Код документа: RU2651343C1
Изобретение относится к области получения магнитно-диэлектрических материалов, поглощающих электромагнитное излучение, и может быть использовано в радиоэлектронной технике при производстве принимающих антенн, осуществляющих селективное радиопоглощение в субтерагерцовом диапазоне (0,09-0,1 ТГц).
Известен способ получения композиционного радиопоглощающего материала, состоящего из магнитных частиц (на основе ферритов), диспергированных в полимерном компаунде (см. В.М. Петров, В.В. Гагулин. Радиопоглощающие материалы. Журнал "Неорганические материалы", 2001, т. 37, №2, с. 135-141). Применение данного материала имеет основной недостаток - энергия электромагнитного излучения в СВЧ-диапазоне поглощается только за счет магнитных потерь в феррите (процессы резонанса доменных границ - РДГ и естественного ферромагнитного резонанса - ЕФМР). Данные процессы направлены на поглощение только лишь магнитной составляющей, не учитывая диэлектрических потерь в материале. Как результат - невысокая эффективность (менее -10 дБ) поглощения СВЧ-энергии.
Известен способ получения поглощающего порошкообразного материала (см. Патент USA №5965056, H01Q 17/00, от 12.10.1999), состоящего из магнитной компоненты - никель-цинковый феррит (99,9 вес. %) со структурой шпинели (состав феррита: 49-50 мол. % Fe2O3; 32-35 мол. % ZnO; 3-9 мол. % CuO; и 9-14 мол. % NiO) и диэлектрической компоненты - оксид молибдена (0,1 вес. % MoO3). Основным недостатком данного способа является сложный контроль равномерности распределения диэлектрической компоненты и невысокая степень эффективности радиопоглощения (менее 18 дБ в диапазоне 50-400 МГц).
Наиболее близким к предложенному способу является способ получения поглощающего материала на основе ферритового наполнителя с нанесенными диэлектрическими слоями на поверхность ферритовых гранул. В качестве прототипа нами принят способ формирования композиционного материала для поглощения электромагнитного излучения в СВЧ-диапазоне (см. Патент РФ №2247759 «Композиция для поглощения электромагнитного излучения и способ получения композиции» от 10.03.2005). Для реализации поставленной задачи в прототипе предлагается формировать поглощающий материал путем совмещения связующего с магнитодиэлектрическим наполнителем, в качестве наполнителя используют материал, полученный спеканием при 1150-1250°С и последующего дезагрегирования спека, состоящего из 61,5-86,7 об. % магнитных частиц ферритового материала, полученного химическим осаждением ферритовой фазы из водных растворов, и остальное - из диэлектрических слоев оксидов, осажденных на поверхность магнитных частиц ферритового материала наномолекулярным наслаиванием из газовой среды. В качестве ферритов (магнитная компонента) предлагается использовать такие широко известные радиопоглощающие группы ферритов, как гексаферриты бария с общей формулой BaFe12O19 (с вариацией замещения в А-подрешетке бария на стронций - Ba1-xSrxFe12O19, кальций - Ba1-xCaxFe12O19 или свинец - Ba1-xPbxFe12O19) и феррошпинели никель-цинкового составного ряда Ni1-xZnxFe2O4 (с вариацией замещения никеля и/или цинка на такие металлы, как марганец, кобальт, медь, железо и т.п.). В качестве материала, из которого формируются диэлектрические слои на поверхности частиц ферритов, предлагается использовать такие известные диэлектрики, как оксиды алюминия, кремния, титана и т.п.. Осаждение диэлектрических слоев оксидов на поверхность частиц ферритов проводится методами наномолекулярного наслаивания из газовой среды на специальной установке.
Решение прототипа имеет ряд недостатков. Трудоемкий процесс синтеза феррита и нанесения диэлектрических слоев. В прототипе указан метод химического осаждения из жидкой фазы (раствор нитратов соответствующих катионов) с последующим отжигом при 1150-1250°С (6 часов) с последующим нанесением диэлектрических слоев на поверхности феррита с использованием специализированной аппаратуры (наномолекулярное наслаивание из газовой среды). Также недостатком являются относительно невысокие коэффициенты поглощения СВЧ-энергии (-2.6…-11.8 дБ в диапазоне 0.5-40 ГГц).
Технический результат - упрощение способа получения поглощающего материала (синтез гексаферритов и нанесение диэлектрических слоев на поверхность зерен в едином цикле твердофазной реакции), эффективного для поглощения (коэффициенты поглощения -19,6...-22,7 дБ) в субтерагерцовой области спектра (0,09-0,1 ТГц).
Технический результат достигается тем, что синтезируют замещенный гексаферрит бария BaFe12-xAlxO19, 0.5≤х≤2, из оксидов Fe2O3, Al2O3 и карбоната ВаСО3, взятых в строго стехиометрическом соотношении, при этом перед смешиванием в исходную шихту из смеси оксидов и карбоната добавляют легкоплавкую эвтектику - В2О3 1-2 мас. %, смешанные порошки подвергают мокрому помолу, после чего смесь порошков прессуют и подвергают синтезирующему обжигу на воздухе при 1150-1250°С до спекания, а затем медленно охлаждают.
Сущность изобретения состоит в следующем.
Поглощающий в субтерагерцовом диапазоне (~0.1 ТГц) материал формируется на основе поликристаллического гексаферрита бария с замещением ионов железа в В-подрешетке диамагнитными ионами алюминия BaFe12-xAlxO19 (где 0.5≤х≤2) с нанесением диэлектрического слоя легкоплавкой эвтектики В2О3 (1-2 мас. %) в едином цикле твердофазной реакции. Замещение ионов железа диамагнитными ионами алюминия увеличивает магнитокристаллическую анизотропию и может приводить к управляемому смещению пика поглощения (ЕФМР), в зависимости от предпочтения занимаемых кристаллографических позиций. Также диамагнитное замещение, за счет образования сильной несимметричной ковалентной связи пустыми d-оболочками диамагнитных ионов с окружающими анионами кислорода, способно значительно повысить удельное электросопротивление гексаферрита.
Поликристаллические образцы замещенного гексаферрита бария BaFe12-xAlxO19 получают из оксидов Fe2O3, Al2O3, и карбоната ВаСО3 (все квалификации ОСЧ), взятых в строго стехиометрическом соотношении. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
ВаСО3+{(12-х)/2}*Fe2O3+{х/2}*Al2O3 → BaFe12-xAlxO19+CO2 ↑ (0.5≤х≤2)
Перед смешиванием в исходную шихту (смесь оксидов и карбоната) добавить легкоплавкую эвтектику - оксид бора (В2О3) в количестве 1-2 мас. %. Смешанные с соблюдением стехиометрии порошки подвергать мокрому помолу с добавлением этилового спирта на шаровой мельнице в течение 2 ч. После помола и сушки исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 10 мм, высота 5 мм). Компактированные составы подвергать синтезирующему обжигу на воздухе при 1200°С в течение 6 ч, а затем после промежуточного помола в течение 0.5 ч, образцы вновь компактировать и спекать при 1200°С в течение 3 ч. После спекания образцы медленно охлаждать со скоростью ~ 100°С/ч.
Предложенный способ получения поглощающего материала является более технологически выгодным по сравнению с методом, предложенным в прототипе, за счет уменьшения количества стадий при синтезе гексаферритов и упрощения способа нанесения диэлектрических слоев на поверхность зерен гексаферрита.
Как следствие предложенного метода (с использованием легкоплавкой эвтектики), были сформированы материалы на основе замещенного гексаферрита бария BaFe12-xAlxO19 (где 0.5≤х≤2) с диэлектрическим слоем (B2O3) на поверхности зерен. Измерения поглощающих характеристик в субтерагерцовом диапазоне (0.07-0.1 ТГц) показали высокую эффективность поглощения энергии электромагнитного излучения при использовании предложенного метода.
Отмечено, что при синтезе поглощающих материалов на основе замещенного гексаферрита бария BaFe12-xAlxO19, полученного по стандартной керамической технологии с нанесением диэлектрического слоя В2О3, коэффициент поглощения достигает -19,6…-22.7 дБ при частотах 96.4-97.1 ГГц (0,0964-0,0971 ТГц), что является значительным преимуществом по сравнению с использованием в том же частотном диапазоне материала на основе замещенного гексаферрита бария BaFe12-xAlxO19, полученного по стандартной керамической технологии без диэлектрического слоя В2О3.
Пример 1.
Поглощающий материал на основе замещенного гексаферрита бария BaFe11,5Al0,5O19 получают из оксидов Fe2O3, Al2O3 и карбоната ВаСО3 (все квалификации ОСЧ), взятых в строго стехиометрическом соотношении. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
ВаСО3+5,75*Fe2O3+0,25*Al2O3 → BaFe11,5Al0,5O19+CO2 ↑
Перед смешиванием в шихту добавить низкотемпературную эвтектику - оксид бора (В2О3) в количестве 1 мас. %. Смешанные с соблюдением стехиометрии порошки подвергать мокрому помолу с добавлением этилового спирта на шаровой мельнице в течение 2 ч. После помола и сушки исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 10 мм, высота 5 мм). Компактированные составы подвергать синтезирующему обжигу на воздухе при 1200°С в течение 6 ч, а затем после промежуточного помола в течение 0.5 ч образцы вновь компактировать и спекать при 1200°С в течение 3 ч. После спекания образцы медленно охлаждать со скоростью ~ 100°С/ч.
На Фиг. 1 и 2 представлены частотные зависимости коэффициента поглощения замещенного гексаферрита бария BaFe11,5Al0,5O19, полученного по стандартной керамической технологии без нанесения диэлектрического слоя В2О3 (Фиг. 1), и замещенного гексаферрита бария BaFe11,5Al0,5O19 полученного по стандартной керамической технологии с нанесением диэлектрического слоя В2О3 (Фиг. 2). Отмечено, что при использовании способа, описанного в данной заявке (с добавлением оксида бора), эффективность поглощения в субтерагерцовом диапазоне увеличивается и достигает - 22.7 дБ.
Пример 2.
Поглощающий материал на основе замещенного гексаферрита бария BaFe11Al1O19 получают из оксидов Fe2O3, Al2O3 и карбоната ВаСО3 (все квалификации ОСЧ), взятых в строго стехиометрическом соотношении. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
ВаСО3+5,5*Fe2O3+0,5*Al2O3 → BaFe11Al1O19+CO2 ↑
Перед смешиванием в исходную шихту добавить низкотемпературную эвтектику - оксид бора (B2O3) в количестве 2 мас. %. Смешанные с соблюдением стехиометрии порошки подвергать мокрому помолу с добавлением этилового спирта на шаровой мельнице в течение 2 ч. После помола и сушки исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 10 мм, высота 5 мм). Компактированные составы подвергать синтезирующему обжигу на воздухе при 1200°С в течение 6 ч, а затем после промежуточного помола в течение 0.5 ч, образцы вновь компактировать и спекать при 1200°С в течение 3 ч. После спекания образцы медленно охлаждать со скоростью ~ 100°С/ч.
На Фиг. 3 и 4 представлены частотные зависимости коэффициента поглощения замещенного гексаферрита бария BaFe11Al1O19, полученного по стандартной керамической технологии без нанесения диэлектрического слоя B2O3 (Фиг. 3), и замещенного гексаферрита бария BaFe11Al1O19, полученного по стандартной керамической технологии с нанесением диэлектрического слоя B2O3 (Фиг. 4). Отмечено, что при использовании способа, описанного в данной заявке (с добавлением оксида бора), эффективность поглощения в субтерагерцовом диапазоне увеличивается и достигает -23.1 дБ.
Пример 3.
Поглощающий материал на основе замещенного гексаферрита бария BaFe10Al2O19 получают из оксидов Fe2O3, Al2O3 и карбоната BaCO3 (все квалификации ОСЧ), взятых в строго стехиометрическом соотношении. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
ВаСО3+5*Fe2O3+Al2O3 → BaFe10Al2O19+CO2 ↑
Перед смешиванием в шихту добавить низкотемпературную эвтектику - оксид бора (B2O3) в количестве 2 мас. %. Смешанные с соблюдением стехиометрии порошки подвергать мокрому помолу с добавлением этилового спирта на шаровой мельнице в течение 2 ч. После помола и сушки исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 10 мм, высота 5 мм). Компактированные составы подвергать синтезирующему обжигу на воздухе при 1200°С в течение 6 ч, а затем после промежуточного помола в течение 0.5 ч образцы вновь компактировать и спекать при 1200°С в течение 3 ч. После спекания образцы медленно охлаждать со скоростью ~ 100°С/ч.
На Фиг. 5 и 6 представлены частотные зависимости коэффициента поглощения замещенного гексаферрита бария BaFe10Al2O19 полученного по стандартной керамической технологии без нанесения диэлектрического слоя В2О3 (Фиг. 5), и замещенного гексаферрита бария BaFe10Al2O19, полученного по стандартной керамической технологии с нанесением диэлектрического слоя В2О3 (Фиг. 6). Отмечено, что при использовании способа, описанного в данной заявке (с добавлением оксида бора), эффективность поглощения в субтерагерцовом диапазоне увеличивается и достигает -23.1 дБ.
Изобретение относится к получению магнитно-диэлектрических материалов, поглощающих электромагнитное излучение, и может быть использовано в радиоэлектронной технике при производстве принимающих антенн, осуществляющих селективное радиопоглощение в субтерагерцовом диапазоне (0,09-0,1 ТГц). Материал получают путем синтезирования замещенного гексаферрита бария BaFeAlO,где 0.5≤x≤2, из оксидов FeО, AlOи карбоната ВаСОс нанесением диэлектрического слоя легкоплавкой эвтектики в процессе единого цикла твердофазной реакции за счет добавления в исходную шихту 1-2 мас.% BO. Порошки подвергают мокрому помолу, после чего смесь прессуют и подвергают обжигу на воздухе при 1150-1250°С до спекания, затем медленно охлаждают. Способ получения поглощающего материала является простым, а полученный материал имеет коэффициенты поглощения -19,6…-22,7 дБ и эффективен для поглощения в субтерагерцовой области спектра (0,09-0,1 ТГц). 6 ил., 3 пр.
Пористые материалы с внедренными наночастицами, способы их изготовления и применения