Код документа: RU2602138C1
Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности.
Известно теплозащитное покрытие, содержащее раствор хлорсульфированного полиэтилена и стеариновой кислоты, гранулы графита, химически окисленного, аммонийные соли или буру, или борную кислоту, или окись сурьмы, или их смеси, окись магния, окись цинка и дифенилгуанидин (Пат. RU 2210582, C09D 123/34, C09D 5/18, опубл. 20.08.2003).
Однако данное теплозащитное покрытие не предназначено для огнезащиты резин.
Известен состав для теплозащитных покрытий, который включает внешний слой хлорсульфированного полиэтилена и по крайней мере один слой состава из жидкого натриевого стекла отвердителя - кремнефтористого натрия, наполнителя - шамота, аэросила и стеклянных нитей длиной 5-10 мм, пигмента неорганического и кристаллогидратов (Пат. RU 2162871, C09D 123/34, C09D 1/02, C09D 5/18, опубл. 10.02.2001).
Однако указанный состав не обладает необходимой эластичностью и имеет сложный состав.
Известна композиция на основе хлорсульфированного полиэтилена, включающая наполнитель, отвердитель, растворитель, и дополнительно фосфорсодержащий диметакрилат (Пат. RU 2171269, C09D 123/34, опубл. 27.07.2001).
Однако указанная композиция предназначена для получения твердых покрытий для полов и кровли.
Известен огнезащитный состав для горючих материалов, который включает раствор хлорсульфированного полиэтилена в органическом растворителе и жидкого стекла в виде водного раствора силикатов металлов или четвертичного аммония (Пат. RU 2202577, C09D 5/18, C09D 1/04, C09D 123/34, опубл. 20.04.2003).
Однако указанный состав предназначен для огнезащиты древесины.
Известен состав для теплозащитных покрытий, содержащий хлорсульфированный полиэтилен, толуол, терморасширяющийся графит, окись цинка, окись магния, стеариновую кислоту, дифенилгуанидин, фосфаты аммония и алюминиевую пасту (Пат. RU 2186813, C09D 123/34, опубл. 10.08.2002).
Однако данный состав имеет более сложную рецептуру, что затрудняет его приготовление.
Наиболее близким к изобретению по технической сущности является состав для огнезащитных покрытий, включающий хлорсульфированный полиэтилен, толуол, фосфорсодержащее соединение, причем он в качестве фосфорсодержащего соединения содержит фосфорборазотсодежащий олигомер, предварительно полученный в результате взаимодействия бората метилфосфита, эпоксидной смолы ЭД-20 и анилина (Пат. RU 2540645, C09D 123/34, опубл. 10.02.2015).
Однако данный состав не обеспечивает высокой огнетеплозащиты и адгезии к резине.
Задача: получение состава на основе хлорсульфированного полиэтилена для огнезащитного покрытия резин, обладающих повышенной адгезией к резинам.
Техническим результатом является повышение огнезащитных свойств покрытия и его адгезии к резине.
Поставленный технический результат достигается тем, что состав для огнезащитных покрытий, включающий хлорсульфированный полиэтилен, толуол и модификатор, при этом в качестве модификатора содержит предварительно обработанные 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированные углеродные волокна, при следующем соотношении компонентов, мас.ч.: хлорсульфированный полиэтилен 15,0; толуол 85,0; указанные углеродные волокна 0,1-0,5.
Хлорсульфированный полиэтилен является основным пленкообразующим в лакокрасочных антикоррозионных покрытиях (ТУ 6-55-9-90).
Толуол является органическим растворителем (ГОСТ 14710-78).
Углеродные волокна представляют собой волокнистый материал в виде дисперсного порошка с цветом от темно-серого до черного. Средневзвешенная длина около 200 микрон. Аспектное соотношение порядка 30. Прочность 3.8-4 ГПа. Модуль упругости 230 ГПа. Диаметр 7 микрон. Плотность 1.8 г/см3. Содержание замасливателя 1-2%. Фактическая влажность, мас.%, не более 1,0.
20%-ный водный раствор (3-глицидилоксипропил)триметоксисилана выполняет функции эпоксидного замасливателя.
Наличие в составе в качестве модификатора предварительно обработанных 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированных углеродных волокон, придает покрытию на основе хлорсульфированного полиэтилена огнестойкость и повышает его адгезионные свойства и термостойкость. Повышение адгезионной прочности связи с резиной происходит за счет повышения когезионной прочности пленки самого покрытия, т.к. при разрушении адгезионного соединения разрыв может носить когезионный характер (по пленке покрытия), а также за счет взаимодействия замасливателя с макромолекулой пленкообразующего полимера - хлорсульфированного полиэтилена. Кроме того, повышение прочности сцепления покрытия с резиной происходит за счет эффекта «механического заклинивания» углеродных волокон в массиве защищаемых вулканизованных резин.
Данный состав позволяет получать покрытия на основе хлорсульфированного полиэтилена с повышенной огнезащитой и адгезией к вулканизованной резине.
Использование 15%-ных растворов хлорсульфированного полиэтилена наиболее оптимально. При увеличении концентрации повышается вязкость растворов, что создает технологические трудности при нанесении покрытий и приводит к ухудшению огнезащитных свойств покрытия.
Использование растворов меньшей концентрации приводит к увеличению объема составов для получения покрытия необходимой толщины. Уменьшение содержания углеродных волокон приводит к снижению огнестойкости и адгезии, а повышение их содержания способствует ухудшению адгезии к вулканизованной резине.
Огнезащитную композицию приготавливают следующим образом.
Вначале приготавливают раствор хлорсульфированного полиэтилена. Хлорсульфированный полиэтилен и растворитель - толуол загружают в колбу с мешалкой и перемешивают 4,5 часа до полного растворения. Затем осуществляется введение предварительно обработанных 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированных углеродных волокон. Общее время приготовления составляет 5 часов.
Изобретение иллюстрируется следующим примером.
Дистиллированную воду с добавлением уксусной кислоты доводят до pH 2.5. Затем в 80 мас.ч. полученного раствора добавляют 20 мас.ч. (3-глицидилоксипропил)триметоксисилана. Полученную смесь перемешивают до однородного состояния.
Углеродное волокно пропускают непрерывно через ванночку с замасливателем, через ряд погружных и отжимных роликов, после чего направляют в печь, для сушки. Затем волокно рубят на ножевом рубочном станке CP-100 (Россия, г. Владимир) до получения отрезков 3.3 мм и мелят в шаровой мельнице.
В колбу, содержащую раствор хлорсульфированного полиэтилена в толуоле, вводят предварительно обработанные эпоксидным замасливателем диспергированные углеродные волокна и перемешивают содержимое 3-5 минут до получения однородной массы.
Для проведения сравнительных испытаний были приготовлены три варианта композиций (по способу, описанному в примере) и композиция по прототипу, рецептуры которых представлены в табл. 1.
Композиция представляет собой жидкость бежевого цвета. Хорошо наносится на поверхность резины.
Заявленные пределы углеродных волокон обусловлены тем, что при увеличении указанных дозировок снижается адгезия к вулканизованной резине, а при уменьшении - снижается адгезия к вулканизованной резине и уменьшается огнезащита.
Были исследованы свойства покрытий при различном содержании указанных углеродных волокон. Сравнительные испытания адгезионных свойств покрытий по всем вариантам заявленной композиции и по примеру к вулканизованной резине на основе бутадиеннитрильного каучука (СКН-18) и хлоропренового каучука (Неопрен АС) и этиленпропиленового каучука (СКЭПТ-40) приведены в табл. 2.
Предлагаемые покрытия исследовались на адгезионную прочность при сдвиге, достигаемую при выдерживании под грузом 2 кг, при комнатной температуре (20°C) в течение 24 часов. Данные представлены в табл. 2, из которой видно, что все покрытия предлагаемого состава по огнезащитным и адгезионным характеристикам превосходят огнезащитное покрытие по прототипу, наилучшие результаты получены при использовании состава композиции 2-3.
Адгезионную прочность при сдвиге определяли на разрывной машине МРС-250 (РТМ 12126-88). Технология склеивания образцов следующая. Одноразовое нанесение приготовленного покрытия на подготовленную поверхность, сушка пленки при комнатной температуре (20°C) в течение 1-2 минут, после чего проводилось плотное прижатие склеиваемых поверхностей.
Предлагаемое покрытие обеспечивает значительное увеличение адгезионных свойств к вулканизованной резине по сравнению с контрольным примером.
С целью определения эффективности разработанных огнезащитных составов проведены испытания покрытий путем воздействия на обработанный образец вулканизованной резины источника открытого огня. Установка для испытаний собрана на базе лабораторного химического штатива и установлена в хорошо вентилируемом помещении. Образцы для измерений имеют следующие размеры: длина - 50 мм, ширина - 50 мм, толщина - 1,8-2 мм. Толщина огнезащитного покрытия 1,0 мм. Заявленная толщина покрытия объясняется тем, что при уменьшении толщины покрытия не достигаются необходимые огнезащитные свойства, а увеличение толщины покрытия ведет к возрастанию времени отверждения композиции. Перед измерениями покрытые образцы высушиваются при комнатной температуре не менее 24 часов.
Перед измерениями покрытые образцы высушиваются при комнатной температуре не менее двух суток. Подготовленный к испытанию образец закрепляют в штативе строго вертикально. Используют универсальную газовую горелку Бунзена, снабженную насадкой с диаметром отверстия 7 мм. Газовую горелку (используют бытовой газ), находящуюся в горизонтальном положении на расстоянии не менее 200 мм от образца, зажигают и регулируют так, чтобы высота пламени составляла 150-180 мм. Пламя направляют точно в центр закрепленного образца вулканизата. Подачу воздуха регулируют до тех пор, пока не исчезнет желтый кончик пламени.
Измерения температуры проводятся прибором - пирометр С-300.3 (ГОСТ 28243-96 «Пирометры. Общие технические требования»). Принцип работы пирометра основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.
С помощью пирометра регистрируют изменение температуры на необогреваемой поверхности опытного образца с течением времени до момента достижения предельного состояния опытного образца вулканизата. За предельное состояние материала было принято появление прожога на необогреваемой стороне опытного образца - потеря целостности покрытия.
Полученные результаты приведены в табл. 2.
Исследование стойкости к воздействию огня показывает, что введение в состав в качестве модификатора предварительно обработанных 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированных углеродных волокон способствует обеспечению высокой огнестойкости покрытия.
Таким образом, введение в состав для огнезащитных покрытий резин в качестве модификатора предварительно обработанных 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированных углеродных волокон, обеспечивает высокую огнестойкость покрытия и улучшает его адгезию к резинам на основе различных каучуков.
Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий включает хлорсульфированный полиэтилен, толуол и модификатор. В качестве модификатора содержит предварительно обработанные 20%-ным водным раствором (3-глицидилоксипропил)триметоксисилана диспергированные углеродные волокна. Изобретение обеспечивает повышение огнезащитных свойств покрытия и его адгезии к резине. 2 табл.