гидрофильный карбонат и гидрофобный белок.

Ксантановая камедь

Ксантановая камедь - это устойчивый к обезвоживанию микробный полимер, полученный, например, путем аэробной погруженной ферментации из Xanthomonas campestris.

Ксантановая камедь представляет собой анионный полиэлектролит с каркасом из β-(1,4)-D-глюкопиранозоглюкана (в качестве целлюлозы) с боковыми цепями -(3,1)-α-связанной D-маннопиранозо-(2,1)-β-D-глюкуроновой кислоты-(4,1)-β-D-маннопиранозы на чередующихся остатках.

Предполагается, что естественным состоянием ксантановых камедей являются бимолекулярные антипараллельные двойные спирали. Переход между упорядоченной двойной спиральной конформацией и одиночной более гибкой вытянутой цепью может происходить при температуре в диапазоне 40-80°C. Ксантановые камеди могут образовывать спиральные структуры.

Ксантановые камеди могут содержать целлюлозу.

Производные целлюлозы

Примером производного целлюлозы является карбоксиметилцеллюлоза.

Карбоксиметилцеллюлоза (КМЦ) - это химически модифицированное производное целлюлозы, образующееся путем реакции целлюлозы с щелочами и хлоруксусной кислотой.

Структура КМЦ основана на β-(1,4)-D-глюкопиранозном полимере целлюлозы. Разные варианты могут иметь разные степени замещения, но, как правило, они находятся в диапазоне 0,6-0,95 производных на мономерную единицу.

Агар-агар

Агар-агар - это каркасный полисахарид, получаемый из того же семейства красных морских водорослей (Rhodophycae), что и каррагинаны. В коммерческих целях его получают из видов Gelidium и Gracilariae.

Агар-агар состоит из смеси агарозы и агаропектина. Агароза - это линейный полимер с относительной молекулярной массой (молекулярным весом) около 120 000, основанный на звене -(1,3)-β-D-галактопиранозы-(1,4)-3,6-ангидро-α-L-галактопиранозы.

Агаропектин - это гетерогенная смесь молекул меньшего размера, присутствующих в меньших количествах.

Агар-агар может образовывать спиральные структуры.

Арабиноксилан

В природе арабиноксиланы встречаются в отрубях злаковых растений (Graminiae).

Арабиноксиланы состоят из остатков a-L-арабинофуранозы, присоединенных в качестве точек ветвления к β-(1,4)-связанным D-ксилопиранозным полимерным каркасным цепям.

Арабиноксилан может образовывать спиральные структуры.

Целлюлоза

Целлюлоза - это каркасный полисахарид, встречающийся в растениях в виде микроволокон (диаметром 2-20 нм и длиной 100-40 000 нм). Целлюлозу обычно получают из древесной массы. Целлюлоза также производится в сильно гидратированной форме некоторыми бактериями (например, Acetobacter xylinum).

Целлюлоза представляет собой линейный полимер из звеньев β-(1,4)-D-глюкопиранозы в конформации 4C1. Существуют четыре кристаллических формы, Iα, Iβ, II и III.

Производными целлюлозы могут быть метилцеллюлоза, гидроксипропилметилцеллюлоза, гидроксиэтилметилцеллюлоза, гидроксиэтилцеллюлоза, гидроксипропилцеллюлоза.

Курдлан

Курдлан - это полимер, получаемый в коммерческих целях из мутантного штамма Alcaligenes faecalis var. myxogenes. Курдлан (курдлановая камедь) представляет собой неразветвленный линейный 1,3 β-D глюкан без боковых цепей со средней относительной молекулярной массой.

Курдлан может образовывать спиральные структуры.

Курдлановая камедь является нерастворимой в холодной воде, но водные суспензии пластифицируются и на какое-то время растворяются с образованием обратимых гелей при нагревании до температуры около 55°C. Нагревание при более высоких температурах обеспечивает более упругие необратимые гели, сохраняющие свою структуру при охлаждении.

Склероглюкан также представляет собой 1,3 β-D глюкан, но имеет дополнительные 1,6 β-связи, которые придают ему растворимость в условиях окружающей среды.

Геллан

Геллановая камедь представляет собой линейный тетрасахарид 4)-L-рамнопиранозил-(α-1,3)-D-глюкопиранозил-(β-1,4)-D-глюкуронопиразил-(β-1,4)-D-глюкопиранозил-(β-1), с заместителями в виде O(2) L-глицерила и O(6) ацетила на 3-связанной глюкозе.

Геллан может образовывать спиральные структуры.

β-Глюкан

β-глюканы встречаются в отрубях злаковых растений (Gramineae).

β-глюканы состоят из линейных неразветвленных полисахаридов из связанных β-(1,3)- и β-(1,4)-D-глюкопиранозных звеньев, расположенных неповторяющимся, но и не случайным образом.

Гуаровая камедь

Гуаровая камедь (также именуемая гуараном) представляет собой запасаемый полисахарид (зерновая мука), получаемый из семян бобового кустарника Cyamopsis tetragonoloba.

Гуаровая камедь - это галактоманнан, сходный с камедью бобов рожкового дерева, состоящий из (1,4)-связанного β-D-маннопиранозного каркаса, связанного в точках ветвления в 6-положениях с α-D-галактозой (т.е. 1,6-связанной α-D-галактопиранозой).

Гуаровая камедь состоит из неионного полидисперсного палочкообразного полимера.

В отличие от камеди бобов рожкового дерева она не образует гелей.

Камедь бобов рожкового дерева

Камедь бобов рожкового дерева (также именуемая камедью сладких стручков и карубином) представляет собой запасаемый полисахарид (зерновая мука), полученный из семян (косточек) рожкового дерева (Ceratonia siliqua).

Камедь бобов рожкового дерева - это галактоманнан, сходный с гуаровой камедью, состоящий из (1,4)-связанного β-D-маннопиранозного каркаса, связанного в точках ветвления в 6-положениях с α-D-галактозой (т.е. 1,6-связанной α-D-галактопиранозой).

Камедь бобов рожкового дерева - это полидисперсное вещество, состоящее из неионных молекул.

Крахмал

Крахмал состоит из двух типов молекул, амилозы (обычно 20-30%) и амилопектина (обычно 70-80%). Оба типа состоят из полимеров, образованных звеньями α-D-глюкозы в конформации 4C1. В амилозе они имеют связи -(1,4)- с кислородными атомами кольца, все из которых расположены с одной стороны, тогда как в амилопектине около одного остатка из каждых двадцати также имеют связи -(1,6)- с образованием точек ветвления. Относительные пропорции амилозы и амилопектина, а также точек ветвления -(1,6)- зависят от источника крахмала. Крахмал можно получать из кукурузы, пшеницы, картофеля, тапиоки и риса. Амилопектин (без амилозы) можно выделить из крахмала «восковой кукурузы», тогда как амилозу (без амилопектина) лучше всего выделять после специфического гидролиза амилопектина пуллуланазой.

Амилоза может образовывать спиральные структуры.

В одном варианте осуществления по меньшей мере один гидроколлоид является функциональным производным крахмала, например поперечносшитого, окисленного, ацетилированного, гидроксипропилированного и частично гидролизованного крахмала.

В предпочтительном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере один другой гидроколлоид выбран из группы, состоящей из пектина, крахмала, альгината, агар-агара, каррагинана, геллановой камеди, гуаровой камеди, гуммиарабика, камеди бобов рожкового дерева, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза, арабиноксилана, целлюлозы, курдлана, β-глюкана.

В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере другой гидроколлоид представляет собой пектин.

В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере другой гидроколлоид представляет собой альгинат.

В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере другой гидроколлоид представляет собой карбоксиметилцеллюлозу.

В предпочтительном варианте осуществления адгезив в соответствии с настоящим изобретением содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, и при этом желатин присутствует в водном адгезиве в количестве 10-95 мас. %, например 20-80 мас. %, например 30-70 мас. %, например 40-60 мас. %, от массы гидроколлоидов.

В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид и по меньшей мере другой гидроколлоид имеют комплементарные заряды.

В одном варианте осуществления один гидроколлоид представляет собой один или более из желатина и гуммиарабика, имеющих комплементарные заряды, из одного или более гидроколлоидов, выбранных из группы, состоящей из пектина, альгината, каррагинана, ксантановой камеди или карбоксиметилцеллюлозы.

В предпочтительном варианте осуществления адгезив в соответствии с настоящим изобретением содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, и при этом желатин присутствует в водном адгезиве в количестве 10-95 мас. %, например 20-80 мас. %, например 30-70 мас. %, например 40-60 мас. %, от массы гидроколлоидов. В одном варианте осуществления адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид и по меньшей мере другой гидроколлоид имеют комплементарные заряды.

В одном варианте осуществления один гидроколлоид представляет собой один или более из желатина и гуммиарабика, имеющих комплементарные заряды, из одного или более гидроколлоидов, выбранных из группы, состоящей из пектина, альгината, каррагинана, ксантановой камеди или карбоксиметилцеллюлозы.

В одном варианте осуществления адгезив может отверждаться при температуре не более 95°C, например 5-95°C, например 10-80°C, например 20-60°C, например 40-50°C.

Процесс отверждения может начинаться сразу после нанесения адгезива на волокна. Отверждение определяется как процесс, при котором в адгезиве протекает физическая и/или химическая реакция, которая, в случае химической реакции, обычно увеличивает молекулярную массу соединений в адгезиве и тем самым повышает вязкость адгезива, обычно до тех пор, пока адгезив не достигнет твердого состояния.

В одном варианте осуществления процесс отверждения включает поперечное сшивание и/или включение воды в виде кристаллизационной воды.

В одном варианте осуществления отвержденный адгезив содержит кристаллизационную воду, содержание которой может уменьшаться и увеличиваться в зависимости от преобладающих условий температуры, давления и влажности.

В одном варианте осуществления процесс отверждения включает процесс сушки.

В одном варианте осуществления процесс отверждения включает сушку под давлением. Давление можно применять, продувая воздух или газ поверх смеси минеральных волокон и адгезива или через нее. Процесс продувки может сопровождаться нагреванием или охлаждением, или он может происходить при температуре окружающей среды.

В одном варианте осуществления процесс отверждения происходит во влажной среде.

Влажная среда может иметь относительную влажность RH 60-99%, например 70-95%, например 80-92%. За отверждением во влажной среде может следовать отверждение или сушка для достижения состояния преобладающей влажности.

В одном варианте осуществления отверждение выполняют в обедненной кислородом среде.

Без ограничений, накладываемых какой-либо конкретной теорией, заявитель полагает, что выполнение отверждения в обедненной кислородом среде является особенно благоприятным, если адгезив содержит фермент, поскольку это увеличивает стабильность ферментативного компонента в некоторых вариантах осуществления, особенно фермента трансглутаминазы, и тем самым повышает эффективность поперечного сшивания. В одном варианте осуществления процесс отверждения, таким образом, осуществляется в инертной атмосфере, в частности в атмосфере инертного газа, например азота.

В некоторых вариантах осуществления, в частности в вариантах осуществления, в которых адгезив содержит фенольные соединения, в частности танины, возможно добавление окисляющих агентов. Окисляющие агенты в качестве добавок могут предназначаться для увеличения скорости окисления фенольных соединений, в частности танинов. Примером является фермент тирозиназа, которая окисляет фенолы до гидроксифенолов/хинонов и, следовательно, ускоряет реакцию образования адгезива.

В другом варианте осуществления окисляющим агентом, подаваемым к адгезиву, является кислород. В одном варианте осуществления отверждение выполняют в обогащенной кислородом среде.

В одном варианте осуществления адгезив не является поперечносшитым.

В альтернативном варианте осуществления адгезив является поперечносшитым.

В одном варианте осуществления водный адгезив в соответствии с настоящим изобретением не является термореактивным адгезивом.

Термореактивная композиция находится в состоянии мягкого твердого вещества или вязкой жидкости, предпочтительно содержит преполимер, причем предпочтительно содержит смолу, которая в результате отверждения необратимо превращается в неплавкую нерастворимую полимерную сеть. Отверждение, как правило, индуцируют тепловым воздействием, причем обычно необходимы температуры более 95°C.

Отвержденная термореактивная смола называется термореактивным веществом или термоотвержденным пластиком/полимером, а при использовании в качестве основы в полимерном композите обычно называется термореактивным полимерным матриксом.

В одном варианте осуществления водный адгезив в соответствии с настоящим изобретением не содержит поли(мет)акриловой кислоты, соли поли(мет)акриловой кислоты или сложного эфира поли(мет)акриловой кислоты.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой биополимер или модифицированный биополимер.

Биополимеры представляют собой полимеры, образуемые живыми организмами. Биополимеры могут содержать мономерные звенья, ковалентно связанные с образованием более крупных структур.

Существует три основных класса биополимеров, классифицированных по использованным мономерным звеньям и структуре сформированного биополимера: полинуклеотиды (РНК и ДНК), которые являются длинными полимерами, состоящими из 13 или более нуклеотидных мономеров; полипептиды, например белки, которые являются полимерами аминокислот; полисахариды, например линейно связанные полимерные углеводные структуры.

Полисахариды могут быть линейными или разветвленными; обычно они соединяются гликозидными связями. Кроме того, многие сахаридные звенья могут подвергаться различным химическим модификациям и могут образовывать части других молекул, например гликопротеинов.

В одном варианте осуществления по меньшей мере один гидроколлоид представляет собой биополимер или модифицированный биополимер с коэффициентом полидисперсности в отношении распределения молекулярных масс, равным 1, например 0,9-1.

В одном варианте осуществления адгезив содержит белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и адгезив дополнительно содержит по меньшей мере одно фенол- и/или хинон-содержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов (проантоцианидинов), гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой.

В одном варианте осуществления адгезив содержит белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и причем адгезив дополнительно содержит по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7).

В предпочтительном варианте осуществления адгезивы в соответствии с настоящим изобретением не содержат формальдегида.

Для целей настоящей заявки термин «не содержит формальдегида» используется, чтобы охарактеризовать продукт из минеральной ваты, в котором эмиссия формальдегида из продукта из минеральной ваты составляет менее 5 мкг/м2/ч, предпочтительно менее 3 мкг/м2/ч. Предпочтительно тест проводят в соответствии со стандартом ISO 16000 по тестированию эмиссии альдегидов.

Неожиданным преимуществом вариантов осуществления продуктов из минеральной ваты в соответствии с настоящим изобретением является то, что для них характерны свойства самовосстановления. После воздействия очень жестких условий, когда продукты из минеральной ваты теряют часть своей прочности, продукты из минеральной ваты в соответствии с настоящим изобретением могут восстанавливать, частично или полностью, или даже превосходить исходную прочность. В одном варианте осуществления прочность в состаренном состоянии составляет по меньшей мере 80%, например по меньшей мере 90%, например по меньшей мере 100%, например по меньшей мере 130%, например по меньшей мере 150% прочности в несостаренном состоянии. Это контрастирует с традиционными продуктами из минеральной ваты, для которых потеря прочности после воздействия жестких условий среды является необратимой. Без ограничений, накладываемых какой-либо конкретной теорией, авторы настоящего изобретения полагают, что это неожиданное свойство продуктов из минеральной ваты в соответствии с настоящим изобретением обусловлено сложным характером связей, формирующих сеть в отвержденном адгезиве, например в белке, сшитом содержащим фенол и/или хинон соединением, или сшитом ферментом, также с содержанием четвертичных структур и водородных связей, что обеспечивает формирование связей в сети после возврата к нормальным условиям среды. В случае изоляционного продукта, который при использовании, например в качестве изоляции крыши, летом может подвергаться воздействию очень высоких температур, это является важным преимуществом для обеспечения долговременной стабильности продукта.

В одном варианте осуществления адгезив по существу состоит из по меньшей мере одного гидроколлоида; необязательно по меньшей мере одного масла; необязательно по меньшей мере одного регулятора pH; необязательно по меньшей мере одного поперечносшивающего агента; необязательно по меньшей мере одного средства против зарастания; необязательно по меньшей мере одного средства против набухания; воды.

В одном варианте осуществления по меньшей мере одно масло представляет собой неэмульгированное углеводородное масло.

В одном варианте осуществления по меньшей мере одно масло представляет собой эмульгированное углеводородное масло.

В одном варианте осуществления по меньшей мере одно масло представляет собой растительное масло.

В одном варианте осуществления по меньшей мере один поперечносшивающий агент представляет собой танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов (проантоцианидинов), гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой.

В одном варианте осуществления по меньшей мере один поперечносшивающий агент представляет собой фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7).

В одном варианте осуществления по меньшей мере одно средство против набухания представляет собой дубильную кислоту и/или танины.

В одном варианте осуществления по меньшей мере одно средство против зарастания представляет собой противомикробный агент.

Противомикробными агентами могут быть бензойная кислота, пропионовая кислота, бензоат натрия, сорбиновая кислота и сорбат калия, ингибирующие рост как бактериальных, так и грибковых клеток. Однако можно использовать натуральные биоконсерванты. Хитозан рассматривается как обладающий противогрибковым и противобактериальным действием. Чаще всего используемые биоконсерванты с противомикробным действием представляют собой лизоцим и низин. К другим распространенным и пригодным для использования биоконсервантам относятся бактериоцины, такие как лактицин, педиоцин, и противомикробные ферменты, такие как хитиназа и глюкозооксидаза. Противогрибковым и противовирусным действием также обладает фермент лактопероксидаза (LPS). Можно также использовать натуральные противомикробные агенты, такие как танины, эфирные масла розмарина и чеснока, масло орегано, лимонного сорго или коричное масло в различных концентрациях.

В одном аспекте изобретения обеспечивается продукт из минеральной ваты, содержащий множество ламелей, например, сердцевина сэндвич-панели, причем указанный продукт содержит - множество ламелей, вырезанных из полотна из минеральной ваты и связанных друг с другом путем нанесения адгезива на поверхности двух смежных ламелей для формирования паутиноподобного изделия, причем адгезив содержит по меньшей мере один гидроколлоид.

В данном аспекте изобретения можно применять любые из признаков, рассмотренных выше относительно адгезива.

Процесс связывания адгезивом

В одном варианте осуществления после нанесения адгезива на элементы воздействуют давлением в процессе связывания, и предпочтительно суммарное время для нанесения адгезива и воздействия давлением не превышает 120 секунд, составляя, например, 60 секунд, например 30 секунд, например 20 секунд.

В одном варианте осуществления панели можно перемещать вдоль неподвижных форсунок, или на же неподвижные панели могут производить распыление или нанесение валиками. Время распыления и связывания адгезивом составляет максимум 120 секунд. Панели спрессовывают друг с другом после распыления на них адгезива.

В одном варианте осуществления адгезив можно наносить только на одну из подлежащих связыванию поверхностей, но его можно наносить и на обе поверхности.

В одном варианте осуществления белковый компонент адгезива можно наносить на первую подлежащую соединению поверхность, а соединение, содержащее фенол и/или хинон и/или по меньшей мере один фермент, можно наносить на вторую подлежащую соединению поверхность, затем первую и вторую поверхности приводят в контакт друг с другом.

В одном варианте осуществления расход отвержденного адгезива по площади поверхности составляет 10-1000 г/м2, например 50-500 г/м2, например 100-400 г/м2.

Преимуществом будет достижение сбалансированного проникновения адгезива в более глубокие слои элемента; такое соединение будет более долговечным, чем соединение, выполненное иным методом. Обычно адгезив не проникает в элемент глубже, чем на 2 мм.

В одном варианте осуществления адгезив наносят пульверизатором, валиком, кистью, завесой льющейся краски, губкой или мягким губчатым валом.

Примеры

В следующих примерах несколько адгезивов, подпадающих под определение настоящего изобретения, готовили и сравнивали с адгезивами предыдущего уровня техники.

Адгезивы предыдущего уровня техники

Для адгезивов предыдущего уровня техники определяли указанные ниже свойства.

Реагенты

Силан (Momentive VS-142) был предоставлен компанией Momentive и для упрощения считался 100-процентным. Все прочие компоненты высокой степени чистоты поставлялись компанией Sigma-Aldrich и для упрощения считались безводными при отсутствии особых указаний.

Содержание твердых веществ компонентов адгезива, определение

Содержание каждого из компонентов в данном растворе адгезива до отверждения рассчитывали по сухой массе компонентов. Можно использовать следующую формулу:

Твердые вещества адгезива, определение и процедура

Содержание адгезива после отверждения называется «твердыми веществами адгезива».

Образцы каменной ваты в виде диска (диаметр: 5 см; высота 1 см) вырезали из каменной ваты и подвергали термообработке при 580°C в течение по меньшей мере 30 мин для удаления всех органических веществ. Содержание твердых веществ в адгезивной смеси (примеры смесей см. ниже) измеряли, распределяя образец адгезивной смеси (приблизительно 2 г) по прошедшему термообработку диску из каменной ваты в контейнере из фольги. Массу контейнера из фольги, содержащего диск из каменной ваты, определяли до и сразу после добавления адгезивной смеси. Обеспечивали два таких диска из каменной ваты с нанесенной адгезивной смесью в контейнерах из фольги и нагревали их при 200 °C в течение 1 часа. После охлаждения и выдерживания при комнатной температуре в течение 10 минут образцы взвешивали и определяли содержание твердых веществ адгезива как среднее из двух результатов. После этого адгезив с нужным содержанием твердого вещества адгезива можно было получить путем разведения с использованием необходимого количества воды и 10% водн. раствора силана (Momentive VS-142).

Реакционные потери, определение

Реакционные потери определяются как разность между твердыми веществами компонентов адгезива и твердыми веществами адгезива.

Исследования механической прочности (испытания брусков), процедура

Механическую прочность адгезивов исследовали в испытании брусков. Для каждого адгезива изготавливали 16 брусков из смеси адгезива и гранул каменной ваты, образованных при прядильном производстве каменной ваты. Гранулы представляют собой частицы, имеющие ту же композицию расплава, что и волокна каменной ваты, и гранулы обычно считаются отходом прядильного процесса. Гранулы, использованные в композиции брусков, имели размер 0,25-0,50 мм.

Раствор адгезива с 15% содержанием твердых веществ адгезива, содержащий 0,5% силана (Momentive VS-142) от твердых веществ адгезива, получали в соответствии с представленным выше описанием в разделе «твердые вещества адгезива». Образец такого раствора адгезива (16,0 г) хорошо перемешивали с гранулами (80,0 г). Полученную смесь равномерно распределяли по четырем отсекам в термостойкой силиконовой форме для получения небольших брусков (4 × 5 отсеков на форму; размер верхней части отсека: длина = 5,6 см, ширина = 2,5 см; размер нижней части отсека: длина = 5,3 см, ширина = 2,2 см; высота отсека = 1,1 см). Смеси, помещенные в отсеки, далее плотно прижимали плоским металлическим бруском подходящего размера для получения ровных поверхностей брусков. Таким образом из каждого адгезива получали 16 брусков. Полученные бруски далее отверждали при 200°C в течение 1 ч. После охлаждения до комнатной температуры бруски осторожно извлекали из контейнеров. Восемь из 16 брусков подвергали состариванию в автоклаве (15 мин / 1120°C / 0,12 МПа (1,2 бар)).

После сушки в течение 1-2 дней все бруски переламывали в испытании на 3-точечный изгиб (скорость при испытании: 10,0 мм/мин; уровень разрыва: 50%; номинальная сила: 30 МПа (30 Н/мм2); опорное расстояние: 40 мм; макс. прогиб 20 мм; номинальный модуль упругости 10 000 МПа (10 000 Н/мм2)) на приборе Bent Tram для исследования их механической прочности. Бруски помещали в прибор «верхней поверхностью» вверх (т. е. поверхностью с длиной = 5,6 см, шириной = 2,5 см).

Потери при прокаливании (LOI) брусков

Потери при прокаливании (LOI) брусков измеряли в небольших контейнерах из фольги при нагревании до 580°C. При каждом измерении контейнер из фольги сначала нагревали при 580°C в течение 15 минут для удаления всех органических веществ. Контейнерам из фольги давали охладиться до температуры окружающей среды и затем взвешивали. Четыре бруска (обычно после переламывания в испытании на 3-точечный изгиб) помещали в контейнер из фольги и все вместе взвешивали. Контейнер из фольги, содержащий бруски, далее нагревали при 580°C в течение 30 минут, давали охладиться до температуры окружающей среды и затем снова взвешивали. После этого вычисляли LOI по следующей формуле:

Сравнительные примеры: эталонные адгезивы предыдущего уровня техники

Пример адгезива, эталонный адгезив A (фенолформальдегидная смола, модифицированная мочевиной, PUF-resol)

Фенолформальдегидную смолу получали путем реакции 37% водн. раствора формальдегида (606 г) и фенола (189 г) в присутствии 46% водн. раствора гидроксида калия (25,5 г) при температуре реакции 84°C, чему предшествовало нагревание со скоростью около 1°C в минуту. Реакцию продолжали при 84°C до тех пор, пока кислотостойкость смолы не достигла 4 и большая часть фенола не израсходовалась. Далее добавляли мочевину (241 г) и смесь охлаждали.

Кислотостойкость (AT) показывает, во сколько раз данный объем адгезива можно разводить кислотой без помутнения смеси (осаждения адгезива). Для определения критерия остановки при получении адгезива использовали серную кислоту, и кислотостойкость ниже 4 означает завершение реакции адгезива. Для измерения AT получали титрующий раствор путем разведения 2,5 мл конц. серной кислоты (>99%) 1 л ионообменной воды. 5 мл исследуемого адгезива далее титровали при комнатной температуре данным титрующим раствором, поддерживая адгезив в движении путем ручного встряхивания; при желании можно использовать магнитную мешалку и магнитный стержень-мешальник. Титрование продолжают до тех пор, пока не появится легкое помутнение, не исчезающее при встряхивании адгезива.

Кислотостойкость (AT) вычисляют путем деления количества кислоты, использованного для титрования (мл), на количество образца (мл):

AT = (Использованный объем титрующего раствора (мл)) / (Объем образца (мл))

С использованием полученной модифицированной мочевиной фенолформальдегидной смолы обеспечивают адгезив, добавляя 25% водн. раствора аммиака (90 мл) и сульфата аммония (13,2 г), а затем воду (1,30 кг). Далее измеряли содержание твердых веществ адгезива, как описано выше, и смесь разбавляли необходимым количеством воды и силана (Momentive VS-142) для исследования механической прочности (15% раствор твердых веществ адгезива, 0,5% силана от твердых веществ адгезива).

Адгезивы в соответствии с настоящим изобретением

Для адгезивов настоящего изобретения определяли указанные ниже свойства.

Реагенты

Желатины (Speisegelatine, тип A, свиной, 120 и 180 по Блуму; Imagel LB, тип B, 122 по Блуму) были получены от компании Gelita AG. Каштановый танин Tannorouge был получен от компании Brouwland bvba. Агар-агар (05039), геллановая камедь (P8169), пектин из кожуры плодов цитрусовых (P9135), альгинат натрия из бурых водорослей (A0682), натрий-карбоксиметилцеллюлоза (419303), растворимый крахмал (S9765) и гидроксид натрия были получены от компании Sigma-Aldrich. Для упрощения эти реагенты считались совершенно чистыми и безводными.

Содержание твердых веществ компонентов адгезива, определение

Содержание каждого из компонентов в данном растворе адгезива до отверждения рассчитывали по сухой массе компонентов. Можно использовать следующую формулу:

Исследования механической прочности (испытания брусков), процедура

Механическую прочность адгезивов исследовали в испытании брусков. Для каждого адгезива получали 8-16 брусков из смеси адгезива и гранул каменной ваты, образованных при прядильном производстве каменной ваты. Гранулы представляют собой частицы, имеющие ту же композицию расплава, что и волокна каменной ваты, и гранулы обычно считаются отходом прядильного процесса. Гранулы, использованные в композиции брусков, имели размер 0,25-0,50 мм.

Раствор адгезива получали в соответствии в описанием, представленным ниже в примерах. В случае сравнительно медленно отверждающихся адгезивов образец раствора адгезива (16,0 г для адгезивов с 10-15% твердых веществ компонентов адгезива; 32,0 г для адгезивов с 5% твердых веществ компонентов адгезива) хорошо перемешивали с гранулами (80,0 г). Полученную смесь равномерно распределяли по четырем отсекам в термостойкой силиконовой форме для получения небольших брусков (4 × 5 отсеков на форму; размер верхней части отсека: длина = 5,6 см, ширина = 2,5 см; размер нижней части отсека: длина = 5,3 см, ширина = 2,2 см; высота отсека = 1,1 см). В случае сравнительно быстро отверждающихся адгезивов образец раствора адгезива (8,0 г для адгезивов с 10-15% твердых веществ компонентов адгезива и 16,0 г для адгезивов с 5% твердых веществ компонентов адгезива) хорошо перемешивали с гранулами (40,0 г, предварительно нагреты до 35-40°C перед применением) и полученную смесь равномерно распределяли только по двум отсекам. При получении каждого бруска смеси, помещенные в отсеки, при необходимости прижимали, а затем выравнивали пластиковым шпателем для получения ровной поверхности бруска. Таким образом из каждого адгезива получали 8-16 брусков. Полученные бруски далее отверждали при комнатной температуре в течение 1-2 дней или сначала отверждали в течение 15 минут при температурах печи, указанных в таблицах ниже, а затем в течение 1-2 дней при комнатной температуре. Если после этого времени отверждение было недостаточным, бруски отверждали в течение 1 дня при 35°C. Далее бруски аккуратно извлекали из контейнеров, поворачивали верхней стороной вниз и оставляли на день при комнатной температуре для полного отверждения. Половину из 8-16 брусков подвергали состариванию в автоклаве (15 мин / 120°C / 0,12 МПа (1,2 бар)).

После сушки в течение 1-2 дней все бруски переламывали в испытании на 3-точечный изгиб (скорость при испытании: 10,0 мм/мин; уровень разрыва: 50%; номинальная сила: 30 МПа (30 Н/мм2); опорное расстояние: 40 мм; макс. прогиб 20 мм; номинальный модуль упругости 10 000 МПа (10 000 Н/мм2)) на приборе Bent Tram для исследования их механической прочности. Бруски помещали в прибор «верхней поверхностью» вверх (т. е. поверхностью с длиной = 5,6 см, шириной = 2,5 см).

Потери при прокаливании (LOI) брусков

Потери при прокаливании (LOI) брусков измеряли в небольших контейнерах из фольги при нагревании до 580°C. При каждом измерении контейнер из фольги сначала нагревали при 580°C в течение 15 минут для удаления всех органических веществ. Контейнерам из фольги давали охладиться до температуры окружающей среды и затем взвешивали. Четыре бруска (обычно после переламывания в испытании на 3-точечный изгиб) помещали в контейнер из фольги и все вместе взвешивали. Контейнер из фольги, содержащий бруски, далее нагревали при 580°C в течение 30 минут, давали охладиться до температуры окружающей среды и затем снова взвешивали. После этого вычисляли LOI по следующей формуле:

Адгезивы в соответствии с настоящим изобретением

Пример адгезива, пункт 1

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 7,5 г) в воде (42,5 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 5,1). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 3

Смесь желатина (Speisegelatine, тип A, свиной, 180 по Блуму, 8,82 г) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 5,2). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 5

Смесь желатина (Imagel LB, тип B, 122 по Блуму, 8,82 g) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 5,1). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 7

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями натрий-карбоксиметилцеллюлозу (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора (pH 8,4). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 8

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями растворимый крахмал (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора (pH 6,4). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 9

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями агар-агар (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 8,82 г) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора. Затем добавляли часть вышеуказанного раствора агар-агара (19,6 г, таким образом, фактически 0,98 г агар-агара и 18,6 г воды) и перемешивание продолжали при 50°C в течение еще 5 мин (pH 5,3). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 10

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями геллановую камедь (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 8,82 г) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора. Затем добавляли часть вышеуказанного раствора геллановой камеди (19,6 г, таким образом, фактически 0,98 г геллановой камеди и 18,6 г воды) и перемешивание продолжали при 50°C в течение еще 5 мин (pH 5,3). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 11

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями пектин (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 8,82 г) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора. Затем добавляли часть вышеуказанного раствора пектина (19,6 г, таким образом, фактически 0,98 г пектина и 18,6 г воды) и перемешивание продолжали при 50°C в течение еще 5 мин (pH 4,8). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 12

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями альгинат натрия (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 8,82 г) в воде (50,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора. Затем добавляли часть вышеуказанного раствора альгината натрия (19,6 г, таким образом, фактически 0,98 г альгината натрия и 18,6 г воды) и перемешивание продолжали при 50°C в течение еще 5 мин (pH 5,3). Полученный раствор использовали в последующих экспериментах.

Пример адгезива, пункт 13

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 8,00 г) в воде (72,0 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,8). Далее добавляли 1 M NaOH (3,50 г) (pH 9,3), а затем часть вышеуказанного раствора каштанового танина (3,60 г; таким образом, фактически 0,80 г каштанового танина). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 9,2) использовали в последующих экспериментах.

Пример адгезива, пункт 14

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,9). Далее добавляли 1 M NaOH (4,00 г) (pH 9,1), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 9,1) использовали в последующих экспериментах.

Пример адгезива, пункт 17

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 180 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,8). Далее добавляли 1 M NaOH (3,50 г) (pH 9,2), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 9,2) использовали в последующих экспериментах.

Пример адгезива, пункт 19

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 122 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,7). Далее добавляли 1 M NaOH (3,50 г) (pH 9,2), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 9,2) использовали в последующих экспериментах.

Пример адгезива, пункт 21

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями агар-агар (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,6). Далее добавляли 1 M NaOH (4,00 г) (pH 9,1), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина), а затем часть вышеуказанного раствора агар-агара (20,0 г; таким образом, фактически 1,00 г агар-агара). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 8,8) использовали в последующих экспериментах.

Пример адгезива, пункт 22

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями пектин (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,6). Далее добавляли 1 M NaOH (4,50 г) (pH 9,6), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина), а затем часть вышеуказанного раствора пектина (20,0 г; таким образом, фактически 1,00 г пектина). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 8,9) использовали в последующих экспериментах.

Пример адгезива, пункт 23

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями альгинат натрия (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,6). Далее добавляли 1 M NaOH (4,00 г) (pH 9,2), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина), а затем часть вышеуказанного раствора альгината натрия (20,0 г; таким образом, фактически 1,00 г альгината натрия). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 9,0) использовали в последующих экспериментах.

Пример адгезива, пункт 24

В воду (50,0 г) при интенсивном перемешивании при 85°C добавляли порциями растворимый крахмал (2,63 г) в течение около 15 минут. Перемешивание продолжали в течение еще 0,5-1 ч при 85°C до получения прозрачного раствора.

К 1 M NaOH (15,75 г), перемешиваемому при комнатной температуре, добавляли каштановый танин (4,50 г). Перемешивание продолжали при комнатной температуре в течение еще 5-10 мин с получением раствора темного красно-бурого цвета.

Смесь желатина (Speisegelatine, тип A, свиной, 120 по Блуму, 10,0 г) в воде (56,7 г) перемешивали при 50°C в течение около 15-30 мин до получения прозрачного раствора (pH 4,8). Далее добавляли 1 M NaOH (4,00 г) (pH 9,1), а затем часть вышеуказанного раствора каштанового танина (4,50 г; таким образом, фактически 1,00 г каштанового танина), а затем часть вышеуказанного раствора растворимого крахмала (20,0 г; таким образом, фактически 1,00 г растворимого крахмала). После перемешивания в течение еще 1-2 минут при 50°C полученную коричневую смесь (pH 8,8) использовали в последующих экспериментах.

ТАБЛИЦА 1-1. Эталонный адгезив

ПримерAСвойства адгезиваТвердые вещества адгезива (%)15,0Реакционные потери (%)28,5pH9,6Условия отверждения брусковТемпература (°C/1 ч)200Свойства брусковМеханическая прочность, без состаривания (кН)0,39Механическая прочность, с состариванием (кН)0,28LOI, без состаривания (%)2,8

ТАБЛИЦА 1-2. Различные гидроколлоиды

Пример123456789101112АдгезивГидроколлоид (мас. %)Желатин, Speisegelatine, 120 по Блуму100100------90909090Желатин, Speisegelatine, 180 по Блуму--100100--------Желатин, Imagel LB, 122 по Блуму----100100------Агар-агар--------10---Геллановая камедь---------10--Пектин----------10-Альгинат натрия-----------10Натрий-карбоксиметилцеллюлоза100Растворимый крахмал-------100----Поперечносшивающий агент (мас. %)[a]Каштановый танин------------Основание (мас. %)[b]Гидроксид натрия------------Смешивание адгезива и получение брусковТемпература при смешивании (°C)505050505050858550/8550/8550/8550/85Содержание твердых веществ компонентов адгезива (%)15,010,015,010,015,010,05,05,012,512,512,512,5pH5,14,95,24,95,15,08,46,45,35,34,85,3Предварительно нагретые гранулы (35-40°C)--ДаДа-------Температура при отверждении (°C/15 мин до комн. темп.)комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.комн. темп.Свойства брусковМеханическая прочность, без состаривания (кН)0,310,240,280,130,200,130,130,110,110,090,130,13Механическая прочность, с состариванием (кН)0,300,280,270,170,220,150,150,120,150,110,140,22LOI, без состаривания (%)2,91,92,91,92,81,91,92,02,42,52,42,3

[a] от гидроколлоида (-ов).[b] от гидроколлоида (-ов) + поперечносшивающий агент.

ТАБЛИЦА 1-3. Различные гидроколлоиды, поперечносшивающие агенты

Пример131415161718192021222324АдгезивПолиэлектролитный гидроколлоид (мас. %)Желатин, Speisegelatine, 120 по Блуму100100100100----91919191Желатин, Speisegelatine, 180 по Блуму----100100------Желатин, Imagel LB, 122 по Блуму------100100----Агар-агар--------9---Геллановая камедь------------Пектин---------9--Альгинат натрия----------9-Натрий-карбоксиметилцеллюлоза------------Растворимый крахмал-----------9Поперечносшивающий агент (мас. %)[a]Каштановый танин10101010101010109999Основание (мас. %)[b]Гидроксид натрия2,72,62,62,62,42,42,42,42,42,52,42,4Смешивание адгезива и получение брусковТемпература при смешивании (°C)505050505050505050/8550/8550/8550/85Содержание твердых веществ компонентов адгезива (%)10,415,015,015,015,115,115,115,112,912,912,912,9pH9,29,19,19,19,29,29,29,28,88,99,08,8Предварительно нагретые гранулы (35-40°C)----ДаДа------Температура при отверждении (°C/15 мин до комн. темп.)комн. темп.комн. темп.355535553555комн. темп.комн. темп.комн. темп.комн. темп.Свойства брусковМеханическая прочность, без состаривания (кН)0,160,230,260,270,300,270,250,270,160,180,170,18Механическая прочность, с состариванием (кН)0,150,210,250,250,250,310,270,260,150,130,150,18LOI, без состаривания (%)1,92,72,72,72,72,82,82,82,42,62,42,4

[a] от гидроколлоида (-ов).[b] от гидроколлоида (-ов) + поперечносшивающий агент

Как видно из сравнения приведенных в таблице 1.1 результатов с данными в таблицами 1.2 и 1.3, используемые в настоящем изобретении адгезивы требуют более низких температур для отверждения. Для отверждения эталонный адгезив требует температур 200°C, в то время как адгезивы 1-24 отверждаются при 55°C и ниже, как правило, при температуре окружающей среды. Это означает, что адгезивы настоящего изобретения можно отверждать на месте эксплуатации или на этапе изготовления или обработки.

Реферат

Настоящее изобретение относится к способу и продукту из минеральной ваты, содержащему множество ламелей, такому как сердцевина сэндвич-панели. Способ изготовления продукта включает обеспечение отвержденного полотна из минеральной ваты, разрезание указанного полотна из минеральной ваты на множество ламелей, связывание ламелей друг с другом путем нанесения адгезива на поверхности двух смежных ламелей, отверждение адгезива. В другом варианте выполнения способ включает обеспечение множества отвержденных полотен из минеральной ваты, нанесение адгезива на поверхность указанных отвержденных полотен из минеральной ваты, связывание множества указанных полотен из минеральной ваты друг с другом для формирования ламината, отверждение адгезива. Адгезив содержит по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения. Адгезив дополнительно содержит по меньшей мере одно фенолсодержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов, гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой. Либо адгезив может дополнительно содержать по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы, протеиндисульфидизомеразы, тиолоксидазы, полифенолоксидазы, в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы и пероксидазы. Также изобретение относится к продукту из минеральной ваты, полученному по одному из указанных способов. Технический результат: применение адгезива, не требующего высоких температур, уменьшение воздействия опасных веществ, долговечное соединение ламелей, возможность самовосстановления материала. 5 н. и 21 з.п. ф-лы, 3 табл., 24 пр., 2 ил.

Формула

1. Способ изготовления продукта из минеральной ваты, содержащего множество ламелей, включающий:
- обеспечение отвержденного полотна из минеральной ваты;
- разрезание указанного полотна из минеральной ваты на множество ламелей,
- связывание ламелей друг с другом путем нанесения адгезива на поверхности двух смежных ламелей,
- отверждение адгезива, причем адгезив содержит
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере одно фенолсодержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов - проантоцианидинов, гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой,
и/или
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7).
2. Способ изготовления продукта из минеральной ваты, содержащего множество ламелей, включающий:
- обеспечение множества отвержденных полотен из минеральной ваты;
- нанесение адгезива на поверхность указанных отвержденных полотен из минеральной ваты;
- связывание множества указанных полотен из минеральной ваты друг с другом для формирования ламината;
- отверждение адгезива, причем адгезив содержит:
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере одно фенолсодержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов (проантоцианидинов), гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой,
и/или
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7);
- разрезание кусков указанного ламината.
3. Способ изготовления продукта из минеральной ваты, содержащего множество ламелей, включающий:
- обеспечение отвержденного полотна из минеральной ваты;
- нанесение адгезива на поверхность указанного отвержденного полотна из минеральной ваты;
- разрезание указанного полотна из минеральной ваты на множество ламелей;
- связывание ламелей друг с другом;
- отверждение адгезива, причем адгезив содержит
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере одно фенолсодержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов (проантоцианидинов), гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой,
и/или
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7).
4. Способ по любому из пп. 1-3, причем по меньшей мере один гидроколлоид представляет собой полиэлектролитный гидроколлоид.
5. Способ по любому из пп. 1-4, причем адгезив содержит по меньшей мере два гидроколлоида, причем один гидроколлоид представляет собой желатин, а по меньшей мере один другой гидроколлоид выбран из группы, состоящей из пектина, крахмала, альгината, агар-агара, каррагинана, геллановой камеди, гуаровой камеди, гуммиарабика, камеди бобов рожкового дерева, ксантановой камеди, производных целлюлозы, таких как карбоксиметилцеллюлоза, арабиноксилана, целлюлозы, курдлана, β-глюкана.
6. Способ по любому из пп. 1-5, причем желатин присутствует в адгезиве в количестве 10-95 мас.%, например 20-80 мас.%, например 30-70 мас.%, например 40-60 мас.%, от массы гидроколлоидов.
7. Способ по любому из пп. 5 или 6, причем один гидроколлоид и по меньшей мере другой гидроколлоид имеют комплементарные заряды.
8. Способ по любому из пп. 1-7, причем адгезив не является термореактивным адгезивом.
9. Способ по любому из пп. 1-8, причем адгезив не содержит поли(мет)акриловой кислоты, соли поли(мет)акриловой кислоты или сложного эфира поли(мет)акриловой кислоты.
10. Способ по любому из пп. 1-9, причем по меньшей мере один гидроколлоид представляет собой биополимер или модифицированный биополимер.
11. Способ по любому из пп. 1-10, причем адгезив не содержит формальдегида.
12. Способ по любому из пп. 1 и 3-11, причем полотно из минеральной ваты продольно разрезают на ламели и поворачивают сформированные таким образом ламели на 90° вокруг их продольной оси, после чего ламели с такой ориентацией связывают друг с другом адгезивом.
13. Способ по любому из предшествующих пунктов, причем продукт из минеральной ваты является сердцевиной сэндвич-панели.
14. Способ по любому из предшествующих пунктов, причем адгезив соответствует связующему веществу в продукте из минеральной ваты.
15. Способ по любому из предшествующих пунктов, причем этап отверждения включает процесс сушки, включающий продувку воздуха или газа над продуктом из минеральной ваты/через него и/или повышение температуры.
16. Способ по любому из предшествующих пунктов, причем этап отверждения выполняют при температурах от 5 до 95°C, например от 10 до 80°C, например от 20 до 60°C, например от 40 до 50°C.
17. Способ по любому из предшествующих пунктов, причем основная ориентация волокна минеральной ваты находится по существу в плоскости, перпендикулярной поверхностям продукта из минеральной ваты после связывания.
18. Способ по любому из предшествующих пунктов, причем плотность продукта из минеральной ваты составляет 50-300 кг/м3, предпочтительно приблизительно 50-200 кг/м3, более предпочтительно приблизительно 65-100 кг/м3.
19. Продукт из минеральной ваты, содержащий множество ламелей, такой как сердцевина сэндвич-панели, причем указанный продукт содержит множество ламелей, вырезанных из полотна из минеральной ваты и связанных друг с другом путем нанесения адгезива на поверхности двух смежных ламелей для формирования паутиноподобного изделия,
причем адгезив содержит
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере одно фенолсодержащее соединение, например танин, выбранный из одного или более компонентов группы, состоящей из дубильной кислоты, конденсированных танинов (проантоцианидинов), гидролизуемых танинов, галлотанинов, эллагитанинов, сложных танинов и/или танина, полученного из одного или более из дуба, каштана, сумаха оленерогого и теллимы крупноцветковой,
и/или
- по меньшей мере один гидроколлоид, представляющий собой белки животного происхождения, включая коллаген, желатин и гидролизованный желатин, и при этом адгезив дополнительно содержит по меньшей мере один фермент, выбранный из группы, состоящей из трансглутаминазы (EC 2.3.2.13), протеиндисульфидизомеразы (EC 5.3.4.1), тиолоксидазы (EC 1.8.3.2), полифенолоксидазы (EC 1.14.18.1), в частности катехолоксидазы, тирозиноксидазы и фенолоксидазы, лизилоксидазы (EC 1.4.3.13) и пероксидазы (EC 1.11.1.7).
20. Продукт из минеральной ваты по п. 19, в котором волокна ламелей в основном ориентированы в плоскости, перпендикулярной основным плоскостям паутиноподобного изделия.
21. Продукт из минеральной ваты по п. 19 или 20, который представляет собой отвержденный продукт из минеральной ваты.
22. Продукт из минеральной ваты по любому из пп. 19-21, в котором адгезив соответствует связующему веществу в волокнистом продукте из минеральной ваты.
23. Продукт из минеральной ваты по любому из пп. 19-22, в котором ориентация волокна продукта из минеральной ваты находится по существу в плоскости, перпендикулярной поверхностям продукта из минеральной ваты после связывания.
24. Продукт из минеральной ваты по любому из пп. 19-23, причем плотность волокнистого продукта из минеральной ваты составляет 50-300 кг/м3, предпочтительно приблизительно 50-200 кг/м3, более предпочтительно приблизительно 65-100 кг/м3.
25. Продукт из минеральной ваты по любому из пп. 19-24, изготовленный в соответствии со способом по любому из пп. 1 и 4-18.
26. Продукт из минеральной ваты, изготовленный в соответствии со способом по любому из пп. 2-18.

Документы, цитированные в отчёте о поиске

Термореактивные полисахариды

Авторы

Патентообладатели

Заявители

СПК: A01G24/15 A01G24/20 A01G24/23 A01G24/40 B32B5/12 B32B5/26 B32B7/12 B32B15/14 B32B19/04 B32B19/041 B32B37/12 B32B37/1207 B32B2037/1215 B32B2037/1253 B32B2037/1269 B32B37/146 B32B37/18 B32B38/0004 B32B38/164 B32B2250/20 B32B2250/40 B32B2255/02 B32B2255/26 B32B2262/108 B32B2305/20 B32B2305/72 B32B2307/304 B32B2307/732 B32B2309/02 B32B2315/14 B32B2317/00 B32B2419/06 B32B2607/00 D04H1/413 D04H1/4209 D04H1/4218 D04H1/4266 D04H1/587 D04H1/593 D04H1/64 D04H1/724 D04H1/74 D04H3/002 D04H3/004 D10B2505/20 C03C13/06 C03C25/26 C03C25/32 C03C25/321 C03C25/328 C03C2213/00 C03C2218/11 C08J5/24 C08J2301/28 C08J2303/02 C08J2389/06 C08J2405/00 C08J2405/04 C08J2405/06 C08J2405/12 C08J2491/00 C08J2493/00 C08L1/286 C08L3/02 C08L5/12 C08L89/06 C08L2201/52 C08L2205/03 C09H11/00 C09J2400/146 C09J2401/00 C09J2403/00 C09J2405/00 C09J2489/00 C09J5/00 C09J11/06 C09J101/28 C09J101/286 C09J103/02 C09J105/00 C09J105/04 C09J105/06 C09J105/12 C09J189/005 C09J189/06 C12N9/0022 C12N9/0051 C12N9/0059 C12N9/0065 C12N9/0071 C12N9/1044 C12N9/90 C12Y104/03013 C12Y108/03002 C12Y110/03001 C12Y111/01007 C12Y114/18001 C12Y203/01013 C12Y203/02013 C12Y503/04001 E04B1/74 E04B2001/742 E04B2001/743 E04B2001/745 E04B2001/7683 E04B1/80 E04B1/88 E04B1/94 E04C2/284 E04D3/352 E04F13/0866

Публикация: 2021-10-22

Дата подачи заявки: 2017-05-11

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам