Код документа: RU207067U1
Полезная модель относится к гелиотехнике, в частности к коллекторам со средствами концентрации солнечной энергии, и может быть использована в системах теплоснабжения зданий различного назначения.
Известен солнечный коллектор, содержащий замкнутый корпус с размещенной в его нижней части теплоизоляцией, на лицевой стороне которой размещены параллельные тепловоспринимающие трубки одинакового диаметра с равным расстоянием между ними и соединенные друг с другом входным и выходным коллекторами для подвода и отвода теплоносителя, при этом над трубками выполнен светопрозрачный слой (см. патент РФ № 2265162, МПК F24J 2/46, F24J 2/24, опубликован 27.11.2005).
Недостаток этого технического решения состоит в неэффективном использовании солнечной энергии в периоды низкой интенсивности рассеянной солнечной радиации. Отсутствие отражающего слоя внутри корпуса, а также относительно низкая теплопроизводительность из-за прямолинейной формы тепловоспринимающих трубок и возможных потерь через светопрозрачный слой и в выходном коллекторе влекут за собой недостаточный нагрев теплоносителя в солнечном коллекторе.
В качестве ближайшего аналога (прототипа) принят солнечный коллектор, содержащий замкнутый корпус с размещенной в его нижней части теплоизоляцией, на лицевой стороне которой и на внутренней поверхности стенок корпуса расположены отражающие слои, причем на лицевой стороне отражающего слоя, установленного на теплоизоляции, размещены параллельные тепловоспринимающие трубки одинакового диаметра с равным расстоянием между ними и соединенные друг с другом входным и выходным коллекторами для подвода и отвода теплоносителя, при этом над трубками установлен лучепоглощающий лист и выше него выполнен светопрозрачный слой (см. патент РФ № 112364, МПК F24J 2/24, опубликован 01.10.2012).
Недостатками прототипа являются достаточно малая лучеплоглощательная поверхность тепловоспринимающих трубок из-за их меньшей длины и более низкого процента заполнения рабочей площади корпуса тепловоспринимающими трубками и повышенное гидравлическое сопротивление тепловоспринимающих трубок из-за их изгиба.
Задачей, на решение которой направлена полезная модель, является разработка плоского солнечного коллектора с минимальным гидравлическим сопротивлением и максимальным путем движения теплоносителя.
Технический результат, достигаемый при решении поставленной задачи, выражается в повышении теплофикационных свойств коллектора за счет снижения гидравлических потерь, а также увеличения длины тепловоспринимающих трубок.
Поставленная задача решается тем, что солнечный коллектор, содержащий замкнутый корпус с размещенной в его нижней части теплоизоляцией, на лицевой стороне которой и на внутренней поверхности стенок корпуса расположены отражающие слои, причем на лицевой стороне отражающего слоя, установленного на теплоизоляции, размещены параллельные тепловоспринимающие трубки одинакового диаметра с равным расстоянием между ними и соединенные друг с другом входным и выходным коллекторами для подвода и отвода теплоносителя, при этом над трубками установлен лучепоглощающий лист и выше него выполнен светопрозрачный слой, отличается тем, что тепловоспринимающие трубки направлены по спирали в одной плоскости, причем входной коллектор смещен к краю стенки корпуса, а выходной коллектор расположен в центральной части корпуса.
Сопоставительный (сравнительный) анализ существенных признаков аналогов и прототипа свидетельствует о его соответствии критерию «новизна».
При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.
Признаки «тепловоспринимающие трубки направлены по спирали в одной плоскости» позволяют увеличить длину тепловоспринимающих трубок и, как следствие, путь движения теплоносителя, а отсутствие углов у спирали приводит к снижению гидравлических потерь.
Признаки «входной коллектор смещен к краю стенки корпуса, а выходной коллектор расположен в центральной части корпуса» позволяют закрутить спираль внутрь при более плотном заполнении рабочей площади корпуса тепловоспринимающими трубками.
На фиг. 1 изображен общий вид солнечного коллектора.
На фиг. 2 показан поперечный разрез солнечного коллектора.
На фиг. 3 изображен вид солнечного коллектора сзади.
На чертежах показаны корпус 1, теплоизоляция 2, стенки 3 корпуса 1, отражающие слои 4 и 5, первая 6, вторая 7 и третья 8 тепловоспринимающие трубки, входной 9 и выходной 10 коллекторы, лучепоглощающий лист 11 и светопрозрачный слой 12.
Корпус 1 может быть выполнен например из металла с антикоррозийным покрытием, причем торцы корпуса 1 защищены уголком, приваренным к металлическому листу, и в его нижней части размещена теплоизоляция 2 из пожаробезопасного материала, на лицевой стороне которой и на внутренней поверхности стенок 3 корпуса 1 расположены отражающие слои 4 и 5 соответственно, выполненные например из фольги.
Первая 6, вторая 7 и третья 8 тепловоспринимающие трубки выполнены из материала с высоким коэффициентом теплопроводности, например, меди и имеют одинаковый диаметр.
Тепловоспринимающие трубки 6-8 установлены на лицевой стороне отражающего слоя 4 (размещенного на теплоизоляции 2) параллельно друг другу, с равным расстоянием между ними и направлены по спирали в одной плоскости.
Тепловоспринимающие трубки 6-8 соединены друг с другом входным 9 и выходным 10 коллекторами для подвода и отвода теплоносителя, в качестве которого используют незамерзающую жидкость, например, пропиленгликоль или этиленгликоль.
При этом входной коллектор 9 смещен к краю стенки 3 корпуса 1, а выходной коллектор 10 расположен в центральной части корпуса 1.
Над тепловоспринимающими трубками 6-8 установлен лучепоглощающий лист 11, выполненный, например, в виде стального листа, покрытого черной эмалью.
Над лучепоглощающим листом 11 выполнен светопрозрачный слой 12, который выполнен, например из поликарбоната и служит прозрачной изоляцией.
Заявляемое устройство работает следующим образом.
Теплоноситель подают от внешнего источника (на чертежах не показан) во входной коллектор 9 и далее в тепловоспринимающие трубки 6-8.
Поток солнечного излучения падает на светопрозрачный слой 12, который обладает высокой пропускной способностью по отношению к падающему потоку солнечного излучения и практически полностью поглощает собственное тепловое излучение солнечного коллектора, и далее на лучепоглощающий лист 11, который позволяет минимизировать потери теплоты, возникающие за счет конвективного и радиационного теплообмена между солнечным коллектором и окружающей средой.
В процессе принудительной циркуляции теплоносителя по тепловоспринимающим трубкам 6-8, он взаимодействует с прошедшим через светопрозрачный слой 12 и лучепоглощающий лист 11 потоком солнечного излучения, в результате чего нагревается и выводится из корпуса 1 через выходной коллектор 10.
Основной формулой для проведения гидравлического расчета тепловоспринимающих трубок методом гидравлических характеристик сопротивления является:
где
Так как тепловоспринимающие трубки 6-8 выходят из одного входного коллектора 9, а приходят в другой выходной коллектор 10, можно сделать вывод, что потери давления на участках первой 6 (
Характеристику сопротивления соответствующего участка трубопровода вычисляем по формуле:
где
Задавшись расходом в первой 6 тепловоспринимающей трубке (
Отсюда общий расход в солнечном коллекторе будет равен:
Был проведен сравнительный анализ конструктивных характеристик заявляемого солнечного коллектора с прототипом.
При этом материалы элементов, диаметр тепловоспринимающих трубок, и площадь поверхности корпуса были принятыми одинаковыми, результаты приведены в таблице 1.
Таблица 1
Сравнительный анализ конструктивных характеристик
На основе данных таблицы 1 можно сделать вывод, что заявляемое устройство отличается:
1. увеличенной длиной тепловоспринимающих трубок (более чем в 2 раза);
2. большей площадью, занятой тепловоспринимающими трубками (более чем в 2 раза);
3. большей лучепоглощающей поверхностью тепловоспринимающих трубок;
4. более плотным заполнением рабочей площади корпуса указанными тепловоспринимающими трубками.
Полезная модель относится к гелиотехнике, в частности к коллекторам со средствами концентрации солнечной энергии, и может быть использована в системах теплоснабжения зданий различного назначения. Солнечный коллектор содержит замкнутый корпус с размещенной в его нижней части теплоизоляцией, на лицевой стороне которой и на внутренней поверхности стенок корпуса расположены отражающие слои, причем на лицевой стороне отражающего слоя, установленного на теплоизоляции, размещены параллельные тепловоспринимающие трубки одинакового диаметра с равным расстоянием между ними и соединенные друг с другом входным и выходным коллекторами для подвода и отвода теплоносителя, при этом над трубками установлен лучепоглощающий лист и выше него выполнен светопрозрачный слой, отличается тем, что тепловоспринимающие трубки направлены по спирали в одной плоскости, причем входной коллектор смещен к краю стенки корпуса, а выходной коллектор расположен в центральной части корпуса. Технический результат выражается в повышении теплофикационных свойств коллектора за счет снижения гидравлических потерь, а также увеличения длины тепловоспринимающих трубок. 3 ил.
Комментарии