Код документа: RU2502104C2
ОБЪЕКТ ИЗОБРЕТЕНИЯ
Изобретение относится к способу расчета стека фокуса, связанного с объемом объекта, к способу повышения разрешения изображений полученного стека фокуса, к способу измерения расстояний в трехмерных объектах съемки в режиме реального времени и к способу томографического измерения комплексной амплитуды электромагнитного поля, связанного с волновым фронтом, в режиме реального времени.
Настоящее изобретение позволяет узнавать расстояние и комплексную амплитуду электромагнитного поля в местоположениях поверхностей объектов съемки.
Кроме того, изобретение относится к камере для получения в режиме реального времени визуальной информации от трехмерных объектов съемки в широком диапазоне объемов, характеризующейся использованием объектива и матрицы микролинз, расположенной в пространстве изображения объектива, а также датчика, помещенного в фокус микролинз (который получает изображение, сформированное микролинзами), и средства обработки для параллельных вычислений, выполненного с возможностью расчета стека фокуса, связанного с объемом объекта, который измеряется камерой, и для вычисления с учетом последнего комплексной амплитуды электромагнитного поля (модуля и фазы) и трехмерного местоположения излучающих поверхностей в любой точке объектного пространства, воспринимаемого датчиком.
Настоящее изобретение может применяться в любой области или сфере применения, в которых требуется знание волнового фронта: наземные астрономические наблюдения, офтальмология, голография и т.д., равно как и в тех областях, где требуется метрология: реальные объекты съемки, объемное телевидение, полировка полупроводниковых светоприемников (CCD), автомобильное оборудование и т.д.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Оптика. Обработка изображений.
УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение связано с необходимостью одновременно выполнять трехмерное измерение комплексной амплитуды волнового фронта, связанного со всевозможными оптическими задачами, в которых является существенным качество изображения (например, для диагностики), и получать достаточно надежную и точную карту дальностей в широком диапазоне размеров (от нескольких микрон до километров), а также генерировать в режиме реального времени трехмерную информацию для трехмерного телевидения, трехмерных фильмов, для медицины и т.д.
Адаптивная (самонастраивающаяся) оптика для современных телескопов большого диаметра (GRANTECAN, Keck и др.) и будущих гигантских телескопов (диаметром 50 или 100 метров) фокусируется, измеряя трехмерное распределение атмосферной фазы с использованием вида томографии, называемого мультисопряженной оптикой. Отсутствие достаточного числа естественных небесных точечных источников, такого, чтобы один источник всегда находился в поле зрения при наблюдении объекта в телескоп, вынуждает использовать искусственные точечные источники - натриевые опорные звезды (на высоте 90 км).
В целях коррекции, предотвращения фокального анизопланатизма, воздействия всей атмосферы на световые лучи, приходящие от небесных объектов, необходимо использовать несколько этих искусственных звезд (по меньшей мере пять). Для генерирования каждой из них необходим мощный импульсный лазер с высокой разрешающей способностью, который изготавливается по весьма дорогостоящей технологии. Помимо недостатка высокой стоимости, мультисопряженная оптика способна измерять атмосферную фазу, связанную максимум с тремя горизонтальными возмущенными (турбулентными) слоями (при трех совместно измеряющих датчиках фазы), т.е. она сканирует очень малую долю трехмерного цилиндра, воздействующего на изображение. Кроме того, оценка фазы получается из столь сложных расчетов, что они серьезно затрудняют адаптивную коррекцию светового луча в пределах времени оптической стабильности атмосферы (10 мс) в видимом диапазоне.
Однако область применения изобретения не сосредоточена исключительно в области астрофизики. В медицинской оптике, или офтальмологии, основной интерес специалистов медицины к томографии человеческого глаза состоит в получении четкого изображения глазного дна (сетчатки) пациента, чтобы облегчить и ускорить диагностику. Внутриглазная жидкость, стекловидное тело и хрусталик глаза ведут себя подобно среде, где происходит аберрация изображения, которое может быть получено от глазного дна.
Несмотря на то, что в этом случае нет необходимости проводить измерения так часто, как в земной атмосфере (каждые 10 мс), поскольку это устойчивая деформация, требуется достаточное трехмерное разрешение, чтобы не только получить хорошее изображение глазного дна, но и зарегистрировать пространственное местонахождение возможных повреждений глаза.
Наконец, и в другой области применения, такой как телевизионные или киноизображения, имеются задачи, связанные с трехмерным телевидением, в котором одна из существенных проблем - это формирование контента в режиме реального времени, технология которого столь сложна и трудоемка, что требует человеческого вмешательства в ход процесса формирования трехмерного 3D-контента, который можно показывать на существующих 3D-дисплеях. В этом смысле оптимальная реализация предлагаемой здесь технологии на аппаратном обеспечении для параллельных вычислений (блок обработки изображений, GPU и программируемая вентильная матрица FPGA) позволяет формировать 3D-контент в режиме реального времени.
В данных направлениях упомянутой области техники в настоящее время известны подходы, согласно которым помещают микролинзы в плоскости изображения объектива, что стимулирует развитие устройств и способов измерения параметров изображений, несмотря на то, что в них не используется названная совокупность для осуществления томографических измерений оптической аберрации или для получения расстояний в объекте съемки.
Например, Adelson и Wang (Single lens stereo with a plenoptic camera // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1992. Vol. 14, No. 2. P. 99-106) используют устройство для получения расстояний способом, совершенно отличным от предлагаемого в настоящем изобретении.
Ren и др. (Light field photography with a hand-held plenoptic camera // Stanford Tech. Report CTSR 2005-02) применяют метод сечений Фурье, связанный с микролинзами только в плоскости изображения, для получения резких фотоснимков действительных объектов в пределах объема в несколько кубических метров, естественно, с более высоким качеством, чем дает методика с обычной глубиной резкости. В этом случае предложенная методика позволяет рассчитывать стек фокуса, если она применяется для расстояний, покрывающих требуемый объем, в том числе требуемый для вычислений, многократно, а это может сделать невозможной обработку в реальном времени.
В отношении процессов извлечения информации известно, что получение фотоизображения из функции светового поля, или четырехмерной пленоптической функции, f(u, v, x, y) возможно путем интегрирования всех лучей, достигающих каждой точки (x, y) датчика, приходящих из каждой точки (u, v) плоскости линзы. Посредством названного интегрирования ослабляется эффект пленоптического поглощения (захвата). Другими словами, если лучи, поглощенные микролинзами, перенаправляются в различные точки пространства, то, чтобы восстановить удовлетворительное изображение, необходимо сгруппировать их заново, т.е. снова проинтегрировать в общем в точке (x, y), которая получается из различных угловых величин (u, v).
Изображение, получаемое действием оператора
Оценка этого оператора для каждого возможного расстояния αx требует O(N4) операций, и, следовательно, для N плоскостей потребуется O(N5) операций, где N-разрешение, с которым строится каждая переменная пленоптической функции.
Ren Ng показал также, что если рассчитывается четырехмерное преобразование Фурье светового поля, и расчет включает O(N4log2N) операций сложения и умножения комплексных чисел, то различные перефокусируемые плоскости могут быть получены преобразованием усеченного двумерного вращения и двумерного обратного преобразования Фурье четырехмерной функции преобразования светового поля. Сложность вычислений каждого двумерного преобразования O(N2)+O(N2log2N) следует прибавить в начальную стоимость преобразования Фурье измеряемой четырехмерной функции.
Следовательно, необходим способ, который позволяет снизить стоимость вычислений и, соответственно, время расчета стека брекетинга фокуса.
Способ, наиболее тесно связанный со способом расчета стека фокуса согласно настоящему изобретению, - это быстрое дискретное (или, согласно автору, приближенное) преобразование Радона, независимо предложенное Götz и Druckmüller (A fast digital Radon transform - an efficient means for evaluating the Hough transform // Pattern Recognition. 1996. Vol. 29, No. 4. P. 711-718) и Brady (A fast discrete approximation algorithm for the Radon transform // SIAM J. Comput. 1998. Vol. 27, No. 1. P. 107-119). Согласно этому способу, суммирование величин вдоль ряда дискретных кривых, каждая из которых характеризуется углом наклона и сдвигом относительно исходной кривой, привязанными к двумерной сетке данных, оценивается совместно, посредством O(N2 log2N) сумм, в которых прямая оценка для каждой кривой потребовала бы O(N) операций, и, следовательно, оценка для N наклонов и N сдвигов потребовала бы O(N3) сумм.
Наконец, безотносительно к процессам получения информации об объекте съемки и относительно системы согласно настоящему изобретению, Clare и Lane (Wave-front sensing from subdivision of the focal plane with a lenslet array // J. Opt. Soc. Am. A. 2005. Vol. 22, No. 1. P. 117-125) предложили систему, в которой массив микролинз помещается точно в фокусе объектива, а не в любом месте плоскости изображения, и благодаря этому фаза волнового фронта определяется только в зрачке объектива.
Следовательно, необходим способ, который позволяет определять фазу волнового фронта топографически, т.е. на любом расстоянии в трехмерном объеме объектного пространства, а не только в зрачке объектива.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение устраняет описанный выше недостаток, обеспечивая в первом аспекте способ расчета стека фокуса, связанного с объектом съемки, согласно пункту 1 формулы изобретения. Данный способ позволяет значительно снизить стоимость вычислений и время расчета, что влечет за собой существенное усовершенствование известных способов в этой области техники.
Дополнительной целью настоящего изобретения является предложение способа измерения расстояний в объекте съемки и способ измерения комплексной амплитуды электромагнитного поля, численно оптимизированных и подходящих для параллельных вычислений.
Настоящее изобретение позволяет:
- ограничиваться одиночным измерением и единичным датчиком в течение каждого периода стабильности атмосферы;
- восстанавливать модуль и фазу, связанные с каждым возмущенным горизонтальным слоем, т.е. томографировать всю атмосферу при помощи способа расчета стека брекетинга фокуса. Способ быстрый, если принять во внимание, сколько и каких в нем используется операций (сумм), но может быть еще ускорен при грамотном применении в блоках обработки изображений (GPU) или вычислительных блоках изменяемого назначения, таких как программируемая вентильная матрица (FPGA);
- избежать необходимости использования искусственных лазерных звезд, поскольку изобретение способно осуществлять восстановление изображения объекта в реальном времени после поступления изображения в земную атмосферу, так как для этого нового способа не требуется калибровки по сигналу из опорной точки для последующей обратной свертки.
Способ расчета стека фокуса по настоящему изобретению, называемый преобразованием суммирования условных плоскостей в гиперкубе (SCPH), позволяет получать ряд плоскостей трехмерного объекта съемки, сфокусированных в различных местоположениях вдоль оптической оси, и снизить вычислительную сложность процесса.
Способ расчета стека фокуса по настоящему изобретению основан на принципах многошкальных способов вычисления быстрого дискретного преобразования Радона и благодаря повторному использованию промежуточных результатов минимизирует число операций, которые следует выполнить.
В целях снижения вычислительной стоимости расчета стека фокуса в способе по настоящему изобретению используется преобразование суммы по длине условных плоскостей в дискретных гиперкубах. Следует отметить, что интеграл формирования фотоснимка геометрически эквивалентен выполнению интегрирования по длине плоскостей функции, область определения которой есть четырехмерный гиперкуб. Тогда нетрудно понять, что интеграл формирования фотоснимка - это частный случай оператора
Предлагаемый способ расчета стека фокуса состоит в совместном вычислении суммы значений четырехмерной функции f(u, v, x, y) на плоскостях, таких, что координаты принадлежащих им точек одновременно удовлетворяют выражениям x=ur+j и y=vr+k, и - при определенных условиях - в повторном использовании частных сумм для точек, принадлежащих более чем одной дискретной плоскости, где u и v - горизонтальная и вертикальная размерности стека фокуса на плоскости датчика, а j, k и r - размерности по горизонтали, вертикали и глубине стека фокуса, который необходимо получить. Другими словами, алгоритм приближенного вычисления дискретного быстрого преобразования Радона, которое всегда существовало для случая интегралов вдоль кривой на плоскости, распространяется на интегралы по четырехмерным плоскостям в четырехмерном гиперкубе при дополнительном условии, что горизонтальные и вертикальные наклоны одинаковы.
Частичное преобразование данных до шага m определяется в виде
где полагается, что функция имеет размерность NxNxNxN; n=log2N; функция
описывает дискретный способ, в котором последовательность точек
Если на шаге 0 преобразуемые данные приравнены к введенным данным:
является аппроксимацией интеграла формирования фотоснимка
Другие N плоскостей по глубине могут быть вычислены аналогично для отрицательных наклонов. Поскольку оба полуобъема отсчитываются от глубины 0, будет получен полный стек брекетинга фокуса, составленный из 2N-1 изображений, перефокусированных для различных расстояний.
Рекуррентная формула, связывающая шаги m и m+1, полностью определяет способ и должна применяться n раз:
Следует заметить, что область, для которой описано частичное преобразование
Продолжая этот процесс согласно предложенному здесь способу, можно восстанавливать глубины, модули и фазы комплексной амплитуды волнового фронта в каждом местоположении поверхности объекта съемки, что позволяет проводить полное трехмерное сканирование объекта в реальном времени, а, следовательно, способ хорошо подходит для вышеупомянутых областей применения.
Способ расчета стека фокуса по настоящему изобретению имеет то преимущество, что не требует операций умножения или действий с тригонометрическими функциями, нужно только суммирование, и его вычислительная сложность по порядку величины равна O(N4) для конечного объема, содержащего 2N-1 фокальных плоскостей снимка, полученных от светового поля размерности N4, на различных глубинах.
Способ по настоящему изобретению позволяет вычислять стек фокуса для полного объема при меньшем числе операций, чем используя другие современные способы получения стека фокуса (Ren Ng), основанные на вычислении отдельной плоскости.
Тем не менее, проблема, порождаемая при захвате четырехмерного светового поля, состоит в необходимости использования двумерных датчиков. Для получения полного четырехмерного объема по информации от двумерного датчика необходим датчик с очень высоким разрешением. Так, для датчика, имеющего O(N4) пикселей, возможно получить лишь стек брекетинга фокуса, собранный из изображений, имеющих по O(N2) пикселей, а, следовательно, можно использовать лишь O(N2) значений расстояния. Это снижение разрешения порядка O(N2) вызывает необходимость использовать очень дорогостоящие датчики.
Изобретение относится к способу расчета стека фокуса, соответствующего объектному пространству, по его дискретной пленоптической функции как преобразование сумм по длине условных плоскостей в четырехмерном гиперкубе. Изобретение относится также к способу повышения разрешения полученного стека фокуса. Кроме того, изобретение относится к двум способам восстановления в режиме реального времени глубин и, соответственно, модулей и фаз комплексной амплитуды волнового фронта в каждом местоположении поверхностей трехмерного объекта съемки, а также к системе, выполненной с возможностью осуществления вышеупомянутых способов. Технический результат - снижение времени вычисления. 5 н. и 5 з.п. ф-лы, 3 ил.
Комментарии