Код документа: RU2720258C1
Изобретение относится к области экспериментального исследования высокоскоростного процесса движения тела (ударника, проникателя) в сплошной среде, в частности к области определения контактных сил и ускорений, возникающих при взаимодействии ударника с мишенью.
Для бесконтактной регистрации движения проникателя в прозрачной среде может применяться скоростная видеосъемка (Ищенко А.Н., Афанасьева С.А., Буркин В.В. и др. «Расчетно-экспериментальный анализ высокоскоростного взаимодействия твердых тел в воде». Инженерно-физический журнал, 2014 г., Т. 87, №2). Метод позволяет визуализировать процесс проникания и получить ряд эксериментальных точек для последующей оценки скорости, ускорения и коэффициента сопротивления. Очевидным недостатком метода является его непригодность для изучения процесса проникания в непрозрачной среде.
Для исследования высокоскоростного процесса проникания металлического тела в сплошные среды в экспериментах используются ускорители различных типов, например пушечные (пороховые или легкогазовые), взрывные, электромагнитные. Для определения коэффициента лобового сопротивления проникателей с различным типом наконечников и различной формы торца применяется кинематический способ. Контактные датчики, фотооптические средства и рентгеновские аппараты используются для регистрации скорости, состояния и положения исследуемого проникателя на воздушном участке траектории до внедрения в преграду, движения в ней, а также после пробития преграды.
Для определения значения коэффициента лобового сопротивления жестких ударников используется экспериментальный метод получения закона движения (путь-время) исследуемого проникателя путем хронометрирования процесса проникания в грунтовой среде. Это достигается посредством установки в грунтовой преграде рам-мишеней с контактными датчиками, пробитие которых приводит к замыканию токопроводящих фольговых оболочек. Также в опытах с использованием рентгенографирования процесса проникания определяется глубина проникания на фиксированный момент срабатывания рентгеновского аппарата («Экспериментальное исследование движения конусов и цилиндра в песчаной среде», Файков Ю.И., Бердников В.А., Киселев Ю.Г., Копытов Г.Ф., Травов Ю.Ф в книге «Методы и средства наземной отработки боевого оснащения ракетного оружия. Избранные статьи и доклады. - Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2008). Данный способ выбран в качестве прототипа.
Недостатки указанного метода заключаются в ограниченности данных, получаемых на террадинамическом участке движения. Например, для рентгенографирования передвижным импульсным аппаратом наносекундной длительности используется содержащий сплошную среду контейнер ограниченной ширины; при этом, за один опыт получается один снимок (одно положение тела (проникателя)). Динамика проникания тела в сплошную среду (преграду) существенно зависит от особенностей движения и состояния материала преграды на границе контакта с телом (ударником, проникателем). Характер поведения материала преграды в этой области влияет на распределение нормальных и касательных механических напряжений на поверхности ударника, определяющее силовое воздействие на него при движении в преграде.
Известно, что слой грунта на границе контакта с головной частью ударника должен вовлекаться им в движение и двигаться без проскальзывания вместе с ударником. (Велданов В.А., Федоров С.В. «Особенности поведения грунта на границе контакта с недеформируемым ударником при проникании», ПТМФ, 2005, т. 46, №36, с. 116). Поэтому применение контактных датчиков для хронографирования процесса может существенно повлиять как на условия взаимодействия, так и на характер движения в целом, вплоть до потери устойчивости и вылета проникателя из контейнера. Кроме того, оснащение проникателя датчиками усложняет эксперимент за счет дополнительных методических трудностей, связанных с сохранением целостности датчиков во время разгона проникателя и обеспечением надежной связи датчика с измерительной аппаратурой. В большинстве опытов основной измеряемой величиной является глубина проникания. Поэтому для определения ускорений и сил требуется двойное дифференцирование опытных данных. Точность получаемых результатов при этом снижается.
Техническая проблема, на решение которой направлено заявляемое изобретение, состоит в обеспечении регистрации движения ударника в сплошной среде.
Технический результат заключается в обеспечении регистрации движения ударника в сплошной среде, повышении информативности эксперимента и точности получаемых данных.
Технический результат достигается за счет того, что в заявляемом способе комбинированного бесконтактного регистрирования движения тела в сплошной среде, включающем регистрирование моментов прохождения телом заданных сечений, перпендикулярных направлению движения тела, в сплошной среде, помещенной в контейнер, в отличие от прототипа во время движения тела дополнительно при помощи высокоскоростной видеокамеры производят высокоскоростную видеорегистрацию поверхности среды, моменты прохождения телом заданных сечений регистрируют при помощи индукционных датчиков, полученные изображения обрабатывают кросскорреляционным способом и анализируют совместно с зарегистрированными данными.
Запуск высокоскоростной видеокамеры может быть синхронизирован с запуском метательной установки или с получением сигнала от индукционного датчика, установленного в первом измерительном сечении в сплошной среде.
Во время видеорегистрации может быть произведена подсветка поверхности сплошной среды, по крайней мере, одним импульсным источником света.
Использование всей совокупности заявляемых признаков заявляемого способа позволяет обеспечить регистрацию движения ударника в сплошной среде, повысить информативность эксперимента и точность получаемых данных.
Изобретение поясняется чертежом, поясняющим заявляемый способ.
Высокоскоростная видеокамера 1 устанавливается с таким расчетом относительно контейнера 2 со сплошной средой, чтобы обеспечить получение контрастных кадров возмущений поверхности среды в отраженном свете. Для этого может использоваться импульсный источник 3 света, а зона регистрации фиксироваться через зеркало 4.
Траектория тела 5 (проникателя) после выстрела из разгонной установки проходит через бесконтактные заданные сечения, перпендикулярные направлению движения тела, образованные индукционными датчиками, состоящими из постоянных магнитов 7 и соосно им установленных катушек 8 индуктивности, которые захватывают контейнер 2 со средой. К достоинствам индукционных датчиков относится простота и точность конструкции, отсутствие скользящих контактов, работа без источника питания и значительная чувствительность.
Индуцированный сигнал при пролете проникателем 5 каждого заданного сечения индуктивность-магнит регистрируется многоканальным запоминающим устройством 9 (цифровым осциллографом). Анализ полученных кривых по моментам перехода через ноль позволяет построить хронографическую зависимость функции отклика, возникающей в индукционном датчике в соответствии с законом электромагнитной индукции при изменении магнитного поля, которая зависит от скорости изменения магнитного потока и величины воздушного зазора между элементами индукционного датчика.
Во время движения проникателя 5 при помощи высокоскоростной видеокамеры производят высокоскоростную видеорегистрацию поверхности сплошной среды. Для получения наиболее точных результатов измерений требуется адаптация устройств видеорегистрации к условиям эксперимента. Запуск высокоскоростной видеокамеры может быть синхронизирован с запуском метательной установки 6 или с получением сигнала от индукционного датчика, установленного в первом измерительном сечении в сплошной среде.
Во время видеорегистрации может быть произведена подсветка поверхности сплошной среды, по крайней мере, одним импульсным источником 3 света.
Важным этапом в процессе осуществления способа является кросскорреляционная обработка полученных изображений («Методы компьютерной обработки изображений: Учебное пособие для вузов» под ред. Сойфера В.А., издание 2-е, испр., Физматлит, 2003).
В результате совместной обработки данных, полученных от индукционных датчиков и видеоизображений возмущений поверхности среды, вызванных движением проникателя 5 в сплошной среде, обеспечивается регистрация движения ударника в сплошной среде, повышается информативность эксперимента и точность получаемых данных.
Проведенные эксперименты с использованием заявляемого способа бесконтактного регистрирования с использованием индукционных датчиков и высокоскоростной съемкой поверхности сплошной среды в виде песка при внедрении в нее стального шарика со скоростью 1 км/с показали, что можно получить, как зависимость расстояния от времени для движения шарика внутри песка, так и после обработки кросскорреляционным методом зависимость возмущений, сопровождающих движение шарика (проникателя) в среде и выходящих на ее поверхность (поверхностной волны). Полученный набор данных позволил определить значение скорости движения шарика в сплошной среде и верифицировать расчетную модель его проникания в песок.
Изобретение относится к области экспериментального исследования высокоскоростного процесса движения тела в сплошной среде, в частности к области определения контактных сил и ускорений, возникающих при взаимодействии ударника с мишенью. Способ комбинированного бесконтактного регистрирования движения тела в сплошной среде включает регистрирование моментов прохождения телом заданных сечений, перпендикулярных направлению движения тела, в сплошной среде, помещенной в контейнер. Во время движения тела дополнительно, при помощи высокоскоростной видеокамеры, производят высокоскоростную видеорегистрацию поверхности среды. Моменты прохождения телом заданных сечений регистрируют при помощи индукционных датчиков, полученные изображения обрабатывают кросскорреляционным способом и анализируют совместно с зарегистрированными данными. Технический результат заключается в повышении информативности эксперимента и точности получаемых данных. 3 з.п. ф-лы, 1 ил.