Код документа: RU2356113C1
Изобретение относится к области ядерной технологии и радиохимии, а именно получения и выделения радиоактивных изотопов для медицинских целей. В частности, изобретение касается получения изотопов радиостронция82Sr и85Sr, первый из которых широко применяется в медицине при диагностике ряда заболеваний с использованием позитронно-эмиссионной томографии.
Известен способ получения радиостронция [L.F.Mausner, Т.Prach, S.C.Srivastava, J. Appl. Radiat. Isot. 1987. Vol.38, P.181-184], включающий облучение потоком ускоренных заряженных частиц мишеней из хлорида рубидия и радиохимическое выделение из него радиостронция. Производительность этого способа ограничена, что связано с низким содержанием рабочего вещества (рубидия) в материале, а также со свойствами облучаемого материала: низкая теплопроводность RbCl приводит к высоким температурам внутри мишени при ее облучении интенсивным потоком частиц, что вызывает радиолиз RbCl и коррозию оболочки мишени образующимся хлором.
Известен также способ получения радиостронция [Б.Л.Жуйков, В.М.Коханюк, В.Н.Глущенко и др., Радиохимия, 1994, том 36, с.494-498; B.L.Zhuikov, V.M.Kokhanyuk, N.A.Konyakhin, A.A.Razbash, J.Vincent, Proc. 6th workshop on targetry and target chemistry, Vancouver, Canada, 1995, TRIUMF, Vancouver, 1996, Ed. J.M.Liuk, T.J.Ruth, p.112; D.R.Phillips, E.J.Peterson, W.A.Taylor et al., J. Radiochim. Acta, 2000, vol.88. p.149-155], включающий облучение потоком ускоренных заряженных частиц мишени из металлического рубидия массой до ~50 г и радиохимическое выделение из него радиостронция путем растворения металлического рубидия в спирте, перевода продуктов в водный раствор хлоридов и ионного обмена. Высокая теплопроводность металлического рубидия позволяет облучать толстые мишени интенсивным потоком частиц, что делает этот способ эффективным для получения больших количеств82Sr (единицы Ки). Недостатком такого способа является то, что процедура радиохимического выделения радиостронция является сложной, длительной и опасной. Если рассматривать возможность производства большого количества радиостронция из гораздо более массивных мишеней металлического рубидия на широком пучке высокой интенсивности, то такой подход представляется вообще нереальным.
Наиболее близким к изобретению является способ получения радиостронция [Б.Л.Жуйков, В.М.Коханюк, Дж.Винсент, Патент RU 2102808 C1, 1998], включающий облучение потоком ускоренных заряженных частиц мишеней из металлического рубидия, плавление рубидия после облучения и извлечение из него радиостронция сорбцией на поверхности различных металлов или оксидов, погружаемых в расплавленный металлический рубидий. Основной недостаток этого способа заключается в том, что значительная часть образующегося радиостронция теряется, сорбируясь на стенках контейнера, в который переносят облученный рубидий, и на внутренней поверхности оболочки мишени, в особенности при облучении пучком высокой интенсивности. Так, при токах протонов порядка 0,5-1 мкА на внутренней поверхности оболочки мишени сорбируется 10-30% образующегося радиостронция, при увеличении интенсивности тока эта доля достигает 50-70%.
Техническим результатом данного изобретения является повышение эффективности получения радиостронция и упрощение технологии при его выделении из большой массы жидкого металлического рубидия путем сорбции непосредственно на внутренней оболочке мишени либо посредством извлечения радиостронция из циркулирующего рубидия при сорбции на нагреваемой поверхности или при фильтрации жидкого рубидия.
Технический результат достигается тем, что в способе получения радиостронция, включающем облучение потоком ускоренных заряженных частиц мишени, содержащей металлический рубидий внутри оболочки мишени, плавление рубидия внутри оболочки мишени после ее облучения, извлечение из него радиостронция сорбцией на поверхности различных материалов, контактирующих с жидким рубидием, в отличие от прототипа радиостронций извлекают сорбцией из жидкого металлического рубидия непосредственно на внутренней поверхности оболочки облученной мишени (возможные материалы оболочки - нержавеющая сталь, тантал, ниобий, вольфрам, молибден, никель или благородные металлы) путем выдерживания герметично закрытой мишени при температуре 275-350°С. Далее металлический рубидий откачивают из мишени, при этом 96±4% радиостронция остается сорбированным на внутренней поверхности оболочки мишени. Затем радиостронций можно перевести в раствор, заливая в мишень различные растворители, например органические спирты, воду и/или водные растворы минеральных кислот и др. Наиболее просто и технологично производить смывание сначала водой, потом минеральными кислотами.
Другой вариант технического решения состоит в том, что в качестве рабочего вещества мишени используют жидкий рубидий, который во время облучения циркулирует по замкнутому контуру с ловушкой. Радиостронций извлекают двумя методами. Первый метод - сорбция его на поверхности материалов, нагреваемых до 220-350°С, погруженных в жидкий рубидий (например, на поверхности металлических стержней в ловушке, изготовленных из нержавеющей стали, тантала, ниобия, титана, циркония, вольфрама, молибдена, никеля или благородных металлов), причем температуру рубидия, циркулирующего в контуре, поддерживают в диапазоне 10-220°С, а содержание кислорода в рубидии не превышает 3 вес.%. Второй метод - извлечение радиостронция, сорбированного на зольных частицах (твердая фаза), находящихся в жидком рубидии, с помощью фильтра - пористой мембраны (например, изготовленной из металла, не взаимодействующего с рубидием), причем содержание кислорода в циркулирующем рубидии поддерживают в диапазоне 0,1-4,0 вес.% путем добавления кислорода или рубидия. При этом температура выбирается в диапазоне 10-38°С такой, чтобы поддерживать определенное соотношение твердой и жидкой фазы. Далее радиостронций смывают с поверхности стержней или фильтра органическими спиртами, водой и/или водными растворами минеральных кислот. Этот вариант позволяет извлекать радиостронций из рубидия массой даже в килограммах, проводя одновременно его облучение пучком ускоренных протонов высокой интенсивности (несколько сот мкА).
В рубидии, содержащем кислород, кислород может находиться (в зависимости от температуры и концентрации) в растворенном виде или в виде коллоидных частиц оксида рубидия. Радиостронций, образующийся при облучении, находится в рубидии в виде истинного раствора или сорбированным на поверхности коллоидных частиц оксида рубидия. В зависимости от содержания кислорода при повышении температуры коллоидные частицы могут либо растворяться в рубидии, либо укрупняться и выпадать в осадок.
Сущность заявляемого способа поясняется ниже чертежами и таблицами.
В Табл.1 показано распределение радиостронция в рубидии по высоте вертикально расположенного контейнера (стеклянный цилиндр с внутренним диаметром 25 мм), в который облученный рубидий был перенесен из оболочки мишени. Концентрация радиостронция представлена как активность82Sr, рассчитанная на конец облучения, приходящаяся на единицу массы облученного рубидия. Видно, что большая часть радиостронция оседает вместе с частицами оксида рубидия (часть радиостронция концентрируется вблизи поверхности жидкого рубидия, контактирующей с газом, где содержание кислорода выше). Таким образом, при определенном содержании и размере коллоидных частиц (определяется параметрами устройства) стронций может транспортироваться с жидким рубидием без значительного осаждения на внутренней поверхности деталей контура.
На Фиг.1 показана оболочка мишени (объем 35 мл), из которой был удален металлический рубидий после нагревания 5 ч при 275°С (см. Пример 1).
Обозначения: 1-8 - зоны адсорбции стронция; 9 - полость оболочки мишени, заполнявшаяся рубидием.
В Табл.2 представлено распределение радиостронция, сорбированного на внутренней поверхности оболочки мишени (Фиг.1), по высоте мишени после удаления облученного рубидия. Радиостронций сорбировался на внутренней поверхности оболочки мишени, контактировавшей с рубидием (полость 9 на Фиг.1). Из таблицы следует, что большая часть радиостронция сконцентрирована в нижней части мишени на поверхности частиц оксида рубидия, выпавшего в осадок, другая часть распределена по всей внутренней поверхности оболочки мишени.
На Фиг.2 представлена зависимость степени сорбции радиостронция на внутренней поверхности оболочки облученной мишени (Фиг.1) при поэтапном повышении температуры, причем продолжительность нагревания при каждой температуре - 3 ч. При относительно низкой температуре (около 100°С) процесс адсорбции обратим, а при 275°С и выше происходит достаточно полная сорбция радиостронция, очевидно, в результате растворения коллоидных частиц оксида рубидия.
На Фиг.3 представлена зависимость сорбции радиостронция от времени нагревания облученной мишени при температуре 275°С. За 3 часа нагревания около 95% радиостронция сорбируется на внутренней поверхности оболочки мишени.
По окончании сорбции жидкий металлический рубидий удаляют из мишени и смывают радиостронций с внутренней поверхности оболочки мишени растворителем. Табл.3 показывает эффективность смывания радиостронция растворителями с поверхности мишеней разного объема.
Заявляемый способ получения радиостронция позволяет организовать его непрерывное производство. На Фиг.4 показана схема предлагаемой установки для непрерывного получения и извлечения82Sr из жидкометаллической рубидиевой мишени. Рубидий здесь циркулирует по контуру, который включает в себя непрерывно облучаемую мишень 1 в нержавеющей оболочке и ловушку 2 для адсорбционного извлечения82Sr. Контур снабжен индукционным насосом 3 для перекачки жидкого рубидия, системой контроля расхода 4 и чистоты 5 рубидия (стандартные датчики на основе твердого электролита). Температура жидкого рубидия в контуре поддерживается в пределах от 10 до 220°С (температура плавления рубидия 39°С, но при определенном содержании растворенного кислорода она понижается). Содержание кислорода в жидком металлическом рубидии не должно превышать 3 вес.%, чтобы не допускать выпадения осадка оксида рубидия. Для этого в системе контура предусмотрена подпитка 6 металлическим рубидием с определенным содержанием кислорода. Ловушка 2 для радиостронция, снабженная термостатом 7, расположена внутри горячей камеры 8 с инертной атмосферой. Сорбирующие стержни 9 нагревают с помощью теплопровода или встроенных нагревателей для лучшей сорбции радиостронция при температуре 220-350°С, причем можно нагревать только центральные стержни, чтобы минимизировать адсорбцию на стенках ловушки. В качестве сорбирующего элемента можно также использовать вертикально расположенный фильтр - тонкую гладкую металлическую мембрану 10 (Фиг.5), через которую постоянно фильтруется металлический рубидий, а зольные частицы, содержащие радиостронций, задерживаются. В этом случае содержание кислорода в циркулирующем рубидии поддерживают в диапазоне 0,1-4,0 вес.%. При этом температура в разных частях контура выбирается в диапазоне 10-38°С такой, чтобы поддерживать определенное соотношение твердой и жидкой фазы. Сорбирующие элементы 9 (Фиг.4) и 10 (Фиг.5) периодически извлекают (возможно, даже без приостановки пучка и циркуляции рубидия). В смежной горячей камере извлеченный сорбирующий элемент обмывают водой и раствором (например, HCl), высушивают и помещают обратно в ловушку. Смывы, содержащие82Sr, направляют для дальнейшей переработки и получения конечного продукта.
Дальнейшая доочистка выделенного радиостронция от радионуклидных и стабильных примесей проводится известными радиохимическими методами [B.L.Zhuikov, V.M.Kokhanyuk, N.A.Konyakhin, A.A.Razbash, J. Vincent, Proc. 6th workshop on targetry and target chemistry, Vancouver, Canada, 1995, TRIUMF, Vancouver, 1996, Ed. J.M.Liuk, T.J.Ruth, p.112; D.R.Phillips, E.J.Peterson, W.A.Taylor et al. // Radiochim. Acta, 2000, vol.88, p.149-155].
Осуществление заявленного способа получения радиостронция поясняется следующими примерами.
Пример 1.
Мишень, содержащую 53 г металлического рубидия, облучили током протонов 62 мкА в течение 2 часов в диапазоне энергий протонов 100-40 МэВ. После выдержки в течение двух недель мишень нагревали при 275°С в течение 5 часов, затем охладили и при 46°С в атмосфере азота извлекли облученный рубидий из оболочки. Обнаружили, что 97.5% радиостронция остались на ее внутренней поверхности. Затем послойно смывали радиостронций с внутренней поверхности оболочки, схематично показанной на Фиг.1, 0,5 М раствором HCl. Послойное смывание проводили, заливая раствор, увеличивая каждый раз объем заливаемого раствора (сначала до границы зоны 1, потом до границы зоны 2 и т.д.). После каждой заливки выдерживали залитый раствор в течение часа, и затем раствор откачивали. Полученное таким образом распределение радиостронция по высоте большой мишени (Табл.2) показывает, что большая часть радиостронция сконцентрирована в нижней части мишени на поверхности частиц оксида рубидия, выпавшего в осадок и затем растворившегося при повышенной температуре, другая часть распределена по внутренней поверхности оболочки мишени. Затем объединили все порции раствора. Сравнение содержания радионуклидов в облученной рубидиевой мишени и в суммарном 0,5 М растворе HCl демонстрирует селективность сорбции радиостронция (Табл.4): происходит очистка не только от рубидия, но также одновременно от изотопов селена и мышьяка.
Пример 2.
50 граммов металлического рубидия поместили в мишень в герметичную оболочку из нержавеющей стали и облучали током протонов 0,5 мкА в течение часа в диапазоне энергий протонов 100-40 МэВ. После выдержки в течение недели мишень нагрели до 47±2°С, в атмосфере азота извлекли облученный рубидий из оболочки и обнаружили, что 33% радиостронция остались на ее внутренней поверхности. Другую мишень, содержащую 53 грамма металлического рубидия, облучали током протонов 70 мкА в течение 5 часов в диапазоне энергий протонов 100-40 МэВ. После выдержки в течение недели мишень нагрели до 46±2°С, в атмосфере азота извлекли облученный рубидий из оболочки и обнаружили, что 64% радиостронция остались на ее внутренней поверхности. Этот пример показывает, что при сравнительно низкой температуре (по сравнению с 275°С, как в Примере 1) сорбция радиостронция на внутренней поверхности оболочки мишени не столь эффективна.
Пример 3.
Мишень, содержащую 52 грамма металлического рубидия, облучили током протонов 50 мкА в диапазоне энергий протонов 100-40 МэВ. Суммарный заряд протонов составил 960 мкА·час. После выдержки в течение трех недель мишень поместили в печь и нагревали при 300°С в течение 3 часов. Затем охладили мишень до 80°С. В атмосфере аргона вскрыли мишень и откачали из нее металлический рубидий. Радиостронций, сорбированный на внутренней поверхности оболочки мишени, изготовленной из нержавеющей стали, извлекали, заполняя мишень 0,5 М раствором HCl и оставляя на 1 час. Затем раствор откачали из мишени и повторили процедуру смыва радиостронция с внутренней поверхности оболочки мишени. Объединили обе порции и провели дальнейшую доочистку выделенного радиостронция. Радионуклидные и стабильные примеси, такие как75Se,74As, железо, никель, хром, удаляли на ионообменных смолах Chelex-100, Dowex 1×8 и Dowex 50×8. Общий выход82Sr составил 98-99%, радионуклидная чистота >99.9%.
Пример 4.
Рубидий, извлеченный из облученной мишени, содержащий 3,5% кислорода, анализировали на содержание коллоидных частиц путем измерения содержания радиостронция по высоте вертикально расположенного стеклянного контейнера (Табл.1). После этого жидкий рубидий, содержащий радиостронций на коллоидных частицах, перемешали (для выравнивания концентрации коллоидных частиц по объему) и пропустили его через пористый фильтр, изготовленный из неорганического материала оксида титана (пористые гранулы диаметром 0,2-0,4 мм) при 30°С. Достигалось практически полное (>98%) извлечение радиостронция из жидкого рубидия.
Таким образом, использование настоящего изобретения позволяет повысить эффективность получения радиостронция и упростить технологию его выделения за счет проведения сорбции радиостронция из жидкого металлического рубидия непосредственно на внутренней поверхности оболочки облученной мишени. Облученный металлический рубидий, удаленный из мишени, может быть повторно использован для наработки радиостронция. В случае облучения рубидия, циркулирующего в замкнутом контуре, заявляемый способ позволяет выделить радиостронций либо на поверхности материалов, погруженных в жидкий рубидий, либо на фильтре - пористой мембране.
Группа изобретений относится к области ядерной технологии и радиохимии и предназначена для получения и выделения радиоактивных изотопов для медицинских целей. Способ получения радиостронция включает облучение мишени потоком ускоренных заряженных частиц. Внутри оболочки мишени содержится металлический рубидий. После облучения мишени происходит плавление рубидия внутри оболочки мишени. Извлечение радиостронция из жидкого рубидия происходит сорбцией на поверхности различных материалов, контактирующих с жидким рубидием. Сорбцию производят при температуре сорбирующей поверхности 275-350°С. В качестве сорбирующей поверхности используют внутреннюю поверхность оболочки облученной мишени. После проведения сорбции рубидий из мишенной оболочки удаляют. Затем радиостронций смывают с внутренней поверхности оболочки мишени растворителями. Группа изобретений направлена на повышение эффективности получения радиостронция и на упрощение технологии при его выделении из большой массы жидкого металлического рубидия путем сорбции непосредственно на внутренней оболочке мишени. 3 н. и 5 з.п. ф-лы, 5 ил., 4 табл.
Способ получения радиостронция