Низкотемпературная пластичная смазка - RU2682881C1

Код документа: RU2682881C1

Описание

Изобретение относится к созданию низкотемпературной пластичной смазки, которая может быть использована в механизмах различного назначения, работающих при температуре от минус 60°С.

Известна пластичная смазка (RU 2622398, 2017), содержащая, мас. %:

Литиевое мыло стеариновой и/или12-оксистеариновой кислоты10,00-20,00дифениламин0,25-0,35фторопласт4,00-6,00диоксид титана4,00-6,00ингибитор коррозии0,50-1,50смесь кремнийорганической жидкости инизкотемпературного нефтяного масла,обеспечивающая вязкость при минус 40°Сне более 8500 мм2/с, температурузастывания - не выше минус 65°Состальное, до 100.

Данная смазка обладает улучшенными низкотемпературными характеристиками за счет использования кремнийорганической жидкости в качестве основного компонента дисперсионной среды. Недостатками данного компонента являются его дефицитность и высокая стоимость, а также низкая смазывающая способность пластичных материалов на его основе. Улучшение трибологических характеристик в описываемой смазке достигается за счет применения твердых добавок (диоксида титана и фторопласта) в высокой концентрации, что делает невозможным применение данной композиции в узлах трения с повышенными требованиями к уровню виброакустических характеристик.

Известна пластичная смазка (RU 2291893, 2007), содержащая, мас. %:

литиевое мыло стеариновой или12-оксистеариновой кислоты10,0-13,0высокодисперсный порошкообразныйдиселенид вольфрама7,0-9,0ультрадисперсный порошкообразныйполитетрафторэтилен1,0-3,0дифениламин0,3-0,5нефтяное маслоостальное, до 100.

Данная смазка также обладает хорошими низкотемпературными свойствами за счет использования маловязких минеральных масел с температурой застывания от минус 60 до минус 45°С и кинематической вязкостью при 50°С - от 5 до 12 мм2/с. Недостатком описываемой композиции является высокая стоимость и дефицитность применяемого в большой концентрации твердого наполнителя (диселенида вольфрама), а также то, что его наличие ограничивает применение пластичной смазки в мало- и средненагруженных высокоскоростных узлах трения.

Известна пластичная смазка (RU 2346978, 2009), содержащая, мас. %:

литиевое мыло 12-оксистеариновой кислоты5,50-8,50литиевое мыло стеариновой кислоты5,50-8,50антиокислительная присадка0,05-0,15трикрезилфосфат3,80-4,20бензотриазол0,05-0,20синтетическое углеводородное маслоостальное, до 100.

Использование синтетического полиальфаолефинового масла и жидкой противоизносной присадки (трикрезилфосфат) обеспечивает сочетание отличных низкотемпературных свойств (эффективная вязкость при температуре минус 50°С и градиенте скорости деформации 10 с-1 менее 900 Па⋅с) и приемлемых трибологических характеристик (нагрузка сваривания более 1500 Н, диаметр пятна износа менее 0,4 мм).

Основным недостатком данной смазки является низкая коллоидная стабильность, которая является причиной повышенного выделения дисперсионной среды при хранении и эксплуатации.

Известна пластичная смазка (RU 2414504, 2011), содержащая, мас. %:

квазикристаллический порошокAl-Cu-Fe с дисперсностью частицне более 1 мкм4,0-6,0пластичная смазка Литол-24остальное, до 100.

Применение высокодисперсных частиц в качестве металлического наполнителя обеспечивают улучшенные трибологические характеристики, и, как следствие, повышенный ресурс узлов трения. Основным недостатком данной смазки являются неудовлетворительные низкотемпературные свойства.

Известна низкотемпературная пластичная смазка ЦИАТИМ-201, содержащая, масс. %:

литиевое мыло стеариновой кислоты11,0-15,0антиокислительная присадка дифениламин0,3-0,5нефтяное маслоостальное, до 100.

(Синицын В.В. Пластичные смазки в СССР, - М.: Химия, 1984, с. 57, Пластичные смазки общего назначения (справочное пособие) ВНИИПКНЕФТЕХИМ, Киев 1981, с. 61).

В качестве дисперсионной среды в данной смазке применяются маловязкие минеральные базовые масла, обеспечивающие хорошие низкотемпературные свойства. Описываемая смазка обладает неудовлетворительными трибологическими характеристиками по причине низкой смазывающей способности маловязких базовых масел и отсутствия специальных присадок и наполнителей.

Известна пластичная смазка, включающая базовую смазку Литол-24 и наноразмерную добавку, в качестве которой используют наноалмаз, а именно: ультрадисперсную алмазно-графитовую шихту ША-А (ТУ РБ 100056180-2003). (В.И. Жорник. Влияние наноразмерных добавок на формирование дисперсной фазы пластичных смазок. Вестник Витебского государственного технологического университета, выпуск 2 (25), 2013, с. 82-89).

Недостатками известного состава являются узкий температурный диапазон применения, обусловленный использованием в качестве базового компонента смазки Литол-24, а также дефицитность и сложность производства ультрадисперсной алмазно-графитной шихты.

Более близкой к изобретению является композиция, содержащая 1-30% микродисперсных частиц природного лизардита (оксид магния 40,0-42,0% масс, оксид кремния 41,0-44,5% масс, а также, оксиды алюминия, железа, никеля, хрома) и товарную смазку ЦИАТИМ-201 (Цыганок С.В. Влияние наноструктурных антифрикционных добавок на физико-химические и эксплуатационные свойства товарных пластичных смазок. Автореферат диссертации на соискание ученой степени кандидата технических наук, М, 2013, с. 3-22).

Недостатки данной смазки заключается в следующем.

Согласно данной работе наименьший размер частиц используемого лизардита составляет при однократном сухом помоле 1,63 мкм, при двукратном сухом помоле 0,76 мкм. Причем, в последнем случае наблюдается высокая степень флуктуации (слипание под действием заряда статического электричества). Комкование и слипание мелких (до 3 мкм) частиц порошка отрицательно сказывается на технологии его введения в пластичную смазку. Последнее приводит к невозможности применения смазки в высокоскоростных прецизионных приборных подшипниках, что существенно ограничивает область ее применения. Существенным недостатком данной смазки являются неудовлетворительные низкотемпературные показатели, в частности, пусковые свойства при температуре минус 60°С.

Техническая проблема данного изобретения заключается в улучшении низкотемпературных характеристик пластичной смазки при сохранении требуемого уровня трибологических свойств, а также в расширении области ее применения.

Указанная проблема решается низкотемпературной пластичной смазкой, содержащей загуститель, антиокислитель аминного и/или фенольного типа, наноструктурированную функциональную добавку - наноразмерные частицы галлуазита или монтмориллонита, присадку с противоизносными и/или противозадирными свойствами, ингибитор коррозии и базовое масло при следующем соотношении компонентов, масс. %:

загуститель11,0-15,0антиокислитель аминного и/или фенольного типа0,3-0,5наноструктурированная функциональная добавка0,5-5,0присадка с противоизноснымии/или противозадирными свойствами0,0-3,0ингибитор коррозии0,0-2,0базовое маслоостальное, до 100,

причем при формировании смазки указанную наноструктурированную функциональную добавку используют в виде предварительно механически диспергированной в базовом масле, а после смешения с остальными компонентами - термомеханически диспергированной в смеси указанных компонентов.

Технический результат заключается в обеспечении модификации структурного каркаса смазки используемой наноструктурированной функциональной добавкой.

Сущность изобретения заключается в следующем.

В описываемой смазке используют следующие компоненты:

- в качестве загустителя - литиевое мыло стеариновой и/или 12-оксистеариновой кислот; мыла, в том числе, комплексные, щелочных, щелочноземельных и иных металлов и органических кислот различного строения (мыльный загуститель);

- в качестве антиокислителя аминного типа - дифениламин, фенил-α-нафтиламин, алкилированный дифениламин, алкилированный фенил-α-нафтиламин;

- в качестве антиокислителя фенольного типа - 4-метил-2,6-дитретбутилфенол, 2,2-метилен-бис(4-метил-6-третбутилфенол), 4,4-метилен-бис(2,6-дитретбутилфенол);

- в качестве наноструктурированной функциональной добавки -наноразмерные частицы галлуазита или монтмориллонита;

- в качестве базового масла (дисперсионной среды) - средне- и маловязкие (кинематическая вязкость при 100°С не более 8 мм2/с) базовые масла различной природы - минеральные, масла гидрогенизационных процессов, синтетические (полиальфаолефиновые, на основе эфиров, кремнийорганические), растительные, или их смеси в любых соотношениях.

При необходимости в описываемую смазку могут быть добавлены:

- в качестве присадки с противоизносными и/или противозадирными свойствами (противоизносная/противозадирная присадка) - эфиры фосфорной кислоты различного строения, серо- фосфорсодержащие органические соединения, хлорсодержащие органические соединения;

- в качестве ингибиторов коррозии - производные бензотриазола, производные алкилянтарных кислот, триэтаноламин и его производные, производные алкенилсукцинимидов, производные димеркаптотиадиазола.

Описываемый состав получают следующим образом.

Предварительно осуществляют диспергирование расчетного количества используемой наноструктурированной функциональной добавки в базовом масле с использованием ультразвукового излучения или высокоскоростного перемешивающего устройства, то есть наноструктурированная функциональная добавка механически диспергирована в базовом масле.

Далее, в обогреваемом аппарате с перемешивающим устройством производят смешение расчетного количества мыльного загустителя с предварительно приготовленной дисперсией наноразмерных частиц в базовом масле. Мыльный загуститель получают in situ при температуре 90±10°С реакцией нейтрализации органических кислот гидроксидом соответствующего металла в присутствии воды с дальнейшей ее выпаркой, либо в отдельном реакторе с получением сухого мыла. Затем полученную смесь нагревают при постоянном перемешивании до температуры 180±5°С, вводят антиокислитель аминного и/или фенольного типа в заданном количестве и продолжают стадию термомеханического диспергирования с нагревом до 225±25°С, после чего производят охлаждение расплава. Способ и скорость охлаждения зависит от катиона металла и строения органической кислоты.

В охлажденную смазку при необходимости добавляют расчетные количества присадок (противоизносной и/или противозадирной, ингибитора коррозии), после чего подвергают механической обработке (в частности, гомогенизации, фильтрации, деаэрации). Таким образом, наноструктурированная функциональная добавка термомеханически диспергирована в смеси указанных компонентов.

Предполагается, что введение наноразмерных частиц в состав до стадии термомеханического диспергирования оказывает значительное влияние на формирование дисперсной фазы за счет их внедрения в структурный каркас используемого загустителя. Указанный процесс модификации структурного каркаса оказывает положительное влияние на трибологические характеристики пластичной смазки.

Таким образом, в предлагаемом решении высокий уровень трибологических и низкотемпературных характеристик достигается как за счет используемого состава, так и за счет выбора формы введения в состав используемых наночастиц (наноструктурированной функциональной добавки) при формировании смазки.

Пример.

По вышеприведенной технологии готовят 15 образцов смазок с различным содержанием вышеуказанных компонентов, охватывающим весь спектр заявляемых концентраций.

Составы приготовленных образцов пластичной смазки представлены в таблице 1, свойства этих образцов - в таблице 2.

Из приведенных данных следует, что заявленная низкотемпературная пластичная смазка обладает улучшенными низкотемпературными характеристиками при сохранении требуемого уровня трибологических свойств, в том числе, без применения специальных присадок и наполнителей и может быть использована в широком кругу механизмов различного назначения, работающих при температуре от минус 60°С.

Реферат

Изобретение относится к созданию низкотемпературной пластичной смазки, которая может быть использована в механизмах различного назначения, работающих при температуре от минус 60°С. Сущность: низкотемпературная пластичная смазка содержит, мас.%: загуститель 11,0-15,0, антиокислитель аминного и/или фенольного типа 0,3-0,5, наноструктурированную функциональную добавку - наноразмерные частицы галлуазита или монтмориллонита 0,5-5,0, присадку с противоизносными и/или противозадирными свойствами 0,0-3,0, ингибитор коррозии 0,0-2,0, базовое масло - остальное, до 100. Причем при формировании смазки указанную наноструктурированную функциональную добавку используют в виде предварительно механически диспергированной в базовом масле, а после смешения с остальными компонентами - термомеханически диспергированной в смеси указанных компонентов. Технический результат заключается в обеспечении модификации структурного каркаса смазки, используемой наноструктурированной функциональной добавкой. 2 табл.

Формула

Низкотемпературная пластичная смазка, содержащая загуститель, антиокислитель аминного и/или фенольного типа, наноструктурированную функциональную добавку - наноразмерные частицы галлуазита или монтмориллонита, присадку с противоизносными и/или противозадирными свойствами, ингибитор коррозии и базовое масло при следующем соотношении компонентов, мас.%:
загуститель 11,0-15,0антиокислитель аминного и/или фенольного типа0,3-0,5наноструктурированная функциональная добавка0,5-5,0присадка с противоизноснымии/или противозадирными свойствами 0,0-3,0ингибитор коррозии 0,0-2,0базовое масло остальное, до 100,
причем при формировании смазки указанную наноструктурированную функциональную добавку используют в виде предварительно механически диспергированной в базовом масле, а после смешения с остальными компонентами - термомеханически диспергированной в смеси указанных компонентов.

Документы, цитированные в отчёте о поиске

Морозостойкая смазка

Авторы

Патентообладатели

Заявители

СПК: C10M125/30 C10M169/02

МПК: B82Y40/00

Публикация: 2019-03-22

Дата подачи заявки: 2018-11-14

0
0
0
0

Комментарии

Написать комментарий
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам