Код документа: RU2783049C1
Данное изобретение относится к способам и устройствам для получения тепла для обогрева зданий и сооружений и может быть использовано в различных отраслях промышленности и быту, везде, где требуется нагрев каких-либо устройств, участков пространства или площадей.
Известней способ получения тепла, включающий пропускание жидкости-теплоносителя через нагревательное устройство, содержащее генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов. В качестве генератора тепловой энергии используют гидросопротивление, через которое гидронасосом нагнетают масло, чтобы преобразовать кинетическую энергию в тепло. Прокачка масла производится без перепуска теплоносителя, что не обеспечивает экономию тепловой энергии (Заявка Германии 934341209). Такие же особенности имеет и устройство, описанное в заявке Германии DE 19506679 А1.
Известен способ получения тепла, включающий пропускание теплоносителя через нагревательное устройство, содержащее генератор тепловой энергии (котел), систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре тепловой насос, и трубопровод перепуска между подающим и обратным трубопроводами. При этом давление теплоносителя понижают перед трубопроводом 1 ниже давления насыщенных паров воды. Образовавшийся в результате пар подают при сверхкритическом перепаде давления в обратный трубопровод. При этом образование пара и его последующее смешение с жидким теплоносителем осуществляется с образованием неоднородностей среды, в импульсном колебательном режиме, что может приводить к возникновению вибраций, шумов и других нежелательных эффектов, нарушающих экологические характеристики окружающей среды. Срок службы устройства снижается за счет возникновения разрушений деталей (Патент СССР N 1663345).
Известен способ получения тепла, включающий пропускание теплоноситаля через нагревательное устройство, содержащее генератор тепловой энергии (котел), систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, и трубопровод перепуска. При этом поток жидкости содержит микроскопические пузырьки газа или пара, что связано с кавитационными явлениями, имеющими место в данном контуре. Эти явления отрицательно сказываются на экологии и технологичности процесса, экологичности окружающей среды. Кавитационные явления значительно снижают срок службы устройства из-за разрушений деталей, вызванных кавитацией (Заявка PCT/RU 97/00299).
Известен также способ получения тепла, включающий пропускание теплоносителя через нагревательное устройство, содержащее генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре сетевой насос, и установленный между прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции (Авторское свидетельство СССР N 1019180, 1983).
Данные способы и устройства для их осуществления не обеспечивают удовлетворительную экономию топлива или иного теплонесущего агента в генераторе тепловой энергии во всех случаях.
Известен способ получения тепла, включающий пропускание теплоносителя через нагревательное устройство, содержащее генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре насос, и установленный с прямым и обратным трубопроводами трубопровод рециркуляции и хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором канавку. (Патент России N 2096695).
Элемент, содержащий конфузор и диффузор, расположен здесь в подающем трубопроводе. Это приводит к легкому проявлению кавитационных эффектов, мешающих работе устройства и уменьшающих срок его службы. Кроме того, следует отметить, что известное устройство содержит прорезные, продольные канавки в элементе, содержащем конфузор и диффузор.
Данное устройство также не обеспечивает удовлетворительную экономию топлива или иного теплонесущего агента в генераторе тепловой энергии во всех случаях.
Известен способ получения тепла для обогрева зданий и сооружений, включающий перекачку теплоносителя под давлением, исключающим появление кавитации в потоке теплоносителя, в нагревательном устройстве, содержащем генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре хотя бы один циркуляционный насос, и установленный с прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции, при этом упомянутый хотя бы один трубопровод рециркуляции содержит хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку. (Заявка PCT/RU 94/000265).
Данный способ получения тепла является существенно более эффективным, чем описанные выше, однако его эффективность ограничена.
Наиболее близким к предложенному является способ получения тепла для обогрева зданий и сооружений, включающий перекачку теплоносителя под давлением, исключающим появление кавитации в потоке теплоносителя, в нагревательном устройстве, содержащем генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре хотя бы один циркуляционный насос, и установленный с прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции, при этом упомянутый хотя бы один трубопровод рециркуляции содержит хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку (Патент РФ N 2370708). В этом способе хотя бы на часть подающего трубопровода, расположенную перед генератором тепловой энергии и/или хотя бы на часть трубопровода рециркуляции после упомянутого элемента, содержащего конфузор, диффузор и хотя бы одну кольцевую канавку, воздействуют пульсирующим электромагнитным и/или акустическим полями.
Эффективность этого способа ограничена тем, что в ходе процесса получения тепла в вышеупомянутом элементе могут возникать вихревые токи, снижающие эффективность процесса, а также структурные фазовые переходы, снижающие срок службы элемента из-за его разрушения.
Была поставлена задача создания такого способа получения тепла для обогрева зданий и сооружений, которое обеспечило бы устранение вышеупомянутых недостатков.
Данная задача была решена настоящим изобретением.
В способе получения тепла для обогрева зданий и сооружений, включающем перекачку теплоносителя под давлением, исключающим появление кавитации в потоке теплоносителя, в нагревательном устройстве, содержащем генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре хотя бы один циркуляционный насос, и установленный с прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции, при этом упомянутый хотя бы один трубопровод рециркуляции содержит хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку, согласно изобретению, внешняя часть элемента выполнена из ферромагнитного материала, а внутренняя часть элемента в месте расположения кольцевых канавок выполнена из коррозионностойкого материала, обладающего возможностью прямого и обратного мартенситного фазового перехода, и внутренняя часть элемента вне кольцевых канавок, конфузора, диффузора выполнена из парамагнитного материала.
При этом внутренняя часть элемента может быть выполнена, например, из хромникельтитановой нержавеющей стали Х18Н9Т (12X18Н10Т согласно ГОСТ 5632-2014), обладающей возможностью фазовых переходов γ↔ε↔α↔γ.
При этом хотя бы одна кольцевая поверхность кольцевой канавки предпочтительно выполнена ступенчатой, например, треугольной в сечении.
При этом треугольник сечения кольцевой канавки предпочтительно является по существу прямоугольным.
Внутренняя часть элемента может быть выполнена из колец, выполненных с возможностью размещения во внутреннем канале внешней части.
Кольца могут быть выполнены эллиптической в проекции формы, прогнутыми по направлению к центральной оси, предпочтительно прогнутыми частями навстречу.
При этом внутренняя кольцевая поверхность колец может быть выполнена гофрированной.
Хотя бы на часть подающего трубопровода, расположенную перед генератором тепловой энергии и/или хотя бы на часть трубопровода рециркуляции после элемента, содержащего конфузор, диффузор и хотя бы одну кольцевую канавку, предпочтительно воздействуют пульсирующим электромагнитным и/или акустическим полями. Такое воздействие можно производить пульсирующими с частотой 40-60 Гц электромагнитным и/или акустическим полями.
Перекачку теплоносителя-воды при этом можно осуществлять насосом с управляемым расходом перекачиваемой жидкости.
Заявленный способ осуществляется другим изобретением -нагревательным устройством.
В нагревательном устройстве для получения тепла для обогрева зданий и сооружений, содержащем генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре хотя бы один циркуляционный насос, и установленный с прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции, при этом упомянутый хотя бы один трубопровод рециркуляции содержит хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку, согласно изобретению, внешняя часть элемента выполнена из ферромагнитного материала, а внутренняя часть элемента в месте расположения кольцевых канавок выполнена из коррозионностойкого материала, обладающего возможностью прямого и обратного мартенситного фазового перехода, и внутренняя часть элемента вне кольцевых канавок конфузора, диффузора выполнена из парамагнитного материала.
На подающем трубопроводе перед генератором тепловой энергии и/или хотя бы на одном трубопроводе рециркуляции после упомянутого элемента, содержащего конфузор, диффузор и хотя бы одну кольцевую канавку, может быть установлен генератор пульсирующего электромагнитного и/или акустического полей.
В качестве генератора пульсирующего электромагнитного и/или акустического полей устройство может содержать электромагнитную катушку, витки которой намотаны в одну сторону.
Элемент трубопровода рециркуляции предпочтительно содержит 2-300 кольцевых канавок, более предпочтительно 5-100 кольцевых канавок.
Устройство предпочтительно выполнено с возможностью регулирования диаметра отверстия упомянутого элемента для прохождения жидкости.
Оно может содержать управляющий блок, связанный с циркуляционным насосом. При этом управляющий блок может быть дополнительно связан с датчиком температуры, расположенном в системе передачи тепла потребителю или в отапливаемом помещении, а также с системой управления расходом топлива в генераторе тепловой энергии.
Система передачи тепла может содержать хотя бы две параллельно расположенные линии обогрева, каждая из которых содержит насос с управляемым расходом перекачиваемой жидкости.
Устройство может также содержать управляющий блок, связанный с циркуляционным насосом, а также с насосами с управляемым расходом перекачиваемой жидкости, содержащимися в параллельно расположенных линиях обогрева, с возможностью управления указанными насосами и перепускным клапаном.
При этом управляющий блок предпочтительно связан с датчиком температуры, расположенном в системе передачи тепла потребителю или в отапливаемом помещении.
Хотя бы один первый трубопровод рециркуляции может содержать насос с управляемым расходом перекачиваемой жидкости.
Поставленная задача достигается также другим изобретением - элементом нагревательного устройства, содержащем конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку.
В элементе нагревательного устройства, содержащем конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку, согласно изобретению, внешняя часть элемента выполнена из ферромагнитного материала, а внутренняя часть элемента в месте расположения кольцевых канавок выполнена из коррозионностойкого материала, обладающего возможностью прямого и обратного мартенситного фазового перехода, и внутренняя часть элемента вне кольцевых канавок, конфузора, диффузора выполнена из парамагнитного материала.
Элемент трубопровода рециркуляции, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку, при прохождении через него рециркулируемой жидкости, как было показано при испытаниях, приводит к выделению тепла, например, за счет создания специфических вихревых потоков жидкости, фазовых структурных переходов и других возможных факторов.
В частности, при прохождении жидкости через данный элемент, например, возможно (в случае фазового перехода) выделение скрытой теплоты фазового перехода, которая, например, для воды составляет 1500 кал/моль.
Выполнение кольцевой канавки по существу треугольной в сечении (при этом хотя бы одна кольцевая поверхность кольцевой канавки предпочтительно выполнена ступенчатой) позволяет обеспечить повышение эффективности способа за счет увеличения удельной плотности вихревых потоков жидкости, а также акустических каустик.
Термин "по существу" здесь является синонимом термина "практически" и означает, что хотя на практике любая геометрическая фигура (например, треугольник) за счет неточности изготовления, например, отличается от идеальной, она условно считается в данном случае треугольной. Кроме того, эти отклонения формы от идеальной могут возникать и по другим причинам, например, в случае, когда поверхность кольцевой канавки выполнена ступенчатой. В последнем случае, например, сторона треугольника с точки зрения геометрии будет представлять собой ломаную линию. Однако за счет того, что такие ступеньки невелики по сравнению с длиной стороны треугольника, сторону треугольника можно условно (практически) считать отрезком прямой линии. Во всяком случае отклонения от идеальной геометрической формы не должны превышать 10-15%.
В случае прокачки холодной воды через трубопровод рециркуляции из обратного трубопровода по направлению к подающему трубопроводу выделение «скрытой теплоты» фазового перехода приведет к нагреву перепускаемой жидкости и следовательно, приближению ее температуры к температуре подающего трубопровода, что делает возможным смешение нагретой жидкости трубопровода рециркуляции с жидкостью, подаваемой по подающему трубопроводу, нагретому в котле, без заметного снижения ее температуры. Таким образом, количество подаваемой в котел жидкости уменьшается и следовательно, уменьшается количество топлива, расходуемого на ее нагрев до заданной температуры.
В случае перекачки насосом горячей воды от подающего к обратному трубопроводу также происходит выделение дополнительного количества тепла; горячая вода смешивается с холодной водой обратного трубопровода и поступает в котел с более высокой температурой, что также приводит к уменьшению количества тепла, расходуемого для нагревания воды до требуемой температуры.
При этом, как было показано, именно такое выполнение элемента трубопровода рециркуляции является оптимальным с точки зрения наиболее экономичного перераспределения тепловых потоков в контуре. Это в конечном счете приводит к повышению экономии топлива или иного теплонесущего вещества.
Кроме того, за счет уменьшения сопротивления потоку жидкости в генераторе тепловой энергии (например, водогрейном котле, где применяются узкие трубки, создающие большое сопротивление потоку жидкости) за счет протекания части жидкости в обход генератора тепловой энергии уменьшается затрата электроэнергии, потребляемой сетевым насосом для перекачки жидкости или иного теплоносителя в контуре.
В качестве сетевого насоса целесообразно применять насос с постоянным расходом перекачиваемой жидкости, например, обычный центробежный насос. Это связано с тем, что применение насоса с управляемым расходом перекачиваемой жидкости требует относительно дорогих управляющих электронных устройств.
Однако, при наличии возможности, можно использовать и насос с управляемым расходом перекачиваемой жидкости.
Воздействие пульсирующим электромагнитным и/или акустическим полями на вышеупомянутые части подающего трубопровода и/или трубопровода рециркуляции позволяет увеличить количество центров фазовых структурных преобразований в жидкости, что приводит к усилению вследствие резонанса явлений, происходящих в вышеописанном элементе трубопровода рециркуляции, и, как было экспериментально показано, приводит к увеличению количества выделяемого системой тепла.
В качестве генератора пульсирующего электромагнитного и/или акустических полей можно использовать электромагнитную катушку, витки которой намотаны в одну сторону. Такое выполнение катушки приводит к максимальной амплитуде направленных в одну сторону электрического, магнитного и акустического воздействий (аналог катушки Тесла).
Для дальнейшей оптимизации перераспределения тепловых потоков нагревательное устройство выполняют с возможностью регулирования диаметра отверстия для прохождения жидкости, например, отверстия, находящегося в вышеупомянутом элементе трубопровода рециркуляции. Регулирование можно проводить известными средствами, например, с помощью раздвигаемой диафрагмы.
Если в этом варианте выполнения нагревательное устройство содержит в качестве циркуляционного (сетевого) насос с постоянным расходом перекачиваемой жидкости, то система передачи тепла потребителю при этом может содержать хотя бы один насос с управляемым расходом жидкости. Это позволяет регулировать передачу тепла потребителю и, следовательно, приводит к экономии топлива (тепловыделяющего агента).
Нагревательное устройство может содержать управляющий блок, связанный с циркуляционным насосом, а также с датчиком температуры, расположенным в системе передачи тепла потребителю или в отапливаемом помещении, и с системой управления расходом топлива в генераторе тепловой энергии. Это позволяет обеспечить автоматическую регулировку параметров негревательного устройства и параметров теплоообмена для достижения наибольшей экономии топлива или иного тепловыделяющего агента, в том числе регулировки для компенсации изменений, связанных с суточным изменением температуры.
Возможен вариант осуществления устройства, в котором система передачи тепла содержит хотя бы две параллельно расположенные линии обогрева, каждая из которых содержит насос с управляемым расходом перекачиваемой жидкости.
Выполнение внешней части элемента из ферромагнитного материала, а внутренней части в месте расположения кольцевых канавок из коррозионностойкого материала, обладающего возможностью прямого и обратного мартенситного фазовых переходов, и внутренней части элемента вне кольцевых канавок, конфузора, диффузора из парамагнитного материала, позволяет обеспечить стабилизацию магнитных потоков в требуемом направлении, что исключает появление противодействующих потоку жидкости вихревых токов.
Это позволяет обеспечить оптимальное распределение тепла между двумя и более потребителями. В этом варианте выполнения нагревательное устройство также может содержать управляющий блок, связанный с циркуляционным насосом или с перепускным клапаном, а также с насосами с управляемым расходом перекачиваемой жидкости, содержащимися в параллельно расположенных линиях обогрева, с возможностью управления указанными насосами и перепускным клапаном. Это, как и в предыдущем варианте выполнения устройства, позволяет обеспечить автоматическую регулировку параметров нагревательного устройства и параметров теплообмена для достижения наибольшей экономии топлива или иного тепловыделяющего агента, в том числе регулировки для компенсации изменений, связанных с суточным изменением температуры.
Изобретение иллюстрируется следующими чертежами.
На Фиг. 1 изображена общая схема нагревательного устройства.
На Фиг. 2 показан элемент трубопровода рециркуляции в разрезе.
На Фиг. 3 изображено нагревательное устройство в варианте выполнения с двумя трубопроводами рециркуляции.
На Фиг. 4 изображен вариант выполнения нагревательного устройства, содержащего пять параллельно расположенных линий обогрева, каждая из которых содержит насос с управляемым расходом перекачиваемой жидкости, а также управляющий блок.
На Фиг. 5 изображена общая схема нагревательного устройства, выполненного по варианту с двумя трубопроводами рециркуляции и регулируемым клапаном.
На Фиг. 6 показан вариант выполнения нагревательного устройства, содержащего пять параллельно расположенных линий обогрева, каждая из которых содержит насос с управляемым расходом перекачиваемой жидкости, а также управляющий блок.
На Фиг. 7, Фиг. 8 и Фиг. 9 показан элемент нагревательного устройства со ступенчатой кольцевой канавкой.
На Фиг. 10 показан элемент выполнения нагревательного устройства, в котором хотя бы одна кольцевая поверхность кольцевой канавки выполнена треугольной в сечении (прямоугольный треугольник).
На Фиг. 11 показан элемент выполнения нагревательного устройства, в котором кольца выполнены эллиптической в проекции формы, прогнутыми по направлению к центральной оси, прогнутыми частями навстречу.
Нагревательное устройство содержит генератор тепловой энергии -водогрейный котел 1, подающий 2 и обратный 3 трубопроводы, циркуляционный насос 4, радиатор 5 для передачи тепла в нагреваемое помещение. Позицией 6 обозначен трубопровод рециркуляции с элементом 7, содержащим конфузор 8, диффузор 9 и выполненные между конфузором 8 и диффузором 9 кольцевые канавки 10 и 11. Параллельно расположенные линии обогрева 12 (Фиг. 4) содержат насосы 13 с управляемым расходом перекачиваемой жидкости. Устройство содержит управляющий блок 14, связанный электрически с водогрейным котлом 1, регулируемым отверстием в элементе трубопровода 7 и каждым из насосов 13. Позициями 16 и 17 соответственно обозначены часть подающего трубопровода, расположенная перед генератором тепловой энергии, и часть трубопровода рециркуляции после элемента 7. На этих частях 16 и 17 расположены электромагнитные катушки 18 и 19, установленные с возможностью подключения к источнику питания.
В примере по другому варианту выполнения нагревательное устройство содержит генератор тепловой энергии - водогрейный котел 1, подающий 2 и обратный 3 трубопроводы, циркуляционный насос 4, радиатор 5 для передачи тепла в нагреваемое помещение. Позицией 6 обозначен первый трубопровод рециркуляции с элементом 7, содержащим конфузор 8, диффузор 9 и выполненные между конфузором 8 и диффузором 9 кольцевые канавки 10 и 11. Позицией 20 обозначен второй трубопровод рециркуляции с регулируемым клапаном 21. Управляющий блок (шкаф управления) 14 связан (электрически) с циркуляционным насосом 4 или клапаном 21 (показано пунктиром), а также с датчиком температуры (на чертеже не показан), расположенном в радиаторе 5. Позицией 22 обозначен нагнетательный насос, расположенный в первом трубопроводе рециркуляции 6. Параллельно расположенные линии обогрева 12 (Фиг. 6) содержат насосы 13 с управляемым расходом перекачиваемой жидкости. Позицией 23 обозначено отверстие для прохода жидкости с регулируемым диаметром D элемента 7, позицией 24 - ступеньки поверхности кольцевой канавки, позицией 25 - кольца, из которых выполнен элемент 7 в месте расположения кольцевых канавок 10 и 11. Позициями 26, 27 и 28 обозначены соответственно труба из парамагнитного материала, труба из ферромагнитного материала и фланцы.
Устройство работает следующим образом.
При включении насоса 4 он начинает перекачивать жидкость по замкнутому контуру. Жидкость поступает в водогрейный котел 1 и нагревается до заданной температуры, после чего через подающий трубопровод 2 поступает в радиатор 5, через который отдает тепло потребителю, и затем возвращается по обратному трубопроводу 3 к насосу 4. При этом, часть жидкости поступает не в водогрейный котел 1, а через трубопровод рециркуляции 6 и его элемент 7 поступает в подающий трубопровод 2, где смешивается с горячей водой, поступающей из котла 1. При этом, при прохождении элемента 7 жидкость частично разогревается, в том числе в результате скоростных вихревых потоков и фазовых структурных переходов. При наличии в нагревательном устройстве управляющего блока 14, который получает сигналы от датчиков температуры, расположенных в отапливаемом помещении, при отклонении температуры от заданной, он (управляющий блок) вырабатывает соответствующие сигналы, подаваемые на управляемый регулятор подачи топлива в котле 1, регулируемую диафрагму в элементе 7 и на насосы 13 и 4. Одновременно на катушки 18 и 19 подают напряжение частотой 40-60 Гц, которые создают в соответствующих частях трубопроводов 16 и 17 переменное электромагнитное и/или акустическое поля.
В другом варианте выполнения при включении насоса 4 он начинает перекачивать жидкость по замкнутому контуру. Жидкость поступает в водогрейный котел 1 и нагревается до заданной температуры, после чего через подающий трубопровод 2 поступает в радиатор 5, через который отдает тепло потребителю, и затем возвращается по обратному трубопроводу 3 к насосу 4. При этом часть жидкости поступает не в радиатор 5, а через первый трубопровод рециркуляции 6 и его элемент 7 поступает в обратный трубопровод 3, где смешивается с холодной водой, поступающей из радиатора 5. При этом при прохождении элемента 7 жидкость дополнительно разогревается, в том числе в результате вихревых потоков и фазовых структурных переходов. При наличии в нагревательном устройстве шкафа управления (управляющего блока) 14, который получает сигналы от датчиков температуры, расположенных в радиаторе 5, при отклонении температуры от заданной он(управляющий блок) вырабатывает соответствующие сигналы, подаваемые на управляемый регулятор подачи топлива в котле 1 и на насос 4 или на клапан 21, который в случае необходимости открывается через шкаф управления 14, обеспечивая тем самым «сброс» избыточного тепла. Одновременно на катушки 18 и 19 подают напряжение частотой 40-60 Гц, которые создают в соответствующих частях трубопроводов 16 и 17 переменное электромагнитное и/или акустическое поля.
Оптимальным является способ эксплуатации данного устройства, включающий перекачку теплоносителя-воды в контуре под давлением, исключающим появление кавитации в потоке теплоносителя. Специалистам в данной области техники известны условия появления кавитации и методы их расчета. Практически появление кавитации можно обнаружить по резкому возрастанию шума работы трубопровода рециркуляции. Поэтому в случае отсутствия кавитации в процессе работы устройства дополнительные шумы в области трубопровода рециркуляции практически отсутствуют.
Способ получения тепла для обогрева зданий и сооружений включает перекачку теплоносителя под давлением, исключающим появление кавитации в потоке теплоносителя, в нагревательном устройстве. Устройство содержит генератор тепловой энергии, систему передачи тепла потребителю, связанные между собой в замкнутый контур посредством подающего и обратного трубопроводов, расположенный в данном контуре хотя бы один циркуляционный насос и установленный с прямым и обратным трубопроводами хотя бы один трубопровод рециркуляции, при этом упомянутый хотя бы один трубопровод рециркуляции содержит хотя бы один элемент, содержащий конфузор, диффузор и выполненную между диффузором и конфузором хотя бы одну кольцевую канавку. Внешняя часть элемента выполнена из ферромагнитного материала, а внутренняя часть элемента в месте расположения кольцевых канавок выполнена из коррозионностойкого материала, обладающего возможностью прямого и обратного мартенситного фазовых переходов. Внутренняя часть элемента вне кольцевых канавок, конфузора, диффузора выполнена из парамагнитного материала, при этом кольцевая канавка выполнена в кольцевом элементе. Техническим результатом является повышение эффективности получения тепла за счет стабилизации магнитных потоков в требуемом направлении, что исключает появление противодействующих потоку жидкости вихревых токов. 3 н. и 39 з.п. ф-лы, 11 ил.