Код документа: RU2458734C2
Изобретение относится к способу получения пропиленовых терполимеров. В частности, настоящее изобретение относится к получению пропиленовых терполимеров, в частности подходящих для использования в качестве пленок, таких как пленки, отлитые из раствора, дву- или одноосноориентированные пленки и термосвариваемые пленки, демонстрирующие хорошие оптические свойства и превосходную свариваемость в сочетании с хорошими усаживаемостью и мягкостью.
Изобретение также относится к пропиленовым терполимерам, обладающим специфическими химическими свойствами и характеризующимся специфическим уровнем содержания сомономерных звеньев и специфическим соотношением между уровнями содержания различных сомономерных звеньев.
Пленки, полученные из пропиленовых сополимеров или терполимеров, на сегодняшнем уровне техники известны.
Пропиленовые сополимеры или терполимеры используют вследствие демонстрации ими в сопоставлении с пропиленовыми гомополимерами лучшей ударопрочности, меньшей жесткости и лучшей прозрачности. Однако в некоторых случаях трудно отыскать приемлемый баланс между данными свойствами, в частности, при желательности получения свойств, противостоящих друг другу. Например, при желании наличия определенной степени мягкости этого обычно добиваются в присутствии большого количества фракций, растворимых в ксилоле, что делает изделия непригодными для использования в областях применения, включающих контакт с продуктами питания.
В патенте США №6221984 описываются статистические сополимеры пропилена с этиленом и, по меньшей мере, одним С4-С10 альфа-олефином и способ получения таких статистических сополимеров, которые могут быть использованы в пленках, волокнах или формованных изделиях. В частности, терполимеры, полученные по способу, раскрытому в данном описании изобретения, являются, в особенности, хорошо подходящими для использования в упаковочных пленках для продуктов питания вследствие своих низких уровней содержания растворимых в ксилоле полимерных частиц (примеры 1-3), но непригодными для областей применения, требующих наличия определенной степени мягкости.
С другой стороны, в случае увеличения уровня содержания фракции, растворимой в ксилоле (сравнительные примеры 1 и 2), и увеличения мягкости становятся неудовлетворительными температура инициирования сварки и оптические свойства.
В документе WO 03/037981 описываются трубы, изготовленные, по меньшей мере, из полипропиленовой композиции, полученной по способу, реализуемому в реакторе, включающем две взаимосвязанные зоны полимеризации. Упомянутый способ обеспечивает получение полипропиленовых композиций, характеризующихся высокими жесткостью и ударопрочностью, в особенности, хорошо подходящих для использования в трубах. В случае пропиленовой композиции в виде сополимера пропилена-этилена-бутена-1 модуль упругости при изгибе будет большим чем 700 МПа.
Пропиленовая композиция, описанная в документе WO 03/037981, не может быть использована при получении пленок в случае необходимости наличия определенной степени мягкости.
Кроме того, в документе WO 98/58971 описывается способ получения терполимеров пропилена, этилена и других альфа-олефинов, включающий использование соединенных совместно суспензионных и газофазных реакторов. Способ включает использование комбинации из двух и более реакторов, соединенных в каскад, для получения полимерного продукта, характеризующегося соотношением между уровнями содержания этилена и бутена, меньшими, чем 0,3. Такое распределение сомономеров приводит к получению материала, демонстрирующего низкий уровень содержания вещества, растворимого в гексане, и хорошие оптические свойства.
Недостатком, связанным с вышеупомянутым терполимерным продуктом, также являются чрезмерно низкая температура плавления и обусловленное этим узкое окно перерабатываемости. Собственно говоря, при заданном уровне содержания сомономерных звеньев, чем большей будет температура плавления сополимера, тем шире будет его окно перерабатываемости.
Поэтому ощущается потребность в пропиленовых полимерах, подходящих для использования при получении пленок, демонстрирующих наличие оптимального баланса между мягкостью, оптическими свойствами, перерабатываемостью, а также пригодных для использования в областях применения, включающих контакт с продуктами питания.
Цель настоящего изобретения заключается в предложении способа получения пропиленовых терполимеров, содержащих сомономерные звенья, образованные из этилена и из одного альфа-олефина, выбираемого из группы С4-С8 альфа-олефинов, характеризующихся совокупным уровнем содержания сомономерных звеньев, не меньшим, чем 8 %(мас.), и величиной массового соотношения между этиленом и С4-С8 альфа-олефинами в диапазоне от 0,1 до 0,8, при этом упомянутый способ реализуют в газофазном реакторе, включающем две взаимосвязанные зоны полимеризации.
Как, к удивлению, обнаружили, при реализации способа, соответствующего настоящему изобретению, можно добиться удовлетворения вышеупомянутых потребностей и, в частности, получить пропиленовые терполимеры, характеризующиеся высоким уровнем содержания фракции, растворимой в ксилоле, что позволит получить пленки, характеризующиеся пониженными температурами инициирования сварки и пониженной мутностью.
Способ полимеризации, реализуемый в реакторе газофазной полимеризации, включающем, по меньшей мере, две взаимосвязанные зоны полимеризации, описывается в европейском патенте ЕР 782587.
Способ реализуют в первой и во второй взаимосвязанных зонах полимеризации, в которые подают пропилен, этилен и С4-С8 альфа-олефин в присутствии системы катализатора, и из которых выгружают полученный полимер. Растущие полимерные частицы перетекают через первую из упомянутых зон полимеризации (реактор с восходящим потоком) в условиях быстрого псевдоожижения, покидают упомянутую первую зону полимеризации и поступают во вторую из упомянутых зон полимеризации (реактор с нисходящим потоком), через которую они перетекают в уплотненной форме под действием силы тяжести, покидают упомянутую вторую зону полимеризации и повторно поступают в упомянутую первую зону полимеризации, таким образом, формируя циркуляцию полимера между двумя зонами полимеризации. В общем случае условия быстрого псевдоожижения в первой зоне полимеризации формируют в результате подачи газовой смеси мономеров в позицию ниже точки повторного ввода растущего полимера в упомянутую первую зону полимеризации. Скорость транспортирующего газа, подаваемого в первую зону полимеризации, превышает скорость транспортирования в рабочих условиях и обычно находится в диапазоне от 2 до 15 м/сек. Во второй зоне полимеризации, в которой полимер перетекает в уплотненной форме под действием силы тяжести, достигаются высокие значения плотности твердого вещества, которые приближаются к объемной плотности полимера, таким образом, в направлении течения может быть получен положительный прирост давления, так что полимер становится возможным повторно вводить в первую зону реакции без помощи механических устройств. Таким образом, формируется циркуляция в «цикле», которую определяют баланс давлений между двумя зонами полимеризации и потеря напора при вводе в систему. Необязательно в зонах полимеризации выдерживают присутствие одного или нескольких инертных газов, таких как азот или алифатический углеводород, в таких количествах, чтобы сумма парциальных давлений инертных газов предпочтительно находилась бы в диапазоне от 5 до 80% от совокупного давления газов. Рабочими параметрами, такими как, например, температура, являются те, которые являются обычными в способах газофазной полимеризации олефинов, например, от 50 до 120°С. Способ может быть реализован при рабочем давлении в диапазоне от 0,5 до 10 МПа, предпочтительно от 1,5 до 6 МПа.
Предпочтительно различные компоненты катализаторов подают в первую зону полимеризации в любой точке упомянутой первой зоны полимеризации. Однако они также могут быть поданы и в любой точке второй зоны полимеризации. Для регулирования молекулярной массы растущего полимера могут быть использованы регуляторы молекулярной массы, известные на современном уровне техники, в частности, водород.
Благодаря использованию средств, описанных в документе WO 00/02929, можно полностью или частично предотвратить поступление газовой смеси, присутствующей в реакторе с восходящим потоком, в реактор с нисходящим потоком; в частности, этого предпочтительно добиваются в результате введения в реактор с нисходящим потоком газовой и/или жидкостной смеси, характеризующейся составом, отличающимся от состава газовой смеси, присутствующей в реакторе с восходящим потоком. В соответствии с особенно выгодным вариантом реализации настоящего изобретения ввод в реактор с нисходящим потоком упомянутой газовой и/или жидкостной смеси, характеризующейся составом, отличным от состава газовой смеси, поступающей в реактор с восходящим потоком, эффективно предотвращает поступление последней смеси в реактор с нисходящим потоком. Поэтому можно получить две взаимосвязанные зоны полимеризации, характеризующиеся различными составами мономеров и, таким образом, способные производить полимеры, обладающие различными свойствами.
Обычно при получении пропиленового терполимера в реакторе газофазной полимеризации, включающем две взаимосвязанные зоны полимеризации, в соответствии с документом WO 00/02929 зоной полимеризации, достижимой для этилена, является реактор с восходящим потоком.
В реакторе с восходящим потоком молярная концентрация этилена (выраженная в % (моль) при расчете на совокупное количество мономеров в газовой фазе) обычно находится в диапазоне от 0,5 до 5% (моль), предпочтительно от 1 до 4% (моль), а молярная концентрация С4-С8 альфа-олефина находится в диапазоне от 7 до 20% (моль), предпочтительно от 9 до 18% (моль). При неиспользовании эффекта барьера концентрации мономеров в реакторе с нисходящим потоком будут подобны тем, что и в реакторе с восходящим потоком. В то время как благодаря наличию эффекта барьера, создаваемого описанной ранее подачей газа и/или жидкости, состав газовой фазы в реакторе с нисходящим потоком является в меньшей степени достижимым для этилена и в общем случае соответствует 0,1-0,5% (моль), предпочтительно от 0,2 до 0,4% (моль) этилена, тогда как уровень содержания С4-С8 альфа-олефина находится в диапазоне от 5 до 15% (моль), предпочтительно от 6 до 13% (моль). В данном случае соотношение между уровнем содержания этилена в реакторе с восходящим потоком и уровнем содержания этилена в реакторе с нисходящим потоком обычно является большим чем 3, а более часто большим чем 4, в то время как соотношение между уровнем содержания С4-С8 альфа-олефина в реакторе с восходящим потоком и уровнем содержания С4-С8 альфа-олефина в реакторе с нисходящим потоком обычно является большим чем 1,1, а предпочтительно находится в диапазоне от 1,1 до 2.
Катализаторы Циглера-Натта, подходящие для использования при получении пропиленовых терполимеров по настоящему изобретению, включают твердый компонент катализатора, содержащий, по меньшей мере, одно соединение титана, имеющее, по меньшей мере, одну связь титан-галоген, и, по меньшей мере, электронодонорное соединение (внутренний донор), где оба соединения нанесены на носитель хлорид магния. Системы катализаторов Циглера-Натта дополнительно содержат алюминийорганическое соединение в качестве существенного сокатализатора и необязательно внешнее электронодонорное соединение.
Подходящие для использования системы катализаторов описываются в европейских патентах ЕР 45977, ЕР 361494, ЕР 728769, ЕР 1272533 и в международной патентной заявке WO 00/63261.
Предпочтительно твердый компонент катализатора содержит Mg, Ti, галоген и донор электрона, выбираемый из сложных моно- и диэфиров ароматических дикарбоновых кислот, имеющих группы -СООН в орто-положении, где, по меньшей мере, один из гидрокарбильных радикалов R групп -COOR содержит от 1 до 20 атомов углерода. В особенности, предпочтительно донор электронов выбирают из ди-н-пропил-, ди-н-бутил-, диизобутил-, ди-н-гептил-, ди-2-этилгексил-, ди-н-октил-, динеопентилфталатов.
В соответствии с одним предпочтительным способом твердый компонент катализатора может быть получен в результате проведения реакции между соединением титана, описывающимся формулой Ti(OR)n - yXy, где n представляет собой валентность титана, а у представляет собой число в диапазоне от 1 до n, предпочтительно TiCl4, и хлоридом магния, образующимся из аддукта, описывающегося формулой MgCl2·pROH, где р представляет собой число в диапазоне от 0,1 до 6, предпочтительно от 2 до 3,5, а R представляет собой углеводородный радикал, содержащий 1-18 атомов углерода. Аддукт подходящим образом может быть получен в сферической форме в результате перемешивания спирта и хлорида магния в присутствии инертного углеводорода, несмешиваемого с аддуктом, при проведении операции в условиях перемешивания при температуре плавления аддукта (100-130°С). После этого эмульсию быстро закаливают, тем самым вызывая затвердевание аддукта в форме сферических частиц. Примеры сферических аддуктов, полученных в соответствии с данной методикой, описываются в документах US 4399054 и US 4469648.
Таким образом полученный аддукт может быть непосредственно введен в реакцию с соединением Ti или он может быть предварительно подвергнут термически контролируемому деалкоголированию (80-130°С) для получения аддукта, у которого количество молей спирта в общем случае является меньшим чем 3, предпочтительно находится в диапазоне от 0,1 до 2,5. Реакция с соединением Ti может быть проведена в результате суспендирования аддукта (подвергнутого деалкоголированию или как такового) в холодном TiCl4 (в общем случае при 0ºС); смесь нагревают до 80-130°С и выдерживают при данной температуре в течение 0,5-2 часов. Обработка под действием TiCl4 может быть проведена один или несколько раз. Во время обработки под действием TiCl4 может быть добавлен внутренний донор, и обработка электронодонорным соединением может быть повторена один или несколько раз. В общем случае внутреннее электронодонорное соединение используют при молярном соотношении в расчете на MgCl2 в диапазоне от 0,01 до 1, предпочтительно от 0,05 до 0,5. Получение компонентов катализатора в сферической форме описывается, например, в европейской патентной заявке ЕР-А-395083 и в международной патентной заявке WO 98/44009. Твердые компоненты катализатора, полученные в соответствии с вышеупомянутым способом, характеризуются площадью удельной поверхности (согласно методу БЭТ) в общем случае в диапазоне от 20 до 500 м2/г, а предпочтительно от 50 до 400 м2/г и совокупной пористостью (согласно методу БЭТ), большей чем 0,2 см3/г, предпочтительно находящейся в диапазоне от 0,2 до 0,6 см3/г. Пористость (согласно Hg-методу), обусловленная порами, имеющими радиус, доходящий вплоть до 10000 Å, в общем случае находится в диапазоне от 0,3 до 1,5 см3/г, предпочтительно от 0,45 до 1 см3/г.
Алюминийорганическое соединение предпочтительно представляет собой алкил-Al, выбираемый из производных триалкилалюминия, таких как, например, триэтилалюминий, триизобутилалюминий, три-н-бутилалюминий, три-н-гексилалюминий, три-н-октилалюминий. Также могут быть использованы и смеси триалкилалюминиев с алкилалюминийгалогенидами, алкилалюминийгидридами или алкилалюминийсесквихлоридами, такими как AlEt2Cl и Al2Et3Cl3.
Предпочтительные внешние электронодонорные соединения включают соединения кремния, сложные эфиры, такие как этил(4-этоксибензоат), гетероциклические соединения и, в частности, 2,2,6,6-тетраметилпиперидин и кетоны. Еще одним классом предпочтительных внешних донорных соединений является класс соединений кремния, описывающихся формулой Ra5Rb6Si(OR7)c, где а и b представляют собой целое число в диапазоне от 0 до 2, с представляет собой целое число в диапазоне от 1 до 3, а сумма (a+b+c) равна 4; R5, R6 и R7 представляют собой алкильный, циклоалкильный или арильный радикалы, содержащие 1-18 атомов углерода, необязательно включая гетероатомы. В особенности, предпочтительными являются метилциклогексилдиметоксисилан, дифенилдиметоксисилан, диизопропилдиметоксисилан, метил-трет-бутилдиметоксисилан, дициклопентилдиметоксисилан, 2-этилпиперидинил-2-трет-бутилдиметоксисилан и 1,1,1-трифторпропил-2-этилпиперидинилдиметоксисилан и 1,1,1-трифторпропилметилдиметоксисилан. Внешнее электронодонорное соединение используют в таком количестве, чтобы получить молярное соотношение между алюминийорганическим соединением и упомянутым электронодонорным соединением в диапазоне от 0,1 до 500.
Каталитическая система может быть введена в предварительный контакт (форполимеризацию) с небольшими количествами олефинов. Молекулярная масса пропиленовых терполимеров может быть отрегулирована при использовании известных регуляторов, таких как водород.
Пропиленовые терполимеры, полученные по способу настоящего изобретения, содержат сомономерные звенья, образованные из этилена и из одного альфа-олефина, выбираемого из группы С4-С8 альфа-олефинов, и характеризуются уровнем содержания этилена в диапазоне от 0,5 до 6%(мас.), предпочтительно от 1 до 4%(мас.), и уровнем содержания сомономерных звеньев, образованных из С4-С8 альфа-олефинов, в диапазоне от 2,5 до 15%, предпочтительно от 4 до 15%(мас.), более предпочтительно от 5 до 13%(мас.). Сомономерные звенья, образованные из С4-С8 альфа-олефинов, предпочтительно являются образованными из бутена-1.
Пропиленовые терполимеры, соответствующие настоящему изобретению, характеризуются низкой температурой инициирования сварки в диапазоне от 100 до 116°С, уровнем содержания фракции, растворимой в гексане, меньшим чем 6, предпочтительно меньшим чем 5,5%, а более предпочтительно меньшим чем 4, индексом текучести расплава (MFR «L») в диапазоне от 0,1 до 100 г/10 мин, предпочтительно от 0,1 до 50 г/10 мин.
При необходимости молекулярная масса терполимеров может быть промодифицирована в результате проведения легкого крекинга в соответствии с хорошо известными методиками.
Еще одной целью настоящего изобретения является получение пропиленовых терполимеров, в особенности, хорошо подходящих для использования в областях применения, таких как пленки, отлитые из раствора, и ориентированные пленки, пленки ДОПП, термосвариваемые пленки, и во всех областях применения, требующих наличия термосвариваемости и мягкости. Такие пропиленовые терполимеры демонстрируют наличие хорошего баланса между оптическими свойствами и свариваемостью в сочетании с хорошими усаживаемостью и мягкостью.
Пленки, полученные при использовании упомянутых пропиленовых терполимеров, характеризуются очень низкой процентной величиной мутности, меньшей чем 1%, предпочтительно меньшей чем 0,7%, и очень высокой процентной величиной блеска, большей чем 88,5%, что свидетельствует о наличии у пленок, соответствующих настоящему изобретению, оптических свойств, которые оптимальны для вышеупомянутых областей применения.
Упомянутые предпочтительные пропиленовые терполимеры, соответствующие изобретению, характеризуются:
- уровнем содержания фракции, растворимой в ксилоле, большим чем 9% (мас.);
- совокупным уровнем содержания сомономерных звеньев, не меньшим чем 8% (мас.);
- соотношением между уровнями содержания этилена и С4-С8 альфа-олефинов в диапазоне от 0,1 до 0,8; и
- температурой плавления Tm, большей или равной (28,013Х+120,5)°С, предпочтительно большей или равной (21,087Х+123,73)°С, где Х представляет собой величину массового соотношения между уровнем содержания этилена и уровнем содержания С4-С8 альфа-олефинов.
Для выдерживания оптимального баланса свойств пропиленовых терполимеров, в частности, в отношении высоких температур плавления и мягкости, предпочитается установить баланс между уровнями содержания этилена и бутена-1: говоря конкретно, в случае уровня содержания этилена, меньшего чем 2,5% (мас.), уровень содержания бутена-1 предпочтительно является большим чем 10% (мас.). В то время как в случае уровня содержания этилена, большего чем 2,5% (мас.), уровень содержания бутена-1 является меньшим чем 10% (мас.), при том условии, что совокупный минимальный уровень содержания сомономерных звеньев является не меньшим чем 8% (мас.).
Основной областью применения пропиленовых терполимеров изобретения является получение пленок, в частности ориентированных пленок и термосвариваемых пленок. Ориентированные пленки, содержащие пропиленовые терполимеры изобретения, демонстрируют хорошие оптические свойства и превосходную свариваемость в сочетании с хорошими усаживаемостью и мягкостью.
Как было установлено, пленки, содержащие пропиленовые терполимеры, обладающие описанными ранее характеристиками, характеризуются высокой степенью усадки (большей чем 30%, при 110°С, а предпочтительно большей чем 35%).
Кроме того, вследствие относительно высокого уровня содержания растворимой в ксилоле фракции пропиленовых терполимеров, соответствующих изобретению, пленки, полученные из них, являются, в особенности, хорошо подходящими для использования в областях применения, требующих наличия определенной степени мягкости, демонстрируемой модулем упругости при изгибе, меньшим чем 750 МПа, а предпочтительно находящимся в диапазоне от 500 до 700 МПа. Кроме того, упомянутые пленки характеризуются высокой температурой плавления, что свидетельствует о широком окне перерабатываемости, в сочетании с низкой температурой инициирования сварки и описанными ранее хорошими оптическими свойствами.
Пропиленовые терполимеры изобретения могут дополнительно содержать, по меньшей мере, один зародышеобразователь. Предпочтительно пропиленовые терполимеры содержат вплоть до 2500 ч./млн, более предпочтительно от 500 до 2000 ч./млн, по меньшей мере, одного зародышеобразователя.
Пропиленовые терполимеры, содержащие, по меньшей мере, один зародышеобразователь, являются, в особенности, хорошо подходящими для использования при получении пленок по способу экструдирования с раздувом.
По меньшей мере, один зародышеобразователь может быть выбран из числа неорганических добавок, таких как тальк, диоксид кремния или каолин, солей монокарбоновых или поликарбоновых кислот, например бензоата натрия или трет-бутилбензоата алюминия, дибензилиденсорбита или его С1-С8 алкилзамещенных производных, таких как метилдибензилиденсорбит, этилдибензилиденсорбит или диметилдибензилиденсорбит, или солей сложных диэфиров фосфорной кислоты, например, натриевой или литиевой соли 2,2'-метиленбис(4,6-ди-трет-бутилфенил)фосфорной кислоты. В особенности, предпочтительными зародышеобразователями являются 3,4-диметилдибензилиденсорбит; гидроксибис[2,2'-метиленбис(4,6-ди-трет-бутилфенил)фосфат] алюминия; 2,2'-метиленбис(4,6-ди-трет-бутилфенил)фосфат натрия и динатриевая соль бицикло[2.2.1]гептан-2,3-дикарбоновой кислоты (1R,2R,3R,4S). По меньшей мере, один зародышеобразователь к пропиленовому терполимеру может быть добавлен по известным способам, таким как в результате перемешивания в расплаве, по меньшей мере, одного зародышеобразователя и пропиленового терполимера в условиях воздействия сдвига в обычном экструдере.
К пропиленовым терполимерам, полученным по способу настоящего изобретения, после этого могут быть добавлены дополнительные добавки, обычно использующиеся в сфере полиолефинов, такие как антиоксиданты, светостабилизаторы, присадки, препятствующие образованию кислот, красители и наполнители.
Для лучшего иллюстрирования настоящего изобретения приводятся следующие неограничивающие примеры.
Примеры
При проведении испытаний для полученных пропиленовых терполимеров использовали далее следующие методы получения характеристик.
- Определение уровня содержания сомономеров: по методу инфракрасной спектроскопии (ИК-спектроскопии).
- Растворимость в ксилоле: 2,5 г полимера при перемешивании растворяют при 135°С в 250 мл ксилола. По истечении 20 минут раствору дают возможность охладиться до 25°С, все еще при перемешивании, а после этого дают возможность отстояться в течение 30 минут. Осадок отфильтровывают при помощи фильтровальной бумаги, раствор упаривают в потоке азота, а остаток высушивают в вакууме при 80°С вплоть до достижения постоянной массы. Таким образом, вычисляют массовый процент уровня содержания полимера, растворимого и нерастворимого при комнатной температуре (25°С).
- Скорость течения расплава (MFR «L»): определяют в соответствии с документом ASTM D1238, condition L.
- Модуль упругости при изгибе: определяют в соответствии с документом ISO 178 method.
- Ударопрочность по Изоду: определяют в соответствии с документом ISO 180/1A method.
- Температура плавления: определяют по методу дифференциальной сканирующей калориметрии (ДСК) в соответствии с документом ASTM D 3417 method, который является эквивалентом документа ISO 11357/1 and 3 method.
- Уровень содержания в пленке фракции, растворимой в гексане: определяют в соответствии с документом FDA 177, 1520 в результате суспендирования в автоклаве в течение 2 часов при 50°С в избытке гексана образца пленки с анализируемой композицией толщиной в 100 мкм. После этого гексан удаляют в результате упаривания, а высушенный остаток взвешивают.
- Измерение величины усадки.
Величину усадки для пленки определяли в результате размещения образцов пленки 200×20 мм в печи с циркулирующим воздухом. Время пребывания в печи составляло 180 секунд (+/-5 сек) при различных температурах воздуха (100-110°С). Вычисление конечной величины усадки пленки проводили по следующему соотношению:
Величина усадки пленки=(Li-Lf)/Li*100,
где Li = первоначальный размер пленки,
Lf = размер пленки после обработки в печи.
Измерения проводили при достижении пленкой комнатной температуры (приблизительно 15-20 минут).
- Температура инициирования сварки (ТИС):
Определяют следующим образом.
Получение образцов пленки
В результате экструдирования каждой композиции для испытания в одночервячном экструдере Collin (соотношение длина/диаметр для червяка: 25) при скорости вытяжки пленки 7 м/мин и температуре расплава 210-250°С получают несколько пленок толщиной 50 мкм. Каждую получающуюся в результате пленку наслаивают на пленку толщиной 1000 мкм из пропиленового гомополимера, характеризующегося индексом изотактичности 97 и значением MFR L 2 г/10 мин. Наслоенные пленки скрепляют друг с другом в прессе Carver при 200°С под нагрузкой 9000 кг, воздействие которой выдерживают в течение 5 минут.
Получающиеся в результате ламинаты при 150°С подвергают растяжению в продольном и поперечном направлениях, то есть двуосно, при степени вытяжки 6 используя машину для растяжения пленок TM Long, таким образом, получая пленку толщиной 20 мкм (18 мкм гомополимера + 2 мкм композиции для испытания).
Из пленок вырезают образцы 2×5 см.
Определение ТИС
Для каждого испытания наслаивают два вышеупомянутых образца, добиваясь их выравнивания, при этом примыкающими слоями являются слои конкретной композиции для испытания. Наслоенные образцы сваривают по одной из 5-сантиметровых сторон при помощи устройства Brugger Feinmechanik Sealer, model HSG-ETK 745. Время сварки составляет 0,5 секунды при давлении 0,1 н/мм2. Температуру сварки при каждой сварке увеличивают, начиная от приблизительно на 10°С меньшей, чем температура плавления композиции для испытания. Подвергнутые сварке образцы оставляют охлаждаться, а после этого их не подвергнутые сварке края закрепляют в устройстве Instron machine, в котором проводят испытание при скорости растяжения 50 мм/мин.
ТИС представляет собой минимальную температуру сварки, при которой сварное соединение не разрушается при приложении в упомянутых условиях проведения испытаний нагрузки, равной, по меньшей мере, 2 ньютонам.
- Мутность (для пластины в 1 мм):
В соответствии с использованным методом образцы 5×5 см представляют собой вырезанные формованные пластины толщиной 1 мм, и значение мутности измеряют при использовании фотометрической установки Gardner, соединенной с прибором Hazemeter type UX-10 или эквивалентным прибором, имеющим источник света G. E. 1209 с фильтром «С». Для калибровки прибора используют эталонные образцы известной мутности. Пластины для испытаний получают в соответствии со следующим способом. Пластины 75×75×1 мм формуют с использованием 90-тонной литьевой машины GBF Plastiniector G235/90 при следующих рабочих условиях:
Скорость вращения червяка: 120 об/мин
Противодавление: 10 бар
Температура расплава: 260°С
Время впрыска: 5 сек
Переключение на давление выдержки: 50 бар
Давление выдержки первой стадии: 30 бар
Давление второй стадии: 20 бар
Профиль давления выдержки:
первая стадия 5 сек
вторая стадия 10 сек
Время охлаждения: 20 сек
Температура воды у формы: 40°С
- Блеск пленки:
Определяют для тех же самых образцов, что и при определении мутности.
Прибор, использованный для испытания, представляет собой фотометр model 1020 Zehntner для измерений падающего света. Калибровку проводят в результате проведения измерения при угле падения 60° на черном стекле, характеризующемся стандартным блеском 96,2%, и измерения при угле падения 45° на черном стекле, характеризующемся стандартным блеском 55,4%.
Примеры 1-3:
Пропиленовые терполимеры получают в результате проведения полимеризации пропилена, этилена и бутена-1 в присутствии высокостереоспецифического катализатора Циглера-Натта.
Катализатор Циглера-Натта получали в соответствии с примером 5, строками 48-55 европейского патента ЕР728769. В качестве сокатализатора использовали триэтилалюминий (ТЭА), а в качестве внешнего донора - дициклопентилдиметоксисилан, при этом массовые соотношения приводятся в таблице 1.
Пропиленовые терполимеры из примеров получали в одном реакторе газофазной полимеризации, включающем две взаимосвязанные зоны полимеризации - реактор с восходящим потоком и реактор с нисходящим потоком, - как это описывается в европейском патенте ЕР 782587 и документе WO 00/02929.
После этого перед введением вышеупомянутой системы катализатора в реактор полимеризации ее переводят в реактор, содержащий избыток жидкого пропилена и пропана, для проведения форполимеризации в течение 11 минут при 25°С.
В полимеризационном реакторе пропиленовые терполимеры получают в результате подачи непрерывным и постоянным потоком форполимеризованной системы катализатора, водорода (использующегося в качестве регулятора степени полимеризации), пропилена, этилена и бутена-1 в газообразном состоянии (подаваемые количества, выраженные в % (моль.), продемонстрированы в таблице 1).
Другие рабочие условия приведены в таблице 1.
Полимерные частицы, покидающие стадию полимеризации, подвергали обработке водяным паром для удаления непрореагировавших мономеров и высушивали.
Пропиленовый терполимер, соответствующий примеру 3, подвергали прямому прессованию на машине CARVER при 230°С до получения пластин толщиной 0,5 мм и размерами 60×60 мм, которые после этого подвергали растяжению с использованием машины для растяжения пленок TM-Long при температуре печи 80°С. Степень вытяжки составляла 1×7, что позволяло получить одноосно ориентированную пленку, имеющую толщину, равную приблизительно 80 мкм, для которой измеряют усаживаемость.
Сравнительный пример 1:
Пропиленовым терполимером из сравнительного примера 1 является пропиленовый терполимер, соответствующий примеру 2 из патентной заявки согласно договору ДПК WO 98/58971.
Таблица 1 демонстрирует технологические параметры для полимеризации при получении пропиленовых терполимеров из примеров 1-3.
Таблица 2 демонстрирует свойства, измеренные для пропиленовых терполимеров, полученных в примерах 1-3 и сравнительном примере 1.
Пропиленовые терполимеры, полученные по способу, соответствующему настоящему изобретению, благодаря фиксированному соотношению между уровнями содержания сомономерных звеньев этилена и бутена-1 характеризуются более высокой температурой плавления, чем у пропиленового терполимера, полученного по способу, соответствующему изобретению, описанному в документе WO 98/58971. Это свидетельствует о том, что при использовании способа, соответствующего настоящему изобретению, для идентичного уровня содержания сомономера можно получить пропиленовые терполимеры, характеризующиеся повышенной температурой плавления, а также уширенным окном перерабатываемости.
Это демонстрирует тот факт, что значение Tm у терполимеров из примеров 1-3 является большим, чем (28,013Х+120,5), где Х представляет собой величину соотношения между уровнями содержания этилена и С4-С8 альфа-олефинов, тогда как терполимер из сравнительного примера 1 характеризуется значением Tm, меньшим, чем данная величина.
Заявленное изобретение относится к способу получения пропиленовых терполимеров. Техническим результатом заявленного изобретения является увеличение окна перерабатываемости пропиленовых полимеров, предназначенных для использования при получении пленок, а также сохранение высоких оптических свойств при достижении высокой мягкости полимера и пригодности использования в областях применения, включающих контакт с продуктами питания. Технический результат достигается в способе получения пропиленового терполимера, содержащего сомономерные звенья, образованные из этилена и из одного альфа-олефина, выбираемого из группы C4-C8 альфа-олефинов. Указанный терполимер характеризуется совокупным уровнем содержания сомономерных звеньев, не меньшим, чем 8% (мас.) при расчете на совокупную массу терполимера, и величиной соотношения между уровнями содержания этилена и C4-C8 альфа-олефинов в диапазоне от 0,1 до 0,8. При этом упомянутый способ реализуют в газофазном реакторе, включающем две взаимосвязанные зоны полимеризации. 3 н. и 6 з.п. ф-лы, 2 табл., 3 пр.
Способ и устройство для газофазной полимеризации