Код документа: RU2679909C1
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к технологии синтеза Фишера-Тропша, более конкретно, к способу и устройству для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс.
УРОВЕНЬ ТЕХНИКИ
Синтез Фишера-Тропша представляет собой процесс преобразования угля, природного газа и других ископаемых источников энергии, биомассы и других возобновляемых источников энергии или бытовых отходов в синтез-газ с последующим производством из синтез-газа в присутствии катализатора жидких и парафиновых углеводородов. Благодаря синтезу Фишера-Тропша снижается зависимость от нефтяных источников энергии и химических продуктов, развивается использование чистой энергии. Соотношение водород/углерод в синтез-газе, полученном из угля или биомассы в качестве исходных материалов, как правило, слишком низкое для непосредственного использования в синтезе Фишера-Тропша. В то же время, на предприятиях, реализующих синтез Фишера-Тропша, все еще существует проблема нехватки водорода для обработки продукта и восстановления катализатора.
Обычно, только после проведения реакции конверсии водяного газа и регулирования соотношения водород/углерод путем декарбонизации исходный газ может быть подан в процесс синтеза углеводородного топлива или химических продуктов, например, производства углеводородных топлив способом синтеза Фишера-Тропша или синтеза метанола в присутствии катализатора. В настоящее время проблема низкого соотношения водород/углерод в исходном синтез-газе не находит эффективного решения в процессе синтеза Фишера-Тропша. Например, В патенте Китая CN200610140020.4 описан двухстадийный способ синтеза Фишера-Тропша, который представляет собой, по существу, процесс преобразования отходящего газа синтеза Фишера-Тропша после удаления СО2 путем щелочной промывки в синтез-газ, смешивания синтез-газа с исходным газом и использования полученного смешанного газа в качестве исходного синтез-газа для реакции синтеза Фишера-Тропша после проведения реакции конверсии водяного газа и декарбонизации. Этот способ представляет собой длительный процесс, включающий сложную реакцию конверсии водяного газа, требующую высоких затрат. Другой пример: в патенте Китая CN200310108146.Х описан способ производства жидких углеводородных продуктов из синтез-газа посредством синтеза Фишера-Тропша с использованием двухстадийного устройства; инертный газ, образующийся в устройстве синтеза Фишера-Тропша первой стадии, накапливается в устройстве второй стадии. При реализации этого способа на практике, концентрацию инертного газа в газе, циркулирующем в устройстве второй стадии, необходимо снижать путем увеличения количества газа, отводимого из устройства второй стадии, для поддержания его функционирования, тем самым, снижается экономическая эффективность системы в целом, и не удается эффективно решить проблему низкого соотношения водород/углерод в исходном синтез-газе. Кроме того, в патенте Китая CN101979468А описан способ, заключающийся в направлении отводимого отходящего газа в устройство реформинга диоксида углерода, в котором посредством реакции реформинга между обогащенным метаном неконденсирующимся отходящим газом и диоксидом углерода процесса декарбонизации образуется синтез-газ, смешивании полученного синтез-газа с исходным синтез-газом, регулировании отношения водород/углерод при помощи реакции конверсии водяного газа, отделении диоксида углерода путем декарбонизации и, затем, использовании полученного газа в качестве исходного синтез-газа для реакции синтеза Фишера-Тропша. Недостатком этого способа является не только сложный процесс конверсии водяного газа, но и значительные выбросы СО2.
Кроме этого, в промышленности насыщенный раствор NaCl подвергают электролизу с целью получения NaOH, Cl2 и Н2, которые используют в качестве исходных материалов для производства ряда химических продуктов. Эта отрасль промышленности называется хлорщелочной и является одной из основ химической промышлености. Механизм указанного процесса следующий:
Реакция на аноде: 2Cl--2e-=Cl2↑(реакция окисления)
Реакция на катоде: 2H++2e-=H2↑(реакция восстановления)
В промышленности этот механизм реакции обычно используют для производства NaOH, Cl2 и Н2 в электролизере.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Одной из целей настоящего изобретения является обеспечение способа и устройства для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс. Эти способ и устройство позволяют значительно снизить сложность и стоимость процесса конверсии водяного газа и уменьшить выбросы СО2, являющегося парниковым газом.
Для достижения указанной цели, в соответствии с одним из вариантов осуществления настоящего изобретения, им обеспечивается способ проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, при этом, способ включает:
1) газификацию исходного материала с целью получения сырого синтез-газа, содержащего Н2, СО и СО2 для синтеза Фишера-Тропша;
2) электролиз насыщенного раствора NaCl с использованием промышленного хлорщелочного процесса с целью получения раствора NaOH, Cl2 и H2;
3) удаление СО2 из сырого синтез-газа с использованием раствора NaOH, полученного на стадии 2), с целью получения чистого синтез-газа; и
4) вдувание Н2, полученного на стадии 2), в чистый синтез-газ с целью регулирования молярного отношения СО/Н2 в чистом синтез-газе так, чтобы оно удовлетворяло требованиям реакции синтеза Фишера-Тропша, и, затем, производство соответствующих жидких и парафиновых углеводородов.
В одном из типов этого варианта осуществления изобретения, на стадии 3) СО2, диспергированный в сыром синтез-газе, промывают путем непосредственного газожидкостного контакта между раствором NaOH и сырым синтез-газом с получением чистого синтез-газа.
В одном из типов этого варианта осуществления изобретения, на стадии 3) СО2 сначала отделяют от сырого синтез газа с получением чистого синтез-газа, а затем СО2 абсорбируют раствором NaOH.
В одном из типов этого варианта осуществления изобретения, на стадии 3) полученный и оставшийся, если есть, после абсорбирования СО2 из сырого синтез-газа раствор NaOH конденсируют и кристаллизуют в качестве побочного продукта.
В одном из типов этого варианта осуществления изобретения, на стадии 3) полученный и оставшийся, если есть, после абсорбирования СО2 из сырого синтез-газа раствор NaOH используют для удаления СО2 из отходящего промышленного газа или газов, образовавшихся в других процессах.
В одном из типов этого варианта осуществления изобретения, на стадии 4) молярное отношение СО/Н2 в чистом синтез-газе регулируют в диапазоне от 1:1,5 до 2,5.
В одном из типов этого варианта осуществления изобретения, на стадии 1) концентрацию компонентов полученного сырого синтез-газа регулируют в диапазонах СО: 5-60%, Н2: 5-45%, СО2: 5-30% в пересчете на сухое вещество, остальное - неизбежные газообразные примеси.
В одном из типов этого варианта осуществления изобретения, на стадии 1) исходным материалом является уголь, биомасса, тяжелая нефть, природный газ, отходы агролесоводства, бытовые отходы или их смесь.
Устройство для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, предназначено для реализации описанного выше способа и включает устройство газификации, хлорщелочной электролизер, первое устройство промывки газа, реактор синтеза Фишера-Тропша, при этом, выходной для синтез-газа конец устройства газификации соединен со впуском газа первого устройства промывки газа системой трубопроводов, выпуск газа первого устройства промывки газа соединен со впуском исходного газа реактора синтеза Фишера-Тропша системой трубопроводов; выпуск водорода хлорщелочного электролизера также соединен со впуском исходного газа реактора синтеза Фишера-Тропша системой трубопроводов, выпуск раствора каустической соды хлорщелочного электролизера соединен со впуском промывочного раствора первого устройства промывки газа системой трубопроводов.
В одном из типов этого варианта осуществления изобретения, выпуск раствора каустической соды хлорщелочного электролизера дополнительно соединен со впуском промывочного раствора второго устройства промывки газа системой трубопроводов, впуск газа второго устройства промывки газа соединен с трубопроводом отходящего газа или других содержащих СО2 газов, выпуск газа второго устройства промывки газа соединен с трубопроводом последующего процесса или с атмосферой.
В одном из типов этого варианта осуществления изобретения, устройство промывки газа представляет собой насадочную колонну, ситчатую колонну или оросительную колонну.
Другое устройство для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, предназначенное для реализации описанного выше способа, включает устройство газификации, хлорщелочной электролизер, устройство декарбонизации, первое устройство промывки газа и реактор синтеза Фишера-Тропша, при этом, выходной для синтез-газа конец устройства газификации соединен со впуском сырого синтез-газа устройства декарбонизации системой трубопроводов, выпуск чистого синтез-газа устройства декарбонизации соединен со впуском исходного газа реактора синтеза Фишера-Тропша системой трубопроводов, выпуск диоксида углерода устройства декарбонизации соединен со впуском газа первого устройства промывки газа системой трубопроводов; выпуск водорода хлорщелочного электролизера также соединен со впуском исходного газа реактора синтеза Фишера-Тропша системой трубопроводов, выпуск раствора каустической соды хлорщелочного электролизера соединен со впуском промывочного раствора первого устройства промывки газа системой трубопроводов.
В одном из типов этого варианта осуществления изобретения, выпуск раствора каустической соды хлорщелочного электролизера дополнительно соединен со впуском промывочного раствора второго устройства промывки газа системой трубопроводов, впуск газа второго устройства промывки газа соединен с трубопроводом отходящего газа или других содержащих СО2 газов, выпуск газа второго устройства промывки газа соединен с трубопроводом последующего процесса или с атмосферой.
В одном из типов этого варианта осуществления изобретения, устройство промывки газа представляет собой насадочную колонну, ситчатую колонну или оросительную колонну.
В одном из типов этого варианта осуществления изобретения, устройство декарбонизации представляет собой устройство адсорбции со сдвигом давления или устройство низкотемпературной промывки метанолом.
Способу и устройству для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, соответствующим вариантам осуществления настоящего изобретения, свойственны следующие преимущества.
Во-первых, благодаря настоящему изобретению хлорщелочной процесс вводится в синтез Фишера-Тропша, хлорщелочная отрасль промышленности органически сочетается с синтезом Фишера-Тропша, позволяет регулировать состав чистого синтез-газа для синтеза Фишера-Тропша с использованием водорода, который является продуктом хлорщелочного процесса, чтобы синтез-газ отвечал требованиям по молярному отношению углерод/водород (СО/Н2), предъявляемым к исходному газу реакции синтеза Фишера-Тропша, тем самым, упрощая обработку в процессе конверсии водяного газа и достигая цели упрощения или исключения процесса конверсии в синтезе Фишера-Тропша.
Во-вторых, в соответствии с настоящим изобретением, диоксид углерода удаляют из сырого синтез-газа путем приведения раствора каустической соды, который является другим продуктом хлорщелочного процесса, в контакт содержащим СО2 сырым синтез-газом, что не только оказывает существенное влияние на снижение выбросов парниковых газов, но также позволяет рентабельно и эффективно использовать продукты хлорщелочного процесса.
В-третьих, устройство настоящего изобретения позволяет упростить процесс конверсии в синтезе Фишера-Тропша и существенно повысить экономическую эффективность синтеза Фишера-Тропша и устройства.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 представляет собой структурную схему устройства для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, в соответствии с одним из вариантов осуществления настоящего изобретения; и
на фиг. 2 представлена модифицированная структура устройства для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, фиг. 1.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Для дополнительной иллюстрации изобретения далее описаны эксперименты, подробно поясняющие способ и устройство для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс. Нужно отметить, что нижеследующие примеры предназначены для описания, а не для ограничения изобретения.
На фиг. 1 показано устройство для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, в которое входит устройство 1 газификации, хлорщелочной электролизер 2, первое устройство 3 промывки газа и реактор 4 синтеза Фишера-Тропша, при этом, устройство 1 газификации представляет собой газификатор, например, газификатор Luigi, газификатор Texaco, газификатор Shell или газификатор Hangtian, и включает впуск 1-2 исходного материала, впуск 1-3 окислителя, впуск 1-4 воды и выходной для синтез-газа конец 1-1; хлорщелочной электролизер 2 включает выпуск 2-1 водорода, выпуск 2-2 раствора каустической соды, выпуск 2-3 хлора и впуск 2-4 насыщенного раствора NaCl; реактор 4 синтеза Фишера-Тропша включает впуск 4-1 исходного газа, выпуск 4-2 продукта синтеза, выпуск 4-3 отходящего потока и отходов и выпуск 4-4 отходящего газа; первое устройство 3 промывки газа включает впуск 3-1 газа, выпуск 3-2 газа, впуск 3-3 промывочного раствора и выпуск 3-4 побочного продукта; второе устройство 5 промывки газа включает впуск 5-1 газа, выпуск 5-2 газа и впуск 5-3 промывочного раствора. Выходной для синтез газа конец 1-1 устройства 1 газификации соединен со впуском 3-1 газа первого устройства 3 промывки газа системой трубопроводов, выпуск 3-2 газа первого устройства 3 промывки газа соединен со впуском 4-1 исходного газа реактора 4 синтеза Фишера-Тропша системой трубопроводов; выпуск 2-1 водорода хлорщелочного электролизера 2 также соединен со впуском 4-1 исходного газа реактора 4 синтеза Фишера-Тропша системой трубопроводов, выпуск 2-2 раствора каустической соды хлорщелочного электролизера 2 соединен со впуском 3-3 промывочного раствора первого устройства 3 промывки газа системой трубопроводов; выпуск 2-2 раствора каустической соды хлорщелочного электролизера 2 дополнительно соединен со впуском 5-3 промывочного раствора второго устройства 5 промывки газа системой трубопроводов, впуск 5-1 газа второго устройства 5 промывки газа соединен с трубопроводом 7 сбросного газа или других содержащих СО2 газов, выпуск 5-2 газа второго устройства 5 промывки газа соединен с трубопроводом 8 последующего процесса или с атмосферой. Первое устройство 3 промывки газа и второе устройство 5 промывки газа, при этом, представляют собой, соответственно, насадочную колонну, ситчатую колонну или оросительную колонну.
На фиг. 2 показано другое устройство для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, представляющего собой модифицированный вариант структуры фиг. 1, в которое входит устройство 1 газификации, хлорщелочной электролизер 2, устройство 6 декарбонизации, первое устройство 3 промывки газа и реактор 4 синтеза Фишера-Тропша, при этом, выходной для синтез-газа конец 1-1 устройства 1 газификации соединен со впуском 6-1 сырого синтез-газа устройства 6 декарбонизации системой трубопроводов, выпуск 6-3 чистого синтез-газа устройства 6 декарбонизации соединен со впуском 4-1 исходного газа реактора 4 синтеза Фишера-Тропша системой трубопроводов, выпуск 6-2 диоксида углерода устройства 6 декарбонизации соединен со впуском 3-1 газа первого устройства 3 промывки газа системой трубопроводов; выпуск 2-1 водорода хлорщелочного электролизера 2 также соединен со впуском 4-1 исходного газа реактора 4 синтеза Фишера-Тропша системой трубопроводов, выпуск 2-2 раствора каустической соды хлорщелочного электролизера 2 соединен со впуском 3-3 промывочного раствора первого устройства 3 промывки газа системой трубопроводов; выпуск 2-2 каустической соды хлорщелочного электролизера 2 дополнительно соединен со впуском 5-3 промывочного раствора второго устройства 5 промывки газа системой трубопроводов, впуск 5-1 газа второго устройства 5 промывки газа соединен с трубопроводом 7 сбросного газа или других содержащих СО2 газов, выпуск 5-2 газа второго устройства 5 промывки газа соединен с трубопроводом 8 последующего процесса или с атмосферой. Первое устройство 3 промывки газа и второе устройство 5 промывки газа, при этом, представляют собой, соответственно, насадочную колонну, ситчатую колонну или оросительную колонну; устройство 6 декарбонизации представляет собой устройство адсорбции со сдвигом давления или устройство низкотемпературной промывки метанолом.
Способ, осуществляемый посредством устройства для проведения синтеза Фишера-Тропша, включающего хлорщелочной процесс, показанного на фиг. 1, включает следующие стадии: исходный материал, окислитель и воду для синтеза Фишера-Тропша подают в устройство 1 газификации для газификации, соответственно, через впуск 1-2 исходного материала, впуск 1-3 окислителя и впуск 1-4 воды устройства 1 газификации с целью получения сырого синтез-газа с основными компонентами Н2, СО и СО2 и составом CO: от 5 до 60%, H2: от 5 до 45% и CO2: от 5 до 30% в пересчете на сухое вещество, остальное - неизбежные газообразные примеси. Выходящий из выходного для синтез-газа конца 1-1 устройства 1 газификации сырой синтез-газ поступает в первое устройство 3 промывки газа через впуск 3-1 газа первого устройства 3 промывки газа. В то же время, насыщенный раствор NaCl подвергают электролизу с получением водорода, хлора и раствора NaOH в хлорщелочном электролизере 2, раствор NaOH, образовавшийся при электролизе, подают через выпуск 2-2 раствора каустической соды в первое устройство 3 промывки газа через впуск 3-3 промывочного раствора первого устройства 3 промывки газа с целью получения чистого синтез-газа путем удаления СО2 из сырого синтез-газа. В то же время, образовавшийся раствор NaHCO3 и Na2CO3 выводят через выпуск 3-4 побочного продукта первого устройства 3 промывки газа и направляют на продажу или использование в качестве твердого продукта после концентрирования и кристаллизации. Оставшийся после абсорбции сырого синтез-газа раствор NaOH может быть использован для удаления СО2 из отходящего промышленного газа или газов, образовавшихся в других процессах. Кроме того, в то же время, Н2, полученный в результате хлорщелочного процесса, вдувают в чистый синтез-газ для регулирования молярного отношения углерод/водород (СО/Н2) в чистом синтез-газе до 1:1,5-2,5 в соответствии с требованиями регулирования расхода водорода в синтезе Фишера-Тропша, затем чистый синтез-газ подают в реактор 4 синтеза Фишера-Тропша через впуск 4-1 исходного газа реактора 4 синтеза Фишера-Тропша с целью производства соответствующих жидких углеводородов и парафиновых углеводородов посредством реакции синтеза. Жидкие углеводородные продукты, полученные посредством этой реакции, выводят через выпуск 4-2 продукта синтеза, отходящий поток и отходы выводят через выпуск 4-3 отходящего потока и отходов, отходящий газ выводят через выпуск 4-4 отходящего газа. Более подробно данный способ отражен в примерах 1-3.
Разница между способом, показанным на фиг. 2, и способом, показанным на фиг. 1, состоит в том, что на фиг. 1 чистый синтез-газ получают путем удаления СО2 из сырого синтез-газа в результате непосредственного газожидкостного контакта между раствором NaOH и сырым синтез-газом, тогда как на фиг. 2 чистый синтез-газ получают путем централизованного отделения СО2 от сырого синтез-газа, после чего СО2, полученный путем централизованного отделения, поглощают раствором NaOН. Более подробно данный способ отражен в примерах 4-6.
Кроме этого, раствор NaOН, образовавшийся в результате электролиза в хлорщелочном электролизере 2, может далее не использоваться для абсорбции СО2 из сырого синтез-газа или отходящего газа, а весь хлорщелочной процесс может использоваться только в качестве источника водорода для регулирования молярного отношения углерод/водород в синтез-газе.
Пример 1
Использовали газификатор биомассы при нормальном давлении, биомассу в качестве исходного материала, воздух в качестве окислителя, расход синтез-газа 8200 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 23,28%, H2: 8,65%, CO2: 16,82%, N2: 50,19%, Ar: 0,65%, другие газообразные примеси: 0,41%.
Со ссылкой на фиг. 1 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 5454,81 кмоль/ч, полученный раствор NaOH использовали для промывки синтез-газа и абсорбции из него СО2 с получением чистого синтез-газа. В этом процессе расходовалось 2759,14 кмоль/ч раствора NaOН, оставшийся NaOH (2695,67 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 10,4%, а в исходном газе синтеза Фишера-Тропша - 35,99%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,8.
Пример 2
Использовали газификатор биомассы при нормальном давлении, биомассу в качестве исходного материала, 98% (% мол.) О2 в качестве окислителя, расход синтез-газа 8200 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 48,10%, H2: 23,29%, CO2: 20,84%, N2: 3,56%, другие газообразные примеси: 4,20%.
Со ссылкой на фиг. 1 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 10380,08 кмоль/ч, полученный раствор NaOH использовали для промывки синтез-газа и абсорбции из него СО2 с получением чистого синтез-газа. В этом процессе расходовалось 1708,88 кмоль/ч раствора NaOН, оставшийся NaOH (8671,20 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 29,43%, а в исходном газе синтеза Фишера-Тропша - 60,78%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,8.
Пример 3
Использовали газификатор Texaco нормального давления. Крупнокусковой уголь в качестве исходного материала и 99% (% мол.) О2 в качестве окислителя смешивали с водой с получением суспензии угля в воде, которую затем подавали в газификатор. Расход синтез газа составил 23622 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 40,28%, H2: 48,28%, CO2: 7,94%, N2: 3,10%, другие газообразные примеси: 0,40%.
Со ссылкой на фиг. 1 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 13347,37 кмоль/ч, полученный раствор NaOH использовали для промывки синтез-газа и абсорбции из него СО2 с получением чистого синтез-газа. В этом процессе расходовалось 3751,17 кмоль/ч раствора NaOН, оставшийся NaOH (9596,20 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 52,44%, а в исходном газе синтеза Фишера-Тропша - 63,61%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,9.
Пример 4
Использовали газификатор биомассы при нормальном давлении, биомассу в качестве исходного материала, воздух в качестве интенсификатора горения, расход синтез-газа 8200 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 23,28%, H2: 8,65%, CO2: 16,82%, N2: 50,19%, Ar: 0,65%, другие газообразные примеси: 0,41%.
Со ссылкой на фиг. 2 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 5454,81 кмоль/ч, полученный раствор NaOH использовали для абсорбции СО2, образующегося при адсорбционной декарбонизации синтез-газа со сдвигом давления, с получением чистого синтез-газа. В этом процессе расходовалось 2759,14 кмоль/ч раствора NaOН, оставшийся NaOH (2695,67 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 10,4%, а в исходном газе синтеза Фишера-Тропша - 35,99%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,8.
Пример 5
Использовали газификатор биомассы при нормальном давлении, биомассу в качестве исходного материала, воздух в качестве интенсификатора горения, расход синтез-газа 8200 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 48,10%, H2: 23,29%, CO2: 20,84%, N2: 3,56%, другие газообразные примеси: 4,20%.
Со ссылкой на фиг. 2 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 10380,08 кмоль/ч, полученный раствор NaOH использовали для абсорбции СО2, образующегося при адсорбционной декарбонизации синтез-газа со сдвигом давления, с получением чистого синтез-газа. В этом процессе расходовалось 1708,88 кмоль/ч раствора NaOН, оставшийся NaOH (8671,2 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 29,43%, а в исходном газе синтеза Фишера-Тропша - 60,78%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,8.
Пример 6
Использовали газификатор Texaco нормального давления. Крупнокусковой уголь в качестве исходного материала и 99% (% мол.) О2 в качестве окислителя смешивали с водой с получением суспензии угля в воде, которую затем подавали в газификатор. Расход синтез газа составил 23622 кмоль/ч, состав синтез-газа в пересчете на сухое вещество (% мол.): CO: 40,28%, H2: 48,28%, CO2: 7,94%, N2: 3,10%, другие газообразные примеси: 0,40%.
Со ссылкой на фиг. 2 способ может быть описан следующим образом: расход являющегося исходным материалом в хлорщелочном процессе раствора NaCl поддерживали равным 13347,37 кмоль/ч, полученный раствор NaOH использовали для абсорбции СО2, образующегося при декарбонизации синтез-газа с использованием низкотемпературного метанола, с получением чистого синтез-газа. В этом процессе расходовалось 3751,17 кмоль/ч раствора NaOН, оставшийся NaOH (9596,20 кмоль/ч) использовали для абсорбции отходящего газа; Н2, полученный в хлорщелочном процессе, смешивали с чистым синтез-газом после его промывки для регулирования отношения водород/углерод в синтез-газе, после чего смешанный газ использовали в качестве исходного газа синтеза Фишера-Тропша, Cl2, полученный в хлорщелочном процессе, переводили в жидкую форму для продажи; при этом, содержание Н2 (% мол.) в чистом синтез-газе после промывки составляло 52,44%, а в исходном газе синтеза Фишера-Тропша - 63,61%.
Степень абсорбции СО2 в синтез-газе достигала 99%, СО/Н2 в исходном газе синтеза Фишера-Тропша составило 1:1,9.
Если не указано иное, числовые диапазоны в настоящем изобретении включают граничные значения. Хотя были показаны и описаны конкретные варианты осуществления изобретения, специалистам в данной области очевидно, что возможны изменения и модификации, не выходящие за рамки изобретения в его наиболее широком понимании, следовательно, целью прилагаемой формулы изобретения является охват всех подобных изменений и модификаций, как входящих в рамки истинного существа и объема изобретения.
Изобретение относится к синтезу Фишера-Тропша. Способ проведения синтеза Фишера-Тропша включает хлорщелочной процесс, при этом в целом способ включает: 1) газификацию исходного материала с целью получения сырого синтез-газа для синтеза Фишера-Тропша, содержащего Н, СО и СО; 2) электролиз насыщенного раствора NaCl с использованием промышленного хлорщелочного процесса с целью получения раствора NaOH, Clи H; 3) удаление СОиз сырого синтез-газа с использованием раствора NaOH, полученного на стадии 2), с целью получения чистого синтез-газа или на стадии 3) СОсначала отделяют от сырого синтез-газа с получением чистого синтез-газа, а затем СОабсорбируют водным раствором NaOH, полученным на стадии 2); 4) вдувание Н, полученного на стадии 2), в чистый синтез-газ с целью регулирования молярного отношения СО/Нв чистом синтез-газе так, чтобы оно удовлетворяло требованиям реакции синтеза Фишера-Тропша, и затем осуществляют производство соответствующих жидких углеводородов и парафиновых продуктов. Заявлены варианты устройств проведения синтеза Фишера-Тропша. Технический результат – снижение сложности и стоимости процесса конверсии водяного пара, используемого в процессе, уменьшение выбросов углекислого газа. 3 н. и 12 з.п. ф-лы, 2 ил., 6 пр.