Код документа: RU2740526C1
Изобретение относится к машиностроению, в частности к шарнирным кривошипным механизмам, обеспечивающим надежную передачу вращающего момента и угловой скорости от одного приводного двигателя к нескольким синхронно вращающимся рабочим органам без возникновения от них зоны неуправляемых особых положений с неопределенностью движения выходного звена.
Известен шарнирный кривошипно-коромысловый механизм, содержащий замкнутую кинематическую цепь, включающую стойку, ведущий кривошип, ведомое коромысло и расположенный между ними шатун, выполненный в виде двухшарнирного звена и установленный непараллельно стойке - аналог (книга Коловский М.З. и др. «Теория механизмов и машин» - М: Изд. Центр «Академия», 2006, с. 43, рас. 2.2).
Недостатками известного шарнирного механизма являются:
1. Сложность конструкции, изготовления и сборки звеньев разной длины.
2. Неработоспособность и избыточная (т.е. не зависящая от приводного двигателя) подвижность механизма в возникающем одном особом (крайнем) положении, что приводит к его неуправляемости и поэтому ограничивает рабочую зону вращения ведущего кривошипа.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является шарнирный кривошипный механизм, содержащий замкнутую кинематическую цепь, включающую стойку, ведущий и ведомый кривошип и расположенный между ними шатун, выполненный в виде двухшарнирного линейного звена, установленного параллельно и равного по длине стойке - прототип (Крайнев А.Ф. «Механика машин. Фундаментальный словарь» - М.: Машиностроение, 2000. С. 159., схема механизма на рис. б)).
Недостатками указанного шарнирного кривошипного механизма являются:
1. Наличие в механизме (через каждые 180° поворота ведущего кривошипа, когда все шарниры звеньев располагаются на одной прямой) двух особых мертвых положений, в которых из-за разрыва связей в кинематической паре возникает зона неуправляемого движения ведомого вала.
2. На практике эксплуатация и в теории установлено, что в этих особых положениях происходит самопроизвольный неуправляемый переход из сборки параллелограмма в сборку антипараллелограмма, при котором 2 раза за каждый цикл поворота на 360° происходит резкое изменение направления вращения ведомого вала с его жесткими ударами, т.е. механизм в этих мертвых положениях вообще неработоспособен (и по авт. свид. № 877176, Бюл. №40, СССР, 1981 г. - требует дополнительного сложного зубчатого привода кривошипов для выхода из мертвых положений путем ударного реверса выходного вала).
В основу изобретения положена техническая задача, заключающаяся в создании работоспособного шарнирного кривошипного механизма без вредных особых положений - во всем возможном полном рабочем угле поворота ведущего кривошипа на 360° и сохранении при этом постоянного заданного направления вращения ведомого вала.
Получение технического результата достигается за счет того, что замкнутая кинематическая цепь предлагаемого шарнирного кривошипного механизма выполнена в виде многоконтурного шарнирного параллелограмма, в котором каждый отдельный шатун выполнен в виде трехшарнирного звена, например в виде равностороннего треугольника, кинематически связанного со стойкой посредством двухшарнирных кривошипов, выполненных одинаковой длины и параллельно установленных между собой в одном направлении при сборке кинематической цепи с образованием связанных между собой через шатун параллелограммных замкнутых контуров.
Сущность изобретения поясняется чертежами на фиг. 1, фиг. 2, фиг. 3, фиг. 4, фиг. 5 и фиг. 6.
На фиг. 1 изображен общий вид шарнирного кривошипного механизма, содержащего стойку 1 с опорными шарнирами O1, O2, O3 и замкнутую кинематическую цепь, которая выполнена в виде многоконтурного шарнирного параллелограмма, в котором шатун 2 выполнен в виде трехшарнирного звена, например, в виде треугольника ABC (равностороннего, прямоугольного или косоугольного), кинематически связанного со стойкой 1 посредством двухшарнирных кривошипов 3, 4 и 5 одинаковой длины, параллельно установленных между собой в одном направлении при сборке кинематической цепи с образованием в ней связанных между собой через шатун 2 параллелограммных замкнутых контуров L1, L2.
На фиг. 2 представлен вариант выполнения многоконтурного шарнирного параллелограмма из шести двухшарнирных звеньев одинаковой длины, три из которых 6, 7 и 8 при сборке из них шатуна образуют равносторонний треугольник АБС, а другие три двухшарнирных звена 9, 10 и 11 параллельно установлены между шатуном и стойкой и соединены с шатуном двойными шарнирами (обозначены «j2»).
На фиг. 3 представлен вариант выполнения пространственной схемы многоконтурного шарнирного параллелограмма с расположением осей углового поворота всех шарниров отдельных шатунов, кривошипов и стойки при сборке замкнутой кинематической цепи О1, О2, О3, А, В, С параллельно друг другу соответственно в горизонтальной плоскости шатуна 2 и в горизонтальной плоскости стойки 1.
На фиг. 4 представлен вариант выполнения многоконтурного шарнирного параллелограмма из набора последовательно установленных и соединенных между собой через двойной шарнир «j2» двух отдельных трехшарнирных шатунов 12 и 13, соединенных со стойкой 1 пятью параллельными кривошипами одинаковой длины 14, 15, 16, 17 и 18, образующих в этой кинематической цепи связанные между собой через шатуны 12 и 13 параллелограммные замкнутые контуры L1, L2, L3, L4. Трехшарнирные шатуны 12 и 13 могут быть соединены с отдельными рабочими органами, совершающими синхронное движение по окружности с центром внутри объема обрабатываемого изделия.
На фиг. 5 представлен вариант выполнения многоконтурного шарнирного параллелограмма в виде набора последовательно установленных и соединенных между собой посредство двойных шарниров «j2» отдельных трехшарнирных шатунов 19, 20 и 21, шарнирно соединенных со стойкой 1 посредством механизма параллельных кривошипов 22, 23, 24, 25, 26, 27 и 28 с расположением на стойке 1 осей соседних кривошипов в шахматном порядке, образующих в этой кинематической цепи связанные между собой через шатуны 19, 20 и 21 параллелограммные замкнутые контуры L1, L2, L3, L4, L5 и L6.
На фиг. 6 представлена изготовленная и испытанная автором действующая модель предлагаемого механизма на основе многоконтурного параллелограмма с трехшарнирным (треугольным) шатуном 2. Испытания изготовленной модели механизма подтверждают его надежную работоспособность при полном повороте ведущего кривошипа за повторяющийся цикл на угол ϕ=0-360°, в пределах которого в цикле отсутствуют особые неуправляемые положения и самопроизвольный переход из параллелограмма в антипараллелограмм и обратно (что и обеспечивает безударную и бесшумную работу механизма в течение полного цикла).
Работа представленного шарнирного кривошипного механизма заключается в следующем.
Заданное вращение ведущего кривошипа 3 (фиг. 1) через трехшарнирный треугольный шатун 2 преобразуется во вращение ведомых кривошипов 4 и 5 с такой же постоянной угловой скоростью. Выполняемая в предлагаемом механизме передача усилий и моментов с ведущего кривошипа 3 на два ведомых кривошипа 4 и 5 происходит через три шарнира А, В и С, расположенные с разных сторон треугольного шатуна 2, что и обеспечивает постоянный (без разрыва связей) контакт всех кинематических пар, т.е. постоянство вращающего момента на ведомых кривошипах 4 и 5 в течении полного цикла поворота ведущего кривошипа 3 на 360°. Указанное постоянство контакта всех кинематических пар в механизме с трехшарнирным (треугольным) шатуном 2 в свою очередь, и обеспечивает полную управляемость механизма от одного приводного двигателя в течение всего цикла поворота ведущего звена 3, что автоматически исключает вредные особые положения с самопроизвольным превращением параллелограмма в антипараллелограмм (и наоборот с ударами звеньев). Таким образом, предлагаемый шарнирный механизм остается работоспособным кривошипным параллелограммым устройством в пределах всего цикла поворота на 360°, что полностью подтверждается на его действующей модели.
Достигаемый в предлагаемом шарнирном кривошипном механизме положительный эффект заключается в следующем:
1. Передача вращения с ведущего кривошипа на ведомые кривошипы (с такой же постоянной угловой скоростью) через трехшарнирный (треугольный) шатун с шарнирами на его вершинах обеспечивает полную рабочую зону поворота ведущего кривошипа на 360° без возникновения в цикле особых неуправляемых положений шарнирного кривошипного механизма.
2. Исключается самопроизвольный переход в крайних положениях параллелограмма в антипараллелограмм (что исключает возможность вращения выходного вала в другую сторону при заданном направлении вращения приводного двигателя и тем самым исключает жесткие динамические удары при случайном противовращении звеньев).
3. Обеспечивается надежная работоспособность, бесшумность, безударность и полный возможный диапазон работы многокривошипного параллелограммного механизма в пределах всего управляемого одним двигателем углового поворота ведущего кривошипа в цикле на 360°.
Изобретение относится к машиностроению. Шарнирный кривошипный механизм содержит замкнутую кинематическую цепь, включающую стойку, шатун и расположенные между ними поворотные рычажные звенья. Замкнутая кинематическая цепь выполнена в виде многоконтурного шарнирного параллелограмма, в котором каждый отдельный шатун выполнен в виде трехшарнирного звена, например в виде равностороннего треугольника трехшарнирного шатуна, кинематически связанного со стойкой посредством двухшарнирных кривошипов, выполненных одинаковой длины и параллельно установленных между собой в одном направлении при сборке кинематической цепи с образованием в ней связанных между собой через трехшарнирный шатун параллелограммных замкнутых контуров. Обеспечивается улучшение эксплуатационных характеристик. 4 з.п. ф-лы, 6 ил.