Способ переработки конденсированных горючих - RU2152561C1

Код документа: RU2152561C1

Описание

Настоящее изобретение относится к методам переработки разнообразных конденсированных горючих, преимущественно высоковлажных, таких как: твердые бытовые отходы, отходы биомассы, илы и шламы, уголь, путем пиролиза и газификации органической составляющей отходов с тем, чтобы получить углеводородные продукты пиролиза и топливный газ, которые используются для получения энергии. Метод может быть использован для экологически приемлемого и энергетически эффективного уничтожения/переработки различных малогорючих отходов.

Известен ряд методов сжигания горючих отходов с получением энергии. Среди этих методов выделяются методы, основанные на двухстадийном сжигании, - сначала газификации, затем сжигании продукт-газа. Эти методы отличаются высокой экологической чистотой. Для переработки горючего сланца эта схема описана в патентах US-A-2796390 (Elliott) и US-A-2798032 (Martin et al.). Общая схема газификации твердых органических топлив в противотоке газифицирующего агента может быть представлена в следующем виде.

Газифицирующий агент, содержащий кислород и, возможно, воду и/или углекислый газ, поступает в зону горения, в которой кислород взаимодействует с углеродом твердого топлива в виде кокса или полукокса при температурах 900-1500oC. Газифицирующий агент подается в реактор противотоком к топливу таким образом, что газ-окислитель, по крайней мере частично, предварительно пропускается через слой горячих твердых продуктов горения (золу), в которых углерод уже отсутствует. В этой зоне происходит охлаждение твердых продуктов горения и, соответственно, нагрев газифицирующего агента перед его поступлением в зону горения. В зоне горения свободный кислород газифицирующего агента полностью расходуется, и горячие газообразные продукты горения, включающие углекислый газ и воду, поступают в следующую зону слоя твердого топлива, называемую зоной восстановления, в которой диоксид углерода и водяной пар вступают в химические реакции с углеродом топлива, образуя горючие газы. Тепловая энергия раскаленных в зоне горения газов частично расходуется в этих реакциях восстановления. Температура газового потока снижается по мере того, как газ фильтруется сквозь твердое топливо и передает последнему свое тепло. Нагретое в отсутствии кислорода топливо претерпевает пиролиз. В результате получают кокс, смолы пиролиза и горючие газы. Продукт-газ пропускается через свежезагруженное топливо с тем, чтобы газ остыл, а топливо подогрелось и просохло. Наконец, продукт-газ (содержащий водяной и углеводородные пары, а также смолы) выводится для последующего использования.

Известен способ, описанный в патент RU-2079051 (БИ N 13, 1997), где предлагается способ газификации горючих твердых бытовых отходов, возможно в смеси с твердым негорючим материалом, в противотоке газифицирующего агента, содержащего кислород, а также воду и/или углекислый газ. Максимальную температуру в зоне горения (она же максимальная температура в реакторе) поддерживают в пределах от 700 до 1400oC (предпочтительно от 1000 до 1200oC) и при этом температуру продукт-газа на выходе из реактора поддерживают ниже 400oC (предпочтительно ниже 250oC). Температурный режим процесса регулируют путем управления, по крайней мере, одним из следующих параметров: массовой доли кислорода в газифицирующем агенте "a", массовой доли негорючего материала в ТБО "b" и массовой доли горючего материала в ТБО "c", поддерживая при этом отношение A = ab/c в пределах от 0,1 до 4,0. Предпочтительно A лежит в пределах 0,15 < A < 1,0.

Применительно к газификации угля и других углеродистых топлив подобная схема описана в патенте RU-1761777 (БИ N 34, 1992).

Подобная же противоточная схема может применяться (патентная заявка RU-96119443/03) для переработки углеводородов (например, нефтешламов) при условии их совместной загрузки в реактор с твердым негорючим материалом.

Во всех вышеперечисленных случаях включение в газифицирующий агент воды (углекислого газа) позволяет увеличить содержание в горючем газе водорода (монооксида углерода) и уменьшить температуру в зоне газификации. С другой стороны, подача водяного пара в газифицирующий агент требует включения в состав установки специальных устройств. Кроме того, общим недостатком указанных методов при газификации влажных отходов является неизбежное поступление в продукт-газ значительных количеств водяного пара, который разбавляет продукт-газ и, впоследствии попадая в дымовые газы, увеличивает унос тепла, что существенно снижает энергетический КПД котлоагрегата и процесса в целом.

Задачей настоящего изобретения является обеспечение переработки конденсированных горючих без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ, и высокой общей энергетической эффективностью процесса.

В соответствии с настоящим изобретением обеспечивается метод для переработки горючих, который включает:
- загрузку в реактор шихты, которая, по крайней мере частично, состоит из горючих компонентов, для того чтобы пиролизовать и газифицировать последние, а также, возможно, кускового твердого негорючего материала;
- установление газового потока сквозь упомянутую загрузку путем подачи в реактор, в зону, где накапливаются твердые продукты переработки, газифицирующего агента, содержащего кислород, водяной пар и углекислый газ, выведения газообразных и жидких продуктов переработки из реактора, где последовательные сечения упомянутой загрузки последовательно входят в зоны нагревания, пиролиза, коксования, газификации и охлаждения;
- регулирование температуры в зоне горения в пределах от 800 до 1300oC;
- выгрузку из реактора твердых продуктов переработки, и
- сжигание, по крайней мере, части горючего газа,
отличающийся тем, что в качестве газифицирующего агента используют дымовой газ, преимущественно в смеси с воздухом, причем долю дымового газа в газифицирующем агенте увеличивают при повышении температуры в зоне горения выше указанных пределов значений, а при снижении температуры в зоне горения ниже указанных пределов значений эту долю уменьшают, и при этом концентрация кислорода в газифицирующем агенте предпочтительно поддерживается в пределах от 2 до 18 объемных процентов.

Таким образом, оказывается возможным совместить относительно высокую горючесть продукт-газа с высокой энергетической эффективностью процесса. Для того чтобы обеспечить равномерное распределение газифицирующего агента по сечению реактора, возможно введение в состав шихты кускового твердого негорючего материала, преимущественно с размером кусков менее 200 мм; это также позволяет компенсировать разбавление газифицирующего агента азотом дымовых газов. Теплообмен с твердым негорючим материалом помогает предварительно нагреть газифицирующий агент и, таким образом, повышает температуру в зоне газификации. Пределы, в которых следует регулировать упомянутые параметры, могут быть для каждого случая определены экспериментально и зависят от состава топлива. Газифицирующий агент подается в ту часть реактора, где накапливаются твердые продукты переработки, таким образом, чтобы газовый поток проходил через слой этих продуктов. Газифицирующий агент либо его отдельные составляющие могут подаваться в реактор либо сосредоточенно, либо распределенно. В частности, дымовые газы и воздух могут подаваться каждый через свое отдельное устройство ввода. Загруженная шихта поступает в зону предварительного нагрева, где нагревается до 300oC за счет теплообмена с выводимым из реактора горючим продукт-газом. В зоне предварительного нагрева из реактора выводят продукт-газ. Термином продукт-газ здесь и далее называется аэрозоль, состоящий из смол пиролиза в парообразном и туманообразном состоянии и генераторного газа, включающего монооксид и диоксид углерода, пары воды, водород, метан, этилен, пропан и другие газы. Далее шихта поступает в зону пиролиза, в которой загрузка нагревается до 300-500oC за счет теплообмена с газовым потоком, и происходит термораспад горючего материала с выделением летучих продуктов в газ и образованием углеродистого остатка. Затем шихта, содержащая частично пиролизовавшиеся отходы, поступает в зону коксования, в которой при температурах 500-800oC осуществляется образование кокса из органического материала отходов. Вслед за тем шихта, содержащая ококсовавшийся горючий материал, поступает в зону газификации (горения), в которой при температурах 800-1300oC осуществляется реакция подогретого газифицирующего агента с ококсовавшимся горючим материалом отходов с образованием горючего газа и образуется твердый остаток горения. Наконец, твердый остаток горения поступает в зону охлаждения, в которой за счет теплообмена твердого остатка с подаваемым противотоком к загрузке газифицирующим агентом осуществляется нагрев газифицирующего агента.

Вышеприведенная классификация зон отчасти произвольна - эти зоны можно было бы определить иначе, например, исходя из температуры газа или же исходя из состава и состояния реагентов. Однако при любом выборе обозначений сохраняется та существенная черта, что благодаря противоточному перемещению газового потока и загрузки газифицирующий агент (газ-окислитель) предварительно нагревается за счет теплообмена с твердым остатком горения, а затем горячие газообразные продукты горения отдают свое тепло исходной шихте, загруженной в реактор.

По завершении процесса из реактора выгружают твердый остаток горения. Этот остаток может быть переработан, например, на грохоте, и куски, выделенные из него, использованы в качестве твердого негорючего материала для приготовления шихты. Это относится, в частности, к рециркулированию твердого кускового материала, вводимого в шихту. Продукт-газ, выводимый из реактора, может непосредственно сжигаться в газовой горелке котлоагрегата. Кроме того, продукт-газ может подвергаться очистке и перерабатываться по известным технологиям. Так, например, пиролизные масла могут быть сконденсированы и использованы как источник углеводородного сырья, а неконденсируемый газ - как горючий топливный газ.

Дымовые газы могут подаваться в состав газифицирующего агента как непосредственно, так и после предварительного использования дымовых газов для предварительной сушки твердых отходов. В последнем случае достигается как снижение влажности отходов, загружаемых в реактор, так и уменьшается необходимое количество рециркулируемых дымовых газов, соответственно выше оказывается температура горения продукт-газа.

Таким образом, в отличие от способов, известных ранее, настоящее изобретение делает возможным осуществление процесса пиролиза и газификации низкосортных конденсированных горючих без подвода тепла извне и высоким энергетическим КПД. Энергия, необходимая для поддержания процесса, поставляется за счет сжигания части горючего материала отходов. Введение в газифицирующий агент водяного пара и углекислого газа позволяет увеличить содержание в продукт-газе горючих составляющих (водорода и моноокиси углерода), но при этом использование дымового газа позволяет избежать дополнительных энергозатрат на получение водяного пара; в процессе используется только вода, изначально содержащаяся в отходах.

Чертеж схематично представляет возможное воплощение процесса.

Отходы "W" готовят в измельчителе 1, затем в смесителе 2 смешивают с твердым негорючим материалом "1" и затем загружают в реактор шахтного типа 4 через шлюзовую камеру 3, расположенную в его верхней части. В реакторе 4 загруженная шихта проходит последовательно через зоны нагревания 5, пиролиза 6, горения 7 и охлаждения 8. Твердый остаток горения "R" непрерывно выгружают через выходной шлюз 9 со скоростью, регулируемой таким образом, чтобы обеспечить положение зоны горения на определенной высоте от дна реактора. Упомянутый твердый остаток фракционируют на грохоте 10 и часть его возвращают в качестве дополнительного твердого материала, а остальной твердый остаток направляют на дальнейшую переработку или на захоронение. Воздух "A1" подается вентилятором 11 в нижнюю часть реактора. В эту же зону дымососом 12 подают дымовой газ "S". Продукт-газ "G" отбирают в верхней части реактора и направляют в устройство газоочистки 13. В конденсаторе из продукт-газа улавливают жидкие продукты "C". Продукт-газ направляют на сжигание в паровом котле 14 при подаче воздуха "A2". Часть дымового газа "S" направляется в сушилку 15, где отходы "W" подсушиваются теплом дымовых газов. Температуры в соответствующих зонах непрерывно измеряют и, когда температуры выходят за предписанные оптимальные пределы, производят подстройку управляющих параметров. В случае, когда температура в зоне горения превышает предписанные пределы, увеличивают долю дымовых газов в газифицирующем агенте и, соответственно, увеличивают концентрации диоксида углерода и водяного пара в нем. При этом увеличивается относительная роль эндотермических реакций
C + CO2 ---> 2CO
C + H2O ---> CO + H2
и температура в зоне горения понижается. Напротив, когда температура в зоне горения падает ниже предписанных пределов, долю дымовых газов в газифицирующем агенте уменьшают. Концентрация кислорода в газифицирующем агенте поддерживается в пределах от 2 до 18 объемных процентов; когда концентрация кислорода уменьшается ниже указанного предела, происходит чрезмерное разбавление продукт-газа азотом дымовых газов, что затрудняет сжигание продукт-газа, тогда как при большей концентрации кислорода не обеспечивается достаточного выхода водорода и монооксида углерода по вышеприведенным реакциям.

Другие характеристики и преимущества настоящего изобретения иллюстрируются на следующих описанных без ограничений примерах.

Пример 1.

Проводится переработка твердых бытовых отходов следующего состава (мас. %): бумага и картон - 38,2, пищевые отходы - 28,6, древесина и листья - 1,8, текстиль - 4,9, кожа и резина - 0,6, полимеры - 7,0, кости - 1,0, металл - 4,0, стекло и камни - 5,1, отсев - 9,1, имеющих влажность 47% и калорийность 5,87 ГДж/т. Элементный состав (по сухой массе): C - 32,25%, H - 4,46%, O - 25,78%, N - 0,93%, S - 0,32, зольность - 33,26%. Вышеуказанный состав типичен для бытовых отходов (ТБО) Москвы.

1А. ТБО газифицируют с добавлением в состав шихты 10% по массе твердого инертного материала и при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 200 г водяного пара на кг воздуха. Продукт-газ сжигается при подаче вторичного воздуха таким образом, что объемная концентрация кислорода в дымовом газе составляет 2% (по сухому газу; общий коэффициент избытка окислителя составляет 1,1). Суммарный расход воздуха (суммы первичного воздуха в составе газифицирующего агента и вторичного, подаваемого в газовую горелку) составляет около 2,8 т на тонну ТБО. При указанных параметрах газификации требуется подавать около 170 кг пара на газификацию 1 тонны ТБО. Состав получаемых дымовых газов (об.%): N2 - 53,9, CO2 - 11,0, O2 - 1,3, Ar - 0,6, H2O - 33,2%; выход дымовых газов - 3190 нм3 на тонну ТБО.

1Б. ТБО газифицируют так же, как в примере 1А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 11 : 10 по объему. Состав получаемых дымовых газов (об.%): N2 - 57,8, CO2 - 11,8, O2 - 1,3, Ar - 0,7, H2O - 21,3%; выход дымовых газов - 2980 нм3 на тонну ТБО.

1В. ТБО газифицируют так же, как в примере 1Б, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 7 : 10 по объему, причем дымовые газы, отбираемые после котлоагрегата при температуре 250oC, направляются на сушку ТБО. При этом дымовые газы высушивают из каждой тонны ТБО примерно 50 кг воды, которая в виде пара также входит в состав газифицирующего агента. Состав получаемых дымовых газов и выход дымовых газов те же, что в примере 1Б.

Дополнительные потери тепла с дымовыми газами (преимущественно в виде тепла конденсации водяного пара) составляют в примере 1А ~ 500 МДж/т ТБО, по сравнению с вариантами 1Б, В.

Пример 2.

Проводится переработка отходов биомассы, имеющих влажность 35% и зольность 10% по рабочей массе; калорийность отходов - 9,6 ГДж/т.

2А. Отходы газифицируют с добавлением в состав шихты 20% по массе твердого инертного материала и при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 200 г водяного пара на кг воздуха. Продукт-газ сжигается при подаче вторичного воздуха с коэффициентом избытка окислителя 1, 1. Состав получаемых дымовых газов (об.%): N2 - 57,8, CO2 - 12,8, O2 - 1,5, Ar - 0,7, H2O - 27,8%; выход дымовых газов - 3620 нм3 на тонну топлива.

2Б. Отходы газифицируют так же, как в примере 2А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 8 : 10 по объему. Состав получаемых дымовых газов (об.%): N2 - 60,1, CO2 - 13,3, O2 - 1,5, Ar - 0,7, H2O - 23,5; выход дымовых газов - 3485 нм3 на тонну топлива.

2В. Отходы газифицируют так же, как в примере 2Б, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 5 : 10 по объему, причем дымовые газы, отбираемые после котлоагрегата при температуре 250oC, направляются на сушку ТБО. При этом дымовые газы высушивают из каждой тонны биомассы примерно 30 кг воды, которая в виде пара также входит в состав газифицирующего агента. Состав получаемых дымовых газов и выход дымовых газов те же, что в примере 2Б.

Потери тепла с дымовыми газами на каждую тонну топлива в примере 2А превышают таковые в вариантах 2Б, В на ~ 350 МДж.

Пример 3.

Проводится переработка нефтешламов, имеющих влажность 30%, содержание углеводородов 60% и зольность 10% по рабочей массе; калорийность отходов - 22,6 ГДж/т.

3А. Нефтешлам газифицируют в составе шихты, содержащей 30% по массе нефтешлама и 70% кускового твердого инертного материала, и при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 100 г водяного пара на кг воздуха. Из продукт-газа улавливается 200 кг жидких углеводородов на каждую тонну нефтешлама, а неконденсируемый продукт-газ сжигается при подаче вторичного воздуха с коэффициентом избытка окислителя 1,1. Состав получаемых дымовых газов (об.%): N2 - 69,8, CO2 - 13,8, O2 - 1,7, Ar - 0,8, H2O - 13,9; выход дымовых газов - 5560 нм3 на тонну топлива.

3Б. Нефтешлам газифицируют так же, как в примере 3А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 1 : 1 по объему. Состав получаемых дымовых газов (об.%): N2 - 71,5, CO2 - 14,1, O2 - 1, 7, Ar - 0,8, H2 - 11,9; газов - 5430 нм3 на тонну топлива.

Потери тепла с дымовыми газами на каждую тонну топлива в примере 3А превышают таковые в варианте 3Б на ~ 270 МДж.

Пример 4.

Проводится переработка бурого угля, имеющего влажность 29%, содержание горючей части 41% и зольность 30% по рабочей массе.

4А. Уголь газифицируют при подаче в реактор газифицирующего агента, состоящего из воздуха с добавлением 300 г водяного пара на кг воздуха. Продукт-газ сжигается при подаче вторичного воздуха с общим коэффициентом избытка окислителя 1,1. Состав получаемых дымовых газов (об.%): N2 - 60,2, CO2 - 10,9, O2 - 1,5, Ar - 0,7, H2O - 26,2, SO2 - 0,5; выход дымовых газов - 4500 нм3 на тонну топлива.

4Б. Уголь газифицируют так же, как в примере 4А, но с газифицирующим агентом, состоящим из дымовых газов и воздуха в соотношении 1 : 1 по объему. Дымовой газ при температуре 250oC направляется на предварительную сушку угля, где высушивает примерно 65 кг воды из каждой тонны угля. Состав получаемых дымовых газов (об.%): N2 - 65,7, CO2 - 11,9, O2 - 1,6, Ar - 0,7, H2O - 19,2, SO2 - 0,3; выход дымовых газов - 4120 нм3 на тонну топлива.

Потери тепла с дымовыми газами на каждую тонну топлива в примере 4А превышают таковые в варианте 4Б на ~ 800 МДж.

Таким образом, сравнение вышеприведенных примеров позволяет увидеть, что использование дымовых газов в качестве компонента газифицирующего агента при газификации горючих отходов позволяет повысить энергетическую эффективность процесса по сравнению с использованием пара из внешнего источника, поскольку снижается унос тепла с дымовыми газами. Кроме того, не требуется специальных устройств для получения пара. Использование дымового газа для частичного подсушивания перерабатываемых отходов позволяет снизить объем рециркулируемого дымового газа и повышает температуру горения продукт-газа в факеле.

Реферат

Изобретение относится к методам переработки конденсированных горючих, преимущественно высоковлажных, таких как твердые бытовые отходы, отходы биомассы, илы и шламы, уголь, путем пиролиза и газификации органической составляющей отходов. В способе переработки конденсированных горючих загружают в реактор шихту, которая, по крайней мере, частично состоит из горючих компонентов, а также, возможно, кускового твердого негорючего материала, устанавливают газовый поток сквозь упомянутую загрузку путем подачи в реактор газифицирующего агента, содержащего кислород, водяной пар и углекислый газ, выводят в виде продукт-газа газообразные и жидкие продукты переработки из реактора, где последовательные сечения упомянутой загрузки последовательно пребывают в зонах нагревания, пиролиза, коксования, газификации и охлаждения, регулируют температуры в зоне горения в пределах от 800 до 1300°С, выгружают из реактора твердые продукты переработки, сжигают по крайней мере часть продукт-газа, при этом в качестве газифицирующего агента используют дымовой газ, преимущественно в смеси с воздухом, причем долю дымового газа в газифицирующем агенте увеличивают при повышении температуры в зоне горения выше указанных значений, а при снижении температуры ниже указанных значений эту долю уменьшают. Технический результат: обеспечение переработки конденсированных горючих без подвода тепла извне с высокой энергетической эффективностью, высоким выходом ценных продуктов, включая смолы пиролиза и горючий газ. 3 з.п.ф-лы, 1 ил.

Формула

1. Способ переработки конденсированных горючих, в котором загружают в реактор шахту, которая, по крайней мере, частично состоит из горючих компонентов, а также кускового твердого негорючего материала, устанавливают газовый поток сквозь упомянутую загрузку путем подачи в реактор газифицирующего агента, содержащего кислород, водяной пар и углекислый газ, выводят в виде продукт-газа газообразные и жидкие продукты переработки из реактора, где последовательные сечения упомянутой загрузки последовательно пребывают в зонах нагревания, пиролиза, коксования, газификации и охлаждения, регулируют температуры в зоне горения в пределах от 800 до 1300oC, выгружают из реактора твердые продукты переработки, сжигают по крайней мере, часть продукт-газа, отличающийся тем, что в качестве газифицирующего агента используют дымовой газ, преимущественно в смеси с воздухом, причем долю дымового газа в газифицирующем агенте увеличивают при повышении температуры в зоне горения выше указанных пределов значений, а при снижении температуры в зоне горения ниже указанных пределов значений эту долю уменьшают.
2. Способ по п.1, отличающийся тем, что концентрацию кислорода в газифицирующем агенте поддерживают в пределах от 2 до 18 об.%.
3. Способ по любому из пп.1 и 2, отличающийся тем, что максимальную температуру в реакторе поддерживают постоянной путем регулировки доли дымовых газов в подаваемом газифицирующем агенте.
4. Способ по любому из пп.1-3, отличающийся тем, что, по крайней мере, часть упомянутых дымовых газов направляется на сушку исходного материала, и при этом водяной пар, выделяющийся при сушке, вводят в состав газифицирующего агента.

Документы, цитированные в отчёте о поиске

Способ переработки твердых бытовых отходов

Авторы

Патентообладатели

Заявители

СПК: C10J3/14 C10J3/16 C10J2300/0946 C10J2300/0956 C10J2300/0993 C10J2300/1807

Публикация: 2000-07-10

Дата подачи заявки: 1998-01-22

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам