Код документа: RU2107701C1
Изобретение относится к полиолефиновой формовочной массе большой твердости, которая обладает высокой ударной вязкостью также и при низких температурах и которую получают из изотактического гомополимера олефина и/или сополимера олефина и каучука.
Ударно-вязкие полиолефиновые формовочные массы, в принципе известны. Их получают путем смешивания расплавов, например, полипропилена и каучука, такого как, например, этиленпропиленового каучука (ЭПМ) или этиленпропилендиенового каучука (ЭПДМ) (Angew. Makvomb.Chem 185/186 (1997) 97; Polymer 28 (1987) 47).
В соответствии с уровнем техники используемый полипропилен состоит, по меньшей мере, из 2-10 масс.% атактического полипропилена (АПП) и из 90-98% полипропиленовых цепей очень различной длины (Mw/Mn = 5-10).
Как один из вариантов в качестве пропиленового компонента также используется сополимер пропилена, который помимо АПП, пропиленовых цепей и полимерных цепей сомономера с вышеописанным строением еще содержит пропилен-сополимерные цепи, имеющие различное содержание сополимера, а также различную длину цепей.
Кроме этого, также известны так называемые реакторные смеси. Они состоят из АПП, полипропилена и полимеров сомономера с различной длиной цепей, а также из пропилен-сомономерных цепей различной длины и различного содержания сомономера. Их получают за одну или несколько стадий полимеризации непосредственно в полимеризационном реакторе.
Общим для всех этих формовочных масс является то, что они при требуемой высокой ударной вязкости обладают недостаточной жесткостью/твердостью.
При использовании полимеров и сополимеров, не содержащих атактических полимерных цепей (атактического полиолефина, обозначаемого как АПО) и имеющих однородное распределение молекулярных весов (Mw/Mn предпочтительнее менее 5), можно избежать вышеназванных недостатков.
Изобретение касается полиолефиновой формовочной массы, в основном состоящей из 20-99 масс.%, в перерасчете на всю формовочную массу, изотактического полиолефина, не содержащего атактических полимерных цепей, и из 1-80 масс. %, в перерасчете на всю формовочную массу, каучука с температурой стеклования ниже -20oC.
Используемый для получения предложенной в изобретении полиолефиновой формовочной массы, не содержащей АПО, изотактический полиолефин представляет собой полимер с распределением молекулярных весов в узком диапазоне (Mw/Mn << 5, предпочтительнее << 3,5) и однородным строением цепей. Под однородным строением цепей статистическое распределение дефектов строения и/или сомономеров в полимерной цепи.
Под не содержащими АПО изотактическими полиолефинами понимают такие полиолефины, которые, в основном, не содержат атактических
полимерных цепей. Речь идет о продуктах (гомо- и сополимерах), которые получают при использовании катализационных систем из металлоценов и алюминоксана, обладающих высокой стереоспецифичностью.
Соответствующие способы известны и описаны, например, в европейских патентах N A 302424, A 336127, A 336128 и в патенте ФРГ N 4035886.0. Полученные по указанным способам изотактические полиолефины не
содержат или содержат лишь очень небольшие количества атактических полимерных цепей. Как правило, эти количества составляют менее чем 1 масс.%
В принципе также можно полиолефины, которые
получены с использованием традиционных катализаторов Циглера (MgCl2/NiCl4/ донор электронов /AlEt3) и которые содержат значительные количества АПО, перевести
извлечение частей АПО при помощи углеводорода в полиолефины, не содержащие АПО и являющиеся тем самым предложенными в изобретении.
Но из-за необходимости использования для этого дорогостоящего способа, т.е. из-за больших затрат, такой подход вряд ли имеет смысл.
используемый в соответствии с изобретением изотактический полиолефин представляет собой или гомополимер олефина с распределением молекулярных весов Mw/Mn << 5, предпочтительнее << 3,5, и с изотактическим показателем (II) не менее 85%; сополимер олефина с Mw/Mn << 5, предпочтительнее << 3,5 и с изотактическим показателем не менее 85%, или же полиолефин состоит из гомополимера олефина и сополимера олефина, причем изотактический показатель равен не менее 85% и Mw/Mn компонентов < 5, предпочтительнее < 3,5.
Если полимер олефина представляет собой гомополимер олефина, то он состоит из молекул олефина с числом атомов C не менее 3 формулы Ra-CH=CH-Rb, в которой Ra и Rb одинаковы или различны и означают атом водорода или алкильный остаток с числом атомов C от 1 до 10, предпочтительнее от 1 до 6, или Ra и Rb вместе с связывающими их атомами C образуют кольцо с 4-22 атомами C. Предпочтительными олефинами являются пропилен, бутилен-1, 4-метил-1-пентен, гексен-1, пентен и норборнен. Особое предпочтение отдается пропилену, т. е. предложенная в изобретении формовочная масса содержит, в частности, полипропилен.
Если полимер олефина представляет собой сополимер олефина, то он состоит на 99,5 - 50, предпочтительнее 99-70 мас.% из определенного выше для гомополимера олефина с изотактическим показателем не менее 85% и на 0,5-50, предпочтительнее 1-30 мас.%, из этилена и/или другого вышеуказанного олефина в качестве сомономера. Сомономер включен статистически с высокой регулярностью. Предпочтительными сомономерами являются этилен, бутилен-1, 4-метил-1-пентен, гексен-1, норбонен или пентен. Особенно предпочтительные сополимеры олефина состоят из молекул пропилена и молекул сомономера этилена.
Если полиолефин состоит из смеси гомополимера олефина и сополимера олефина, то гомополимер олефина получен из вышеописанного олефина. Сополимер олефина состоит из 20-90 мас.%, предпочтительнее на 40-90 мас.% из олефина, определенного выше из гомополимера олефина, и на 80-10 мас. %, предпочтительнее на 60-10 мас.% из молекул этилена и/или по меньшей мере, одного олефина, определенного выше для сополимера олефина. Сомономер включен предпочтительнее статистически. Содержание гомополимера олефина во всей полиолефиновой массе в этом случае составляет от 20 до 99 мас.%, предпочтительнее от 40 до 95 мас.%, содержание сополимера олефина составляет от 40 до 95 мас.%, содержание сополимера олефина составляет от 80 до 1 мас.%, предпочтительнее от 60 до 5 мас.%.
Особенно предпочтительным вариантом является такой, когда предложенный в изобретении полиолефин, если в его состав входят два различных полимерных компонента, из 40-95 мас.% полипропилена (в пересчете на общее количество полиолефина) с изотактическим показателем не менее 85% и из 60-5 мас.% (в пересчете на общее количество полиолефина) сополимера олефина, состоящего из 40-90 мас. % молекул пропилена и из 60-10 мас.% молекул этилена (в каждом случае в пересчете на общее количество сополимера олефина).
Изотактический сополимер олефина содержится в предложенной в изобретении формовочной массе в количестве от 20 до 99 мас.% предпочтительнее от 40 до 95 мас.%.
От 1 до 80, предпочтительнее от 5 до 60 мас.% предложенной в изобретении формовочной массы - это каучук с температурой стеклования ниже -20oC. Подходящими каучуками является, например, стиролбутадиеновый каучук, силиконовый, силиконовый каучук, этилен-пропиленовый каучук (ЭПМ) ил этиленпропилендиеновый каучук (ЭПДМ). ЭПМ- и ЭПДМ-каучуки могут дополнительно содержать до 40% полиэтилена. В качестве диенового компонента может содержаться 1,4-гексадиен, норборнадиен или циклопентадиен в количестве до 10 мас.%, в пересчете на все количество каучука.
Содержание этилена и пропилена не ограничено, пока температура стеклования аморфного компонента менее чем -20oC.
Типичный состав стандартных ЭПМ-каучуков следующий: например, 10-60% пропилена и 90-40 мас.% этилена. Из всего количества этилена от 0 до 40 мас. % приходится на долю чистого полиэтилена, остаток же образует вместе с пропиленом долю сополимера.
Соответственно составлены и ЭПДМ-каучуки, в сополимерную часть помимо пропилена и этилена дополнительно встроено от 1 до 10 мас.% диена вышеупомянутого типа. Вязкость расплава типичных ЭПМ- и ЭПДМ-каучуков находится в пределах от 0,5 до 300 г/10 мин (MFI 230/5).
Вязкость по Муни (измеренная при 121oC, ML) обычно составляет величины от 20 до 60. Напряжение при растяжении на 60% обычно составляет величины от 10 до 300 psi (понд/кв.дюйм, Ipsi = 6894,8 кг/м • с2 = 1 Па).
Обычно используемыми каучуками являются, например, каучуки, обозначаемые в настоящее время следующими торговыми марками: Висталон, Экскелор (Эксон Хамикало), Дутрал (Дутрал С.А.), Нордел (Дю Пон) или Буна (Веба).
Кроме изотактического полимера олефина и каучука, предложенная в изобретении формовочная масса может еще содержать обычные добавки, например стабилизаторы, антиокислители, УФ-абсорберы, светостабилизаторы, дезактиваторы металлов, улавливатели радикалов, наполнители и усилители, вещества, улучшающие совместимость, пластификаторы, добавки, улучшающие переработку пластмасс, эмульгаторы, пигменты, оптические отбеливатели, газообразователи.
Получение предложенных в изобретении формовочных масс может осуществляться обычными для переработки пластмасс методами смешивания полимеров и добавок.
Можно производить также спекание в быстроходном смесителе, если все компоненты формовочной массы находятся в порошкообразном виде.
Также можно использовать экструдер с месильно-смешивающим устройством на шнеке.
И наконец, подходящими смесителями являются также используемые в резиновой и каучуковой промышленности смесители.
Температура при смешивании зависит от конкретного состава формовочной массы и определяется при проведении стандартных испытаний.
Предложенная в изобретении формовочная масса отличается высокой твердостью одновременно при высокой ударной вязкости, в частности, и при температурах ниже 0oC. Главным образом, эта формовочная масса в форме деталей, полученных экструдированием, литьем под давлением, вспениванием или выдуванием, применяется повсюду, где желательна высокая жесткость, прочность, выдерживание заданных размеров и стойкость царапания одновременно с высокой ударной вязкостью и прочностью на разрыв и изгиб.
В автомобилестроении она используется для изготовления боковых защитных планок, спойлеров, уплотнений, облицовки крыльев, материалов амортизаторов, крыльев грузовых машин и тракторов, стойких к царапанию деталей внутренней отделки автомобилей или колпаков колес.
Кроме этого, предложенная в изобретении формовочная масса подходит, например, также и для изготовления прочных на разрыв пленок, мембранных фильтров, волокон и элементарных нитей.
Нижеследующие примеры служат для более подробного пояснения изобретения.
ИП = практический показатель (определяемый методом13C-ЯМР-спектроскопии)
hiso = средняя
изотактическая длина цепи (13
C-ЯМР)
hPE = средняя длина блока полиэтилена
VZ = коэффициент вязкости, измеренный при 135oC, 0,1%-ного раствора в
декагидронафталине в капиллярном
визкозиметре
MFI 230/5 = индекс расплава при 230oC, нагрузке 5 кг, в соответствии с ДИН 53735
Mw/Mn =
полидисперсность (мера распределения длин
цепей)
Определение температур плавления с DSC 20oC/мин
KDH = твердость при вдавливании шарика (руководствуясь ДИН 53456,
прессованная пластина толщиной 4 мм)
akv = ударная вязкость образца с надрезом в соответствии с ДИН 53453, измеряемая на вырезанных из прессованных пластин стандартных образцах
небольшого размера (50•6•4 мм) с
V-образным надрезом (угол скоса 45o, глубина надреза 1,3 мм, радиус надреза 1 мм).
Формировочные массы получали на двухшнековом экструдере ZSK 28 (фирмы Вернер энд Пфлейдерер).
Пример 1. Экструзией получили формовочную массу, состоящую из 90 мас.% изотактического полипропилена, в пересчете на всю формовочную массу, и 10 мас. % каучука следующего состава: 35,8 мас.% молекул пропилена и 64,2 мас.% молекул этилена; 40,4 мас.% массы каучука представляли собой полиэтилен и 59,6 мас.% этиленпропиленовый сополимер (ЭПБ), состоящий из 60,0мас.% молекул пропилена и 40,0 мас.% молекул этилена. MFI 230/5 каучука составлял 2 г/10 мин, коэффициент вязкости (VZ) - 236 см3/г, температура плавления DSC - 131oC и темпе6ратура стеклования DSC - -56oC. Используемый изотактический полипропилен имел изотактический показатель (ИП), равный 96,0%, hiso = 49, MDI 230/5 = 32 г/10 мин, температуру плавления 148oC; другие характеристики были следующими: Mw = 190000 г/моль; Mw/Mn = 2,2, VZ = 174 см3/г, отсутствуют экстрагируемые эфиром или гептаном АПО - составляющие.
9 кг порошка изотактического полипропилена смешали с 1 кг каучука и смесь стабилизировали от химического разложения при условиях экструзии добавлением 10 г пентаэритритил-тетра[3-(3,5-ди-т-бутил-4-оксифенил)пропионата]. В пяти зонах нагрева экструдера были установлены следующие величины температур: 120oC (зона загрузки), 150oC, 185oC и 180oC (корпус сопла). Шнек экструдера вращался со скоростью 300 об/мин; температура массы смеси в экструдере составляла 210oC.
Измерения, поведенные с полученной таким образом формовочной массой, дали следующие результаты: MFI (230/5)=31 г/10 мин; VZ = 168 см3 /г; KDH = 70 Нмм-2; akv = 10,1 мДжмм-2 (23oC); 5,4 мДжмм-2 и 4,3 мДжмм-2 (-20oC).
Температура плавления (DSC) = 128 и 148oC, температура стеклования Tg = - 56oC.
Сравнительный пример A. При тех же условиях, что и в примере 1, вместо предложенного в изобретении, не содержащего АПО (здесь не содержащего АПП; АПП = атактический полипропилен) изотактического полипропилена с распределением молекулярных весов в узком диапазоне был использован полипропилен со следующими характеристиками: MFI (230/5) = 27 г/10 мин; VZ = 230 см3/г; Mw = 312000 г/моль, Mw/Mn = 8,5; содержание АПП, определенное экстракцией гептаном: 2,3 мас.%.
Полученная таким образом формовочная
масса характеризуется следующими данными: MFI (230/5) = 24 г/10 мин; VZ = 245 см3/г;
Температура плавления (DSC) =
128/164oC, температура стеклования Tg = -56o
C.
Полимеры 2 - 4; сравнительные примеры B - D. Действовали как в примере 1 (примеры 2 - 4) или как в сравнительном примере A (сравнительные примеры B - D), однако вместо 10% каучука вводили 15% (пример 2; сравнительный пример B), 25% (сравнительный пример 3, сравнительный пример C) и 40% (пример 4, сравнительный пример D) каучука.
Результаты представлены в таблице 1.
Примеры 5 - 8. Были повторены примеры 1 - 4, однако в качестве предположенного в изобретении полипропилена был использован продукт со следующими характеристиками: ИП = 96,1%; hiso=53; MFI (230/5) = 4 г/10 мин; Температура плавления = 151oC, Mw = 369500, Mw/Mn = 2,0; VZ = 293 см3/г; отсутствуют экстрагируемые эфиром или гептаном АПП-составляющие.
Этот полипропилен перерабатывался методом экструзии вместе с 10 мас.% (примерно 5), 15 мас.% (пример 6), 25 мас.% (пример 7) и 40 мас.% (пример 8) каучука в формовочные массы с приведенными в таблице 2 характеристиками.
Сравнительные примеры E - H. Действовали как и в примерах 5 - 8, однако был использован не относящийся к настоящему изобретению полипропилен со следующими характеристиками: MFI (230/5) = 9 г/10 мин; VZ = 302 см3/г; Mw = 288000 г/моль; Mw/Mn = 5,7; содержание АПП при экстракции гептаном: 2,7 мас. %.
Полученные таким образом формовочные массы Ср. E (10%), Ср. F (15%), Ср. G (25%) Ср. H с 40%-ным содержанием каучука характеризуются приведенными в таблице 2 данными.
Пример 9. Был повторен пример 3, однако в качестве предложенного в изобретении полипропилена был использован продукт со следующими храктеристиками: ИП = 96,4%, hiso = 60; MFI (230/5) = 100 г/10 мин; Температура плавления = 148oC, Mw = 154500 г/моль, Mw/Mn = 2,2; VZ = 146 см3/г; отсутствуют экстрагируемые эфиром или гептаном АПП-составляющие.
Были измерены следующие характеристики формовочной массы, полученной экструзией с каучуком: MFI (230/5) = 79 дг/мин; VZ = 170 см3/г; KDH = 72 Нмм-2; akv = 28,6 (23oC), 17,5 (0oC) и 8, 7 мДжмм-2 (-20oC).
Пример 10. Был повторен пример 3, однако в качестве предложенного в изобретении полиолефина был использован этилен-пропиленовый сополимер следующего состава и следующих характеристик.
Содержание этилена 4.3%, включение этилена с средней длиной этиленовых блоков hPE ≤ 1,2, это означает, что большая доля этилена встроена изолированно. Величина II рядов пропилена составляла 96,8%. MFI (230/5) = 7,0 г/10 мин; VZ 289 см3/г; Mw = 402000 г/моль, Mw/Mn = 2,0. Отсутствуют экстрагируемые эфиром или гептаном АПП-составляющие.
Были измерены следующие характеристики формовочной массы, полученной экструзией с каучуком: MFI (230/5) = 3,5 г/10 мин; VZ = 272 см3/г; KDH = 50 Нмм-2; akv = 45,7 923oC), 27,9 (0oC), и 18,4 мДжмм-2 (-20oC).
Пример 11. Был повторен пример 3, однако в качестве предложенного в изобретении полиолефина был использован полученный при двух стадийном процессе этилен-пропиленовый блоксополимер, характеризующийся следующим составом и свойствами.
Содержание этилена 12,5%; расположение на фракции сополимера позволило получить состав из 76% полипропилена с II 96,8% и 24% этилен-пропиленового сополимера с содержанием этилена 52%, причем этилен встроен как изолированно, так и в виде блоков.
MFI (230/5) = 4,9 г/10 мин; VZ = 326 см3/г; Mw = 407000 г/моль, Mw/Mn = 3,1.
Отсутствуют экстрагируемые эфиром или гептаном АПП - составляющие.
Были измерены следующие характеристики формовочной массы, полученной
экструзией с каучуком: MFI (230/5) = 3,4 г/10 мин; VZ = 298 см3/г;
KDH = 39 Нмм-2; akv отсутствуют изломы образца при -40oC.
Полиолефиновая формовочная масса, содержащая изо тактический полиолефин с показателем изо тактичности не менее 85% и полученный в присутствии металлоценового катализатора и содержащая каучук с температурой стеклования ниже - 20oC. Количество вышеуказанного изо тактического полиолефина 20-99 маc. %, количество вышеуказанного каучука 1 - 80 маc.%. Изотактический полиолефин является гомополимером или сополимером, или их смесью на основе олефина с числом атомов углерода не ме- нее трех формулы Ra-CH=CH-Rb, в которой Raи Rb одинаковые или разные и означают атом водорода, C1-C10-алкил или Ra и Rв вместе со связывающими их атомами углерода образуют кольцо с числом атомов углерода от 4 до 22. На основе полиолефиновой формовочной массы получают формованные изделия с высокой ударной вязкостью и твердостью также и при низких температурах. 2 с. и 6 з.п. ф-лы, 2 табл.