Код документа: RU2594367C2
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА СМЕЖНЫЕ ИЗОБРЕТЕНИЯ
Настоящий патент испрашивает преимущество по предварительной заявке на патент США №61/878,723, поданной 17 сентября 2013 г.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
1. Область применения изобретения
Настоящее изобретение относится к устройству офтальмологической линзы с возможностью изменения оптических свойств и, более конкретно, в некоторых вариантах осуществления - к производству офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы.
2. Обсуждение смежной области
Традиционно офтальмологическая линза, такая как контактная или интраокулярная линза, обладает предварительно заданными оптическими характеристиками. Контактная линза, например, может предоставлять одну или более из следующих возможностей: коррекцию зрения; косметическое улучшение; и терапевтическое воздействие, но только в виде набора функций коррекции зрения. Каждая из перечисленных функций обусловлена определенной физической характеристикой линзы. По существу, конфигурация линзы с использованием светопреломляющих свойств позволяет корректировать характеристики зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в материал линзы активного агента позволяет использовать линзу в терапевтических целях.
На сегодняшний день оптические характеристики офтальмологической линзы обусловлены ее физическими характеристиками. По существу, оптические свойства линзы определяют и затем внедряют в процессе ее изготовления, например, отливкой или токарной обработкой. После изготовления линзы ее оптические характеристики остаются постоянными. Однако для обеспечения аккомодации зрения для пользователя иногда может быть эффективно наличие более одной доступной оптической силы. В отличие от тех, кто пользуется очками и может менять очки для оптической коррекции, пользователи контактных либо интраокулярных линз до сих пор могли менять оптические характеристики, только прикладывая значительные усилия или используя очки в дополнение к контактным либо интраокулярным линзам.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Соответственно, настоящее изобретение включает в себя инновации, относящиеся к вставке с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, которая может обладать энергообеспечением, может быть включена в офтальмологическое устройство и имеет возможность изменять оптические свойства устройства. Примеры таких офтальмологических устройств могут включать в себя контактную линзу или интраокулярную линзу. Кроме того, здесь представлены способы и устройство для изготовления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы. Ряд вариантов осуществления также включает в себя литую силикон-гидрогелевую контактную линзу с жесткой или формуемой вставкой с энергообеспечением, которая дополнительно включает в себя часть с изменяемыми оптическими свойствами, причем вставка включена в офтальмологическую линзу биосовместимым образом.
Таким образом, описание настоящего изобретения включает в себя описание офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, устройства формирования офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, а также способов их производства. Источник энергии можно нанести или установить на вставку с изменяемыми оптическими свойствами, а вставку можно поместить вблизи первой части формы для литья и/или второй части формы для литья. Композицию, содержащую реакционную смесь мономера (далее - «реакционная смесь мономера»), помещают между первой частью формы для литья и второй частью формы для литья. Первую часть формы для литья располагают в непосредственной близости от второй части формы для литья, тем самым формируя полость линзы с несущей вставкой с энергообеспечением и по меньшей мере некоторым количеством реакционной смеси мономера в полости линзы; реакционную смесь мономера подвергают воздействию актиничного излучения для формирования офтальмологической линзы. Линзы формируют путем управления потоком актиничного излучения, которым облучают реакционную смесь мономера. В некоторых вариантах осуществления край офтальмологической линзы или герметизирующий вставку слой содержит стандартные гидрогелевые составы для офтальмологической линзы. Примеры материалов с характеристиками, которые могут обеспечивать приемлемое сочетание со множеством материалов вставки, могут включать в себя, например, материалы семейства нарафилкона (включая нарафилкон A и нарафилкон B), семейства этафилкона (включая этафилкон A), галифилкон А и сенофилкон А.
Способы формирования вставки с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, и полученные вставки представляют собой важные аспекты различных примеров осуществления настоящего изобретения. В ряде вариантов осуществления жидкий кристалл можно размещать между ориентирующими слоями, которые могут устанавливать ориентацию покоя жидкого кристалла. Два упомянутых ориентирующих слоя могут находиться в электрической связи с источником энергии посредством электродов, нанесенных на слои подложки, содержащие часть с изменяемыми оптическими свойствами. Электроды могут получать энергообеспечение через промежуточное соединение с источником энергии или непосредственно через компоненты, встроенные во вставку.
Подача питания к электродным слоям может вызывать сдвиг жидкого кристалла из ориентации покоя в ориентацию с энергообеспечением. В примерах осуществления, использующих два уровня подачи питания: запитанный и незапитанный, - жидкий кристалл может иметь только одну ориентацию с энергообеспечением. В других альтернативных примерах осуществления, где подача питания происходит по шкале энергетических уровней, жидкий кристалл может иметь множество ориентаций с энергообеспечением. Могут быть реализованы также дополнительные примеры осуществления, в которых способ подачи питания может вызывать переключение между различными состояниями за счет импульса подачи питания.
Результирующее центрирование и ориентация молекул воздействуют на свет, проходящий через жидкокристаллический слой, вызывая таким образом изменение во вставке с изменяемыми оптическими свойствами. Например, рефракционные свойства, получаемые в результате центрирования и ориентации, могут влиять на падающий свет. Кроме того, такое воздействие может включать в себя эффект нарушения поляризации света. Некоторые примеры осуществления могут включать в себя вставку с изменяемыми оптическими свойствами, в которой подача питания изменяет фокальные характеристики линзы.
В некоторых примерах осуществления слой жидкого кристалла может быть образован способом, при помощи которого вызывают полимеризацию полимеризуемой смеси, содержащей молекулы жидкого кристалла. Мономер(-ы), используемый(-ые) для образования полимерного матрикса, сами по себе могут содержать присоединенные жидкокристаллические части. Путем управления полимеризацией и введения молекул жидкого кристалла, не присоединенных к мономерным соединениям, можно сформировать матрикс из участков поперечносшитого полимера, который будет включать в себя участки, где находятся отдельные молекулы жидкого кристалла. Терминологически такую комбинацию поперечносшитых полимеризованных молекул с включенными в промежутки молекулами жидкого кристалла можно назвать сетевой конфигурацией. Ориентирующие слои могут контролировать центрирование молекул жидкого кристалла, прикрепленных к мономеру, таким образом, чтобы сетка из полимеризованного материала была центрирована с направляющими ориентирующими слоями. Присоединенные молекулы жидкого кристалла при полимеризации фиксируются в определенной ориентации, однако молекулы жидкого кристалла, размещенные в промежутках, могут свободно менять свою ориентацию в пространстве. При отсутствии внешнего воздействия свободные молекулы жидкого кристалла будут иметь центрирование, зависящее от матрикса центрированных молекул жидкого кристалла.
Соответственно, в некоторых примерах осуществления офтальмологическое устройство можно сформировать путем введения вставки с изменяемыми оптическими свойствами, содержащей молекулы жидкого кристалла, внутрь офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которую можно размещать в оптической зоне офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать передний элемент вставки и задний элемент вставки. Любая или обе поверхности переднего и заднего элементов вставки могут быть искривлены различным образом, а в некоторых примерах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны передней поверхности заднего элемента вставки. В альтернативном способе описания, в некоторых примерах осуществления, передний элемент вставки может иметь поверхность с первой кривизной, а задний элемент вставки может иметь вторую поверхность со второй кривизной. В некоторых вариантах осуществления первая кривизна может отличаться от второй кривизны. В состав линзы и вставки можно включать источник энергии, при этом в некоторых примерах осуществления источник энергии можно размещать таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.
В некоторых примерах осуществления слой, содержащий участки размещенного в промежутках полимерной сетки жидкокристаллического материала, можно дополнительно сформировать таким образом, что внутри слоя, образованного из жидкокристаллического материала, участок, содержащий жидкие кристаллы, будет представлять собой комплект полимеризованных слоев и будет иметь профиль формы, способствующий оптическому эффекту, дополняющему эффект различных радиусов поверхностей вставки.
В некоторых примерах осуществления слой, содержащий участки размещенного в промежутках полимерной сетки жидкокристаллического материала, также можно сформировать таким образом, что внутри слоя плотность молекул жидкого кристалла будет меняться в пространстве таким образом, что изменение может вызывать оптический эффект, дополняющий эффект различных радиусов поверхностей вставки.
В некоторых примерах осуществления офтальмологическое устройство может представлять собой контактную линзу.
В некоторых вариантах осуществления вставка офтальмологического устройства может содержать электроды, изготовленные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова (ITO) в качестве примера, не имеющего ограничительного характера. Первый электрод можно размещать в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод можно размещать в непосредственной близости от передней поверхности заднего криволинейного элемента. Когда к первому и второму электродам прикладывают электрический потенциал, в жидкокристаллическом слое, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к жидкокристаллическому слою может вызвать физическое центрирование свободных молекул жидкого кристалла, находящихся в слое, с электрическим полем. В некоторых примерах осуществления свободные молекулы жидкого кристалла можно размещать на участках промежутков полимерной сетки, а в некоторых примерах осуществления полимерная главная цепь может содержать химически связанные молекулы жидкого кристалла, которые можно центрировать в процессе полимеризации при помощи ориентирующих слоев. Когда молекулы жидкого кристалла центрируются в направлении электрического поля, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидкого кристалла. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых примерах осуществления изменение оптических характеристик может привести к изменению фокальных свойств линзы, содержащей слой с молекулами жидкого кристалла.
В некоторых примерах осуществления описываемые офтальмологические устройства могут включать в себя процессор.
В некоторых примерах осуществления описываемые офтальмологические устройства могут включать в себя электрическую схему. Электрическая схема может контролировать или направлять электрический ток для обеспечения его протекания через офтальмологическое устройство. Электрическая схема может управлять электрическим током для обеспечения его протекания от источника энергии к первому или второму электродным элементам.
В некоторых примерах осуществления устройство-вставка может содержать не только передний элемент вставки и задний элемент вставки. Между передним элементом вставки и задним элементом вставки можно размещать промежуточный элемент или элементы. Например, слой, содержащий жидкий кристалл, можно размещать между передним элементом вставки и промежуточным элементом. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которую можно размещать в оптической зоне офтальмологического устройства. Любая или обе поверхности переднего, промежуточного и заднего элемента вставки могут быть искривлены различным образом, при этом в некоторых примерах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны передней поверхности промежуточного элемента вставки. Источник энергии можно включить в состав линзы и в состав вставки, а в некоторых вариантах осуществления источник энергии можно разместить таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.
Вставка с передним элементом вставки, задним элементом вставки и по меньшей мере первым промежуточным элементом вставки может содержать по меньшей мере первую молекулу жидкого кристалла, и молекула или молекулы жидкого кристалла также могут находиться на участках размещенного в промежутках полимерной сетки жидкокристаллического материала.
В некоторых примерах осуществления передний элемент вставки, задний элемент вставки и по меньшей мере первый промежуточный элемент вставки офтальмологического устройства могут представлять собой контактную линзу.
В некоторых примерах осуществления вставка офтальмологического устройства с передним элементом вставки, задним элементом вставки и по меньшей мере первым промежуточным элементом вставки может содержать электроды, изготовленные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова (ITO) в качестве примера, не имеющего ограничительного характера. Первый электрод можно размещать в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод может находиться в непосредственной близости от передней поверхности промежуточного элемента. В некоторых примерах осуществления передний элемент вставки может иметь поверхность с первой кривизной, а промежуточный элемент вставки может иметь вторую поверхность со второй кривизной. В некоторых примерах осуществления первая кривизна может отличаться от второй кривизны. Когда к первому и второму электродам прикладывают электрический потенциал, в жидкокристаллическом слое, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к жидкокристаллическому слою может вызвать физическое центрирование молекул жидкого кристалла, находящихся в слое, с электрическим полем. В некоторых примерах осуществления молекулы жидкого кристалла можно размещать на участках размещенного в промежутках полимерной сетки жидкокристаллического материала. Когда молекулы жидкого кристалла центрируются в направлении электрического поля, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидкого кристалла. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых примерах осуществления изменение оптических характеристик может привести к изменению фокальных свойств линзы, содержащей слой с молекулами жидкого кристалла.
В некоторых примерах осуществления промежуточный элемент может содержать множество элементов, соединенных вместе.
В некоторых примерах осуществления, где устройство-вставка может состоять из переднего элемента вставки, заднего элемента вставки и промежуточного элемента или элементов, слой, содержащий жидкий кристалл, можно размещать между передним элементом вставки и промежуточным элементом или между промежуточным элементом и задним элементом вставки. Кроме того, поляризационный элемент также можно размещать внутри устройства-вставки с изменяемыми оптическими свойствами. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, которую можно размещать в оптической зоне офтальмологического устройства. Любая или обе поверхности переднего, промежуточного и заднего элемента вставки могут быть искривлены различным образом, при этом в некоторых примерах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны передней поверхности промежуточного элемента вставки. В состав линзы и вставки можно включать источник энергии, при этом в некоторых примерах осуществления источник энергии можно размещать таким образом, чтобы по меньшей мере некоторая его часть находилась в неоптической зоне устройства.
В некоторых примерах осуществления можно ссылаться на поверхности внутри вставки с изменяемыми оптическими свойствами, а не на элементы. В некоторых примерах осуществления можно сформировать устройство офтальмологической линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры осуществления могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах осуществления передняя поверхность и задняя поверхность могут быть выполнены с возможностью образования по меньшей мере первой камеры. Устройство офтальмологической линзы также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. Устройство офтальмологической линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем слой образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
В некоторых примерах осуществления можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры осуществления могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах осуществления передняя поверхность и задняя поверхность могут быть выполнены с возможностью образования по меньшей мере первой камеры. Устройство контактной линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем слой образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
В некоторых примерах осуществления можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Устройство контактной линзы может также включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри камеры, причем слой может быть образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала, причем по меньшей мере первая поверхность слоя может быть криволинейной.
В некоторых примерах осуществления можно сформировать устройство офтальмологической линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Данные примеры осуществления могут включать в себя криволинейную переднюю поверхность и криволинейную заднюю поверхность. В некоторых примерах осуществления первая криволинейная передняя поверхность и первая криволинейная задняя поверхность могут быть выполнены с возможностью формирования по меньшей мере первой камеры. Вторая криволинейная передняя поверхность и вторая криволинейная задняя поверхность могут быть выполнены с возможностью формирования по меньшей мере второй камеры. Устройство офтальмологической линзы также может включать в себя слой, содержащий жидкокристаллический материал, расположенный внутри первой камеры, причем слой образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала. Устройство офтальмологической линзы также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. В некоторых вариантах осуществления офтальмологическая линза может представлять собой контактную линзу.
В некоторых примерах осуществления можно сформировать устройство контактной линзы, в котором вставка с изменяемыми оптическими свойствами может располагаться внутри устройства офтальмологической линзы, причем по меньшей мере часть вставки с изменяемыми оптическими свойствами может располагаться в оптической зоне устройства линзы. Контактная линза может включать в себя криволинейную первую переднюю поверхность и криволинейную первую заднюю поверхность, причем первая передняя поверхность и первая задняя поверхность выполнены с возможностью формирования по меньшей мере первой камеры. Контактная линза также может включать в себя первый слой электродного материала в непосредственной близости от задней поверхности первой криволинейной передней поверхности. Контактная линза также может содержать второй слой электродного материала в непосредственной близости от передней поверхности первого заднего криволинейного элемента. Контактная линза также может включать в себя первый слой, содержащий жидкокристаллический материал, расположенный внутри первой камеры, причем первый слой образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала, причем полимерная сетка содержит химически присоединенные молекулы жидкого кристалла и причем первый слой жидкокристаллического материала изменяет свой показатель преломления, что влияет на луч света, проходящий через первый слой жидкокристаллического материала, когда к первому слою электродного материала и второму слою электродного материала прикладывают электрический потенциал. Устройство контактной линзы дополнительно может включать в себя вторую криволинейную переднюю поверхность и вторую криволинейную заднюю поверхность, причем вторая передняя поверхность и вторая задняя поверхность выполнены с возможностью формирования по меньшей мере второй камеры. Устройство контактной линзы также может содержать третий слой электродного материала в непосредственной близости от задней поверхности второй криволинейной передней поверхности и четвертый слой электродного материала в непосредственной близости от передней поверхности второго заднего криволинейного элемента. Также можно включить второй слой, содержащий жидкокристаллический материал, расположенный внутри второй камеры, причем второй слой образован из участков размещенного в промежутках полимерной сетки жидкокристаллического материала, причем полимерная сетка содержит химически присоединенные молекулы жидкого кристалла и причем второй слой жидкокристаллического материала изменяет свой показатель преломления, что влияет на луч света, проходящий через первый слой жидкокристаллического материала, когда к третьему слою электродного материала и четвертому слою электродного материала прикладывают электрический потенциал. Контактная линза также может включать в себя источник энергии, встроенный во вставку по меньшей мере на участке, содержащем неоптическую зону. Контактная линза также может включать в себя электрическую схему, содержащую процессор, причем электрическая схема управляет потоком электрической энергии, идущим от источника энергии к одному или более из первого, второго, третьего или четвертого электродных слоев. Кроме того, вставка с изменяемыми оптическими свойствами для контактной линзы также может изменять фокальные свойства офтальмологической линзы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Указанные выше и прочие характеристики и преимущества настоящего изобретения наглядно представлены в следующем более подробном описании предпочтительных вариантов осуществления настоящего изобретения, проиллюстрированных с помощью прилагаемых рисунков.
На Фиг. 1 представлен пример компонентов устройства узла формы для литья, которые могут быть подходящими для реализации некоторых вариантов осуществления настоящего изобретения.
На Фиг. 2А и 2В представлен пример осуществления офтальмологической линзы с энергообеспечением и вставкой с изменяемыми оптическими свойствами.
На Фиг. 3 приводится вид в поперечном разрезе вставки с изменяемыми оптическими свойствами, где передний и задний криволинейные элементы вставки с изменяемыми оптическими свойствами могут иметь различную кривизну и где часть с изменяемыми оптическими свойствами может быть образована из жидкого кристалла.
На Фиг. 4 представлен вид в поперечном разрезе варианта осуществления устройства офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
На Фиг. 5 представлен пример осуществления вставки с изменяемыми оптическими свойствами, в которой часть с изменяемыми оптическими свойствами может быть образована из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
На Фиг. 6 представлен альтернативный вариант осуществления линзы с изменяемыми оптическими свойствами, содержащей вставку, в которой части с изменяемыми оптическими свойствами могут быть образованы из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
На Фиг. 7 представлены стадии способа формирования офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, которая может быть образована из участков размещенного в промежутках полимерной сетки жидкокристаллического материала.
На Фиг. 8 представлен пример компонентов устройства для помещения вставки с изменяемыми оптическими свойствами, образованной из участков размещенного в промежутках полимерной сетки жидкокристаллического материала, в часть формы для литья офтальмологической линзы.
На Фиг. 9 представлен процессор, который можно использовать для реализации некоторых примеров осуществления настоящего изобретения.
На Фиг. 10A и 10B представлен пример осуществления офтальмологического устройства, содержащего вставку, в которой части с изменяемыми оптическими свойствами могут быть образованы из участков размещенного в промежутках полимерной сетки жидкокристаллического материала особой формы.
На Фиг. 11A, 11B и 11C представлен альтернативный пример осуществления линзы с изменяемыми оптическими свойствами, содержащей вставку, в которой части с изменяемыми оптическими свойствами могут быть образованы из участков размещенного в промежутках полимерной сетки жидкокристаллического материала разной плотности.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Настоящее изобретение включает в себя способы и устройство, предназначенные для производства офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, причем часть с изменяемыми оптическими свойствами образована из жидкого кристалла или композитного материала, который сам включает жидкокристаллические элементы. Кроме того, настоящее изобретение включает в себя офтальмологическую линзу со вставкой с изменяемыми оптическими свойствами, образованной из жидкого кристалла, встроенного в офтальмологическую линзу.
В соответствии с настоящим изобретением, сформирована офтальмологическая линза, содержащая встроенную вставку и источник энергии, такой как электрохимический элемент или аккумуляторная батарея в качестве средства для хранения энергии. В некоторых примерах осуществления материалы, содержащие источник энергии, можно герметизировать и изолировать от среды, в которую помещают офтальмологическую линзу. В некоторых примерах осуществления источник энергии может включать в себя электрохимический элемент, который можно использовать в первичной схеме или в схеме с перезарядкой.
Для изменения оптической части можно использовать регулирующее устройство, управляемое пользователем. Регулирующее устройство может включать в себя, например, электронное или пассивное устройство для увеличения или уменьшения напряжения на выходе или для подключения или отключения источника энергии. Некоторые примеры осуществления также могут включать в себя автоматизированное регулирующее устройство для изменения части с изменяемыми оптическими свойствами с помощью автоматизированного устройства в соответствии с измеренным параметром или данными, введенными пользователем. Пользователь может вводить данные, например, с помощью переключателя, управляемого беспроводным устройством. Беспроводное управление может включать в себя, например, радиочастотное управление, электромагнитное переключение, световое излучение с упорядоченной структурой и индуктивное переключение. В других примерах осуществления активация может происходить в ответ на воздействие биологической функции или в ответ на показания датчика внутри офтальмологической линзы. В других примерах осуществления, не имеющих ограничительного характера, активация может происходить также в результате изменения освещенности окружающей среды.
Изменение оптической силы происходит тогда, когда электрические поля, создаваемые подачей питания к электродам, вызывают перецентрирование внутри жидкокристаллического слоя, сдвигая, таким образом, молекулы из ориентации покоя в ориентацию с энергообеспечением. В других альтернативных примерах осуществления изобретения могут использоваться другие эффекты, вызванные изменением жидкокристаллических слоев за счет подачи питания к электродам, например, изменением состояния поляризации света, в частности, вращением плоскости поляризации.
В некоторых примерах осуществления с жидкокристаллическими слоями в неоптической зоне офтальмологической линзы могут присутствовать элементы с энергообеспечением, в то время как другие примеры осуществления не требуют подачи питания. В примерах осуществления, не требующих подачи питания, жидкий кристалл изменяется пассивно в результате воздействия какого-либо внешнего фактора, например, температуры окружающей среды или естественного освещения.
Жидкокристаллическая линза обеспечивает электрически изменяемый коэффициент преломления поляризованного света, падающего на тело линзы. Комбинация двух линз, в которой ориентация оптической оси второй линзы поворачивается относительно первой линзы, позволяет получить линзу, которая способна изменять коэффициент преломления неполяризованного окружающего освещения.
Комбинирование электрически активных слоев жидкого кристалла с электродами образует физический объект, которым можно управлять путем приложения электрического поля к электродам. Если в периферической зоне жидкокристаллического слоя присутствует диэлектрический слой, то поле диэлектрического слоя и поле жидкокристаллического слоя объединяются в поле электродов. В трехмерной форме характер комбинирования полей слоев можно оценить на основе принципов электродинамики и геометрии диэлектрического слоя и жидкокристаллического слоя. Если эффективная электрическая толщина диэлектрического слоя неоднородна, то воздействие поля на электроды может иметь «форму» эффективной формы диэлектрика и может создавать размерные изменения показателя преломления в жидкокристаллических слоях. В ряде примеров осуществления такое придание формы приводит к образованию линз, способных приобретать изменяемые фокальные свойства.
Альтернативный пример осуществления может предусматривать вариант, при котором физические элементы линзы, содержащие слои жидкого кристалла, меняют свою форму таким образом, чтобы обеспечивать изменение фокальных свойств. Затем электрически регулируемый показатель преломления жидкокристаллического слоя можно использовать для внесения изменений в фокальные характеристики линзы в зависимости от прилагаемого электрического поля в жидкокристаллическом слое за счет применения электродов. Показатель преломления жидкокристаллического слоя может называться эффективным показателем преломления, при этом каждую обработку, относящуюся к показателю преломления, можно рассматривать в равной мере как относящуюся к эффективному показателю преломления. Эффективный показатель преломления можно получить, например, в результате наложения множества участков с различными показателями преломления. В некоторых примерах осуществления эффективным аспектом может быть среднее значение вкладов различных участков, в то время как в других примерах осуществления эффективным аспектом может быть наложение зональных или молекулярных эффектов на падающий свет. Форма, которую придает жидкокристаллическому слою передняя поверхность оболочки, и форма, которую придает жидкокристаллическому слою задняя поверхность оболочки, могут определять фокальные свойства системы с точностью до первого порядка.
В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления являются только примерами осуществления. Предполагается, что специалистам в данной области будут понятны возможности создания модификаций и других вариантов осуществления изобретения. Поэтому следует учитывать, что область, охватываемая настоящим изобретением, не ограничивается приведенными примерами осуществления изобретения.
СПИСОК ТЕРМИНОВ
В данном описании и в формуле изобретения, которые относятся к настоящему изобретению, могут встречаться различные термины, для которых будут применимы представленные ниже определения.
Ориентирующий слой: в настоящем документе относится к слою, смежному с жидкокристаллическим слоем, воздействующему и центрирующему ориентацию молекул внутри жидкокристаллического слоя. Результирующее центрирование и ориентация молекул могут воздействовать на свет, проходящий через жидкокристаллический слой. Например, рефракционные свойства, получаемые в результате центрирования и ориентации, могут влиять на падающий свет. Кроме того, такое воздействие может включать в себя эффект нарушения поляризации света.
Электрическая связь: в настоящем документе относится к состоянию под воздействием электрического поля. В случае использования проводящих материалов воздействие происходит в результате протекания электрического тока или приводит к протеканию электрического тока. При использовании других материалов воздействие, такое как стремление ориентировать постоянные и индуцированные дипольные молекулы вдоль линий поля, вызывает поле электрического потенциала.
С энергообеспечением: в настоящем документе относится к состоянию способности поставлять электрический ток или аккумулировать электрическую энергию.
Ориентация с энергообеспечением: в настоящем документе относится к ориентации молекул жидкого кристалла при воздействии на них потенциального поля, подключенного к источнику энергии. Например, устройство, содержащее жидкие кристаллы, может иметь одну ориентацию с энергообеспечением, если источник работает только в режиме вкл. и выкл. В других примерах осуществления ориентация с энергообеспечением может изменяться по мере приложения различных величин энергии.
Энергия: в настоящем документе относится к способности физической системы к выполнению работы. В рамках настоящего изобретения многие применения могут относиться к способности выполнения электрических действий при проведении работы.
Источник питания: в настоящем документе относится к устройству, выполненному с возможностью поставлять энергию или приводить биомедицинское устройство в состояние с энергообеспечением.
Устройство сбора энергии: в настоящем документе относится к устройству, выполненному с возможностью извлекать энергию из окружающей среды и преобразовывать ее в электрическую энергию.
Интраокулярная линза: в настоящем документе относится к офтальмологической линзе, вставленной в глаз.
Линзообразующая смесь, или реакционная смесь, или реакционная смесь мономера (РСМ): в настоящем документе относится к мономерному или форполимерному материалу, который можно полимеризовать и поперечно сшить или поперечно сшить с образованием офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как УФ-блокаторы, красители, фотоинициаторы или катализаторы и другие добавки, которые могут понадобиться в составе офтальмологических линз, например, контактных или интраокулярных линз.
Линзообразующая поверхность: в настоящем документе относится к поверхности, используемой для литья линзы. В некоторых примерах осуществления любая такая поверхность может иметь оптическое качество поверхности, что означает, что данная поверхность является достаточно гладкой и образована таким образом, чтобы поверхность линзы, формируемой путем полимеризации линзообразующей смеси в контакте с формирующей поверхностью, была оптически приемлемого качества. Кроме того, в некоторых примерах осуществления линзообразующая поверхность может иметь такую геометрию, которая необходима для придания поверхности линзы желаемых оптических характеристик, включая, например, коррекцию сферических, асферических и цилиндрических аберраций, коррекцию аберраций волнового фронта и коррекцию топографии роговицы.
Жидкий кристалл: в настоящем документе относится к состоянию вещества, обладающего свойствами между стандартной жидкостью и твердым кристаллом. Жидкий кристалл невозможно рассматривать как твердое вещество, но его молекулы показывают определенную степень центрирования. Используемый в настоящем документе термин «жидкий кристалл» не ограничивается конкретной фазой или структурой, но такой жидкий кристалл может иметь конкретную ориентацию покоя. Ориентацией и фазами жидкого кристалла можно манипулировать с помощью внешних воздействий, таких как температура, магнетизм или электричество, в зависимости от класса жидкого кристалла.
Литий-ионный элемент: в настоящем документе относится к электрохимическому элементу, в котором электрическая энергия вырабатывается в результате перемещения ионов лития через элемент. Данный электрохимический элемент, как правило, называемый аккумуляторной батареей, в своей типичной форме может быть перезапитан или перезаряжен.
Несущая вставка или вставка: в настоящем документе относится к формуемой или жесткой подложке, способной поддерживать источник энергии внутри офтальмологической линзы. В некоторых примерах осуществления несущая вставка также включает в себя одну или более частей с изменяемыми оптическими свойствами.
Форма для литья: в настоящем документе относится к жесткому или полужесткому объекту, который можно использовать для формирования линз из неполимеризованных составов. Некоторые предпочтительные формы для литья состоят из двух частей: передней криволинейной поверхности и задней криволинейной поверхности формы для литья.
Офтальмологическая линза или линза: в настоящем документе относится к любому офтальмологическому устройству, расположенному в или на глазу. Данные устройства могут обеспечивать оптическую или косметическую коррекцию или модификацию. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или другому аналогичному устройству, которое используют для коррекции или модификации зрения, либо для косметического улучшения физиологии глаза (например, изменения цвета радужной оболочки) без снижения зрения. В некоторых примерах осуществления предпочтительные линзы, составляющие предмет настоящего изобретения, представляют собой мягкие контактные линзы, выполненные из силиконовых эластомеров или гидрогелей, которые включают в себя, например, силикон-гидрогели и фтор-гидрогели.
Оптическая зона: в настоящем документе относится к области офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.
Оптическая сила: в настоящем документе относится к выполненной работе или переданной энергии за единицу времени.
Перезаряжаемый или перезапитываемый: в настоящем документе относится к возможности быть восстановленным до состояния с более высокой способностью к выполнению работы. В рамках настоящего изобретения указанная способность, как правило, может относиться к восстановлению способности испускать электрический ток определенной величины в течение определенного повторного периода времени.
Перезапитывать или перезаряжать: в настоящем документе относится к восстановлению источника энергии до состояния с более высокой способностью к выполнению работы. В рамках настоящего изобретения указанная способность, как правило, может относиться к восстановлению способности устройства испускать электрический ток определенной величины в течение определенного повторного периода времени.
Высвобожденный из формы для литья: в настоящем документе относится к линзе, которая либо полностью отделена от формы для литья, либо лишь слабо закреплена на ней так, что ее можно отделить легким встряхиванием или сдвинуть с помощью тампона.
Ориентация покоя: в настоящем документе относится к ориентации молекул жидкокристаллического устройства в состоянии его покоя, то есть без энергообеспечения.
С изменяемыми оптическими свойствами: в настоящем документе относится к способности изменять оптическое свойство, например, оптическую силу линзы или угол поляризации.
ОФТАЛЬМОЛОГИЧЕСКИЕ ЛИНЗЫ
На Фиг. 1 представлено устройство 100 для формирования офтальмологических устройств, содержащих герметизированные вставки. Прибор включает в себя пример формы для литья передней криволинейной поверхности 102 и соответствующей ей формы для литья задней криволинейной поверхности 101. Вставку с изменяемыми оптическими свойствами 104 и тело 103 офтальмологического устройства можно разместить внутри формы для литья передней криволинейной поверхности 102 и формы для литья задней криволинейной поверхности 101. В некоторых примерах осуществления материал тела 103 может представлять собой гидрогелевый материал, а вставка с изменяемыми оптическими свойствами 104 может быть окружена данным материалом на всех поверхностях.
Вставка с изменяемыми оптическими свойствами 104 может содержать множество жидкокристаллических слоев 109 и 110. Другие примеры осуществления могут включать в себя один жидкокристаллический слой; некоторые из этих вариантов описаны в следующих разделах. При применении устройства 100 можно создать новое офтальмологическое устройство, образованное из комбинации компонентов с множеством герметичных участков.
В ряде примеров осуществления линза со вставкой с изменяемыми оптическими свойствами 104 может включать в себя конфигурацию с жесткой центральной частью и мягкими краями, в которой центральный жесткий оптический элемент, содержащий жидкокристаллические слои 109 и 110, непосредственно контактирует с атмосферой и поверхностью роговицы передней и задней поверхностями, соответственно. Мягкие края материала линзы (как правило, материала на основе гидрогеля) прикрепляют по периферической зоне жесткого оптического элемента, и жесткий оптический элемент также может обеспечивать энергию и функциональность для полученной офтальмологической линзы.
На Фиг. 2А элементом 200 показан вид сверху, и на Фиг. 2В элементом 250 показано поперечное сечение для примера осуществления вставки с изменяемыми оптическими свойствами. На данном рисунке источник энергии 210 показан в части периферической зоны 211 вставки с изменяемыми оптическими свойствами 200. Источник энергии 210 может включать в себя, например, тонкую пленку, перезаряжаемую литий-ионную батарею или щелочную аккумуляторную батарею. Источник энергии 210 можно соединять с соединительными элементами 214 для обеспечения взаимосвязи. Дополнительные соединительные элементы, например, 225 и 230, могут связывать источник питания 210 со схемой, например, в позиции 205. В других примерах осуществления вставка может иметь элементы взаимосвязи, нанесенные на ее поверхность.
В некоторых примерах осуществления вставка с изменяемыми оптическими свойствами 200 может включать в себя гибкий субстрат. Данному гибкому субстрату можно придать форму, приближенную к типичной форме линзы, способом, аналогичным описанному выше, или иными средствами. Однако для обеспечения дополнительной гибкости вставка с изменяемыми оптическими свойствами 200 может включать в себя дополнительные особенности формы, такие как радиальные продольные разрезы. Возможна установка множества электронных компонентов, например, обозначенных 205, в частности, интегральных схем, отдельных компонентов, пассивных компонентов, а также других устройств, установка которых может считаться допустимой.
Часть с изменяемыми оптическими свойствами 220 также изображена на рисунках. Часть с изменяемыми оптическими свойствами 220 можно изменять по команде при пропускании тока через вставку с изменяемыми оптическими свойствами, что, в свою очередь, обычно приводит к изменению электрического поля, приложенного к жидкокристаллическому слою. В некоторых примерах осуществления часть с изменяемыми оптическими свойствами 220 содержит тонкий слой, содержащий жидкие кристаллы между двумя слоями прозрачной подложки. Может существовать множество способов электронной активации и регулирования компонента с изменяемыми оптическими свойствами, как правило, с помощью электронной схемы 205. Электронная схема 205 может принимать различные сигналы, а также соединяться с детектирующими элементами, которые могут находиться во вставке, например, как элемент 215. В некоторых примерах осуществления вставку с изменяемыми оптическими свойствами можно инкапсулировать в края линзы 255, которые могут быть образованы из гидрогелевого материала или другого подходящего материала для изготовления офтальмологической линзы. В данных примерах осуществления офтальмологическая линза может быть образована из края 255 офтальмологической линзы и инкапсулированной вставки 200 офтальмологической линзы, которая сама по себе может содержать слои или участки жидкокристаллического материала или содержащие жидкокристаллический материал, и в некоторых вариантах осуществления слои могут содержать участки размещенного в промежутках полимерной сетки жидкокристаллического материала.
ВСТАВКА С ИЗМЕНЯЕМЫМИ ОПТИЧЕСКИМИ СВОЙСТВАМИ, СОДЕРЖАЩАЯ ЖИДКОКРИСТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ
На Фиг. 3, элемент 300, можно найти пример эффекта линзы для двух участков линзы различной формы. Как отмечалось ранее, обладающая признаками изобретения вставка с изменяемыми оптическими свойствами, описанная в настоящем документе, может быть образована путем введения системы электродного и жидкокристаллического слоя между двумя участками линзы различной формы. Элементом 350 показано, что система электродного и жидкокристаллического слоя может занимать пространство между двумя участками линзы. Элементом 320 показан передний криволинейный элемент, и элементом 310 показан задний криволинейный элемент.
В примере, не имеющем ограничительного характера, передний криволинейный элемент 320 может иметь вогнутую по форме поверхность, которая соприкасается с пространством 350. В некоторых примерах осуществления форма может дополнительно характеризоваться радиусом кривизны, который обозначается 335, и фокусной точкой 330. В соответствии со сферой охвата настоящего изобретения можно изготавливать и более сложные формы с различными параметрическими характеристиками; однако для наглядности можно использовать простую сферическую форму.
Аналогичным образом и без ограничительного характера задний криволинейный элемент 310 может иметь выпуклую по форме поверхность, которая соприкасается с пространством 350. В некоторых примерах осуществления форма может дополнительно характеризоваться радиусом кривизны, который обозначается 340, и фокусной точкой 345. В соответствии со сферой охвата настоящего изобретения можно изготавливать и более сложные формы с различными параметрическими характеристиками; однако для наглядности можно использовать простую сферическую форму.
Для того чтобы проиллюстрировать работу линзы типа 300, укажем, что материал, содержащий элементы 310 и 320, может обладать естественным коэффициентом преломления, имеющим определенное значение. В качестве примера, не имеющего ограничительного характера, в пространстве 350 можно выбрать жидкокристаллический слой, имеющий соответствующее значение коэффициента преломления. Таким образом, когда световые лучи будут проходить через элементы линзы 310 и 320 и пространство 350, они не будут взаимодействовать с различными поверхностями раздела так, чтобы корректировать фокальные свойства. Выполняя свое назначение, части линзы, не показанные на чертеже, могут активировать подачу питания к различным компонентам, вследствие чего жидкокристаллический слой в пространстве 350 может принимать другое значение показателя преломления падающего света. В примере, не имеющем ограничительного характера, результирующий показатель преломления может быть понижен. Далее на каждой границе раздела материалов можно моделировать нарушение хода светового луча с учетом фокальных свойств поверхности и изменения показателя преломления.
Модель может быть основана на законе преломления света: sin(theta1)/sin(theta2)=n2/n1. Например, граница раздела может быть образована элементом 320 и пространством 350; theta1 может представлять собой угол, образуемый падающим лучом с нормалью к поверхности на границе раздела. Theta2 может представлять собой моделируемый угол, образуемый лучом с нормалью к поверхности при выходе за пределы границы раздела. n2 может представлять собой показатель преломления пространства 350, а n1 - показатель преломления элемента 320. Когда n1 не равен n2, углы theta1 и theta2 также будут различными. Таким образом, когда электрически изменяемый коэффициент преломления в жидкокристаллическом слое в пространстве 350 изменяется, траектория светового луча на границе раздела также изменяется.
На Фиг. 4 показана офтальмологическая линза 400 со встроенной вставкой с изменяемыми оптическими свойствами 410. Офтальмологическая линза 400 может иметь переднюю криволинейную поверхность 401 и заднюю криволинейную поверхность 402. Вставка 410 может иметь часть с изменяемыми оптическими свойствами 403 с жидкокристаллическим слоем 404. В некоторых примерах осуществления вставка 410 может иметь множество жидкокристаллических слоев 404 и 405. Части вставки 410 могут накладываться на оптическую зону офтальмологической линзы 400.
На Фиг. 5 показана часть с изменяемыми оптическими свойствами 500, которую можно вставлять в офтальмологическую линзу, а также жидкокристаллический слой 530. Часть с изменяемыми оптическими свойствами 500 может иметь аналогичное разнообразие материалов и структурного соответствия, как уже обсуждалось в других разделах настоящего описания. В ряде примеров осуществления прозрачный электрод 545 можно помещать на первой прозрачной подложке 550. Первая поверхность линзы 540 может быть образована из диэлектрической пленки, а в некоторых примерах осуществления - из ориентирующих слоев, которые можно помещать на первом прозрачном электроде 545. В таких вариантах осуществления форма диэлектрического слоя первой поверхности линзы может образовывать локально изменяемую по диэлектрической толщине форму, как показано на рисунке. Такая локально изменяемая по диэлектрической толщине форма может сообщать элементу линзы дополнительную фокусирующую оптическую силу помимо геометрических эффектов, рассмотренных со ссылкой на Фиг. 3. В ряде примеров осуществления диэлектрический слой особой формы может быть образован литьем под давлением на комбинации первого прозрачного электрода 545 и прозрачной подложки 550.
В некоторых примерах осуществления первому прозрачному электроду 545 и второму прозрачному электроду 520 можно придать различную форму. В некоторых примерах придание формы может приводить к образованию отдельных четко выраженных участков, к которым подача питания может осуществляться отдельно. В других примерах электроды могут формировать определенные структуры, такие как спираль, идущая от центра линзы к периферической зоне, вследствие чего к жидкокристаллическому слою прикладывается переменное электрическое поле. Придание электродам формы таким способом также может сообщать элементу линзы дополнительную фокусирующую оптическую силу в процессе эксплуатации.
Этот эффект может привести к тому, что для центрирования молекул жидкого кристалла в состояние с энергообеспечением потребуются более сильные электрические поля. Кроме того, разработка химических структур молекул жидкого кристалла может помочь в образовании условий, предусматривающих использование более низких электрических полей для перевода в выровненные состояния.
В первом примере можно сформировать комбинацию мономера и молекулы жидкого кристалла, которая при нагревании образует гомогенную смесь. Затем эту смесь можно нанести на часть, представляющую собой передний криволинейный элемент вставки, а затем герметизировать ее во вставку для линзы путем добавления заднего криволинейного или промежуточного элемента вставки. Вставку, содержащую жидкокристаллическую смесь, затем можно полимеризовать при предварительно заданных условиях для формирования поперечносшитых сеток полимеризованного материала, а также внедренных участков жидкого кристалла в промежутках полимерной сетки. В некоторых примерах для инициации полимеризации смесь можно обработать актиничным излучением.
В другом примере также можно приготовить смесь жидкого кристалла и жидкокристаллического мономера. В этом примере смесь можно нанести на передний криволинейный элемент или задний или промежуточный криволинейный элемент, а затем установить дополнительный элемент. Нанесенная смесь может уже содержать компоненты, необходимые для запуска реакций полимеризации. Либо для инициации полимеризации смесь можно обработать актиничным излучением. При выборе некоторых вариантов мономеров и инициирующих агентов реакция полимеризации может проходить с такой скоростью и таким образом, что в полимерном матриксе материала могут образовываться области с высокой концентрацией жидкокристаллического мономера, сходные с каплями. Эти молекулы жидкого кристалла могут свободно двигаться по полимерному матриксу, прежде чем полностью полимеризуются, и также могут обладать способностью воспринимать ориентирующие влияния со стороны соседних участков, которые могут представлять собой другие молекулы жидкого кристалла или элементы центрирования на поверхностях элементов вставки, на которые нанесена жидкокристаллическая смесь. Такие центрирующие участки, если они присутствуют, могут определять состояние покоя молекул жидкого кристалла в полимерном матриксе и могут определять фиксированную ориентацию молекул жидкого кристалла на полимеризованных участках после того, как произойдет существенная полимеризация. Кроме того, центрированные молекулы жидкого кристалла в полимере также могут оказывать ориентирующее воздействие на молекулы жидкого кристалла на участках промежутков. Таким образом, комбинированный слой из полимеризованных участков и включенных в них участков промежутков может естественным образом находиться в состоянии центрирования, предварительно заданном включением центрирующих элементов в элементах вставки до введения в нее жидкокристаллического промежуточного слоя.
Существует множество способов включения молекул жидкого кристалла в полимеризованные или гелевые области. Некоторые способы представлены в приведенных выше описаниях. Однако любой способ получения слоев с внедренными в полимерную сетку жидкими кристаллами может соответствовать объему настоящего изобретения и может использоваться для создания офтальмологического устройства. В предыдущих примерах описано применение мономеров с присоединенными жидкокристаллическими частями для создания слоев с сетевой структурой, образующих промежутки для свободных молекул жидкого кристалла. Полимер может находиться в кристаллической форме, полукристаллической форме или в аморфной форме, а в других вариантах осуществления полимер также может находиться в гелевой и полугелевой форме.
Часть с изменяемыми оптическими свойствами 500, показанная на Фиг. 5, может иметь другие аспекты, которые могут определяться аналогичным разнообразием материалов и конструктивным соответствием, что описано в других разделах настоящего документа. В ряде примеров осуществления прозрачный электрод 520 можно помещать на второй прозрачной подложке 510. Вторая поверхность линзы может быть образована из диэлектрической пленки, а в некоторых вариантах осуществления - из ориентирующих слоев, которые можно помещать на втором прозрачном электроде 520. В таких вариантах осуществления форма диэлектрического слоя второй поверхности линзы 525 может образовывать локально изменяемую по толщине диэлектрика форму. Слой диэлектрика на первой поверхности линзы в элементе 540 также может быть образован так, чтобы содержать изменяемую по толщине диэлектрика форму. Такая локально изменяемая форма может сообщать дополнительную фокусирующую силу элементу линзы. В ряде примеров осуществления, например, слой особой формы может быть образован литьем под давлением на комбинации второго прозрачного электрода 520 и подложки 510.
В некоторых вариантах осуществления второму прозрачному электроду 520 и первому прозрачному электроду 545 можно придать различную форму. В некоторых примерах придание формы может приводить к образованию отдельных четко выраженных участков, к которым подачу питания можно осуществлять отдельно. В других примерах электроды могут формировать определенные структуры, такие как спираль, идущая от центра линзы к периферической зоне, вследствие чего к жидкокристаллическому слою 530 прикладывается переменное электрическое поле. В любом случае, такое придание формы электродам можно выполнять в дополнение к приданию формы диэлектрическим слоям на электроде или вместо него. Придание электродам формы таким способом также может сообщать элементу линзы дополнительную фокусирующую оптическую силу в процессе эксплуатации.
Жидкокристаллический слой 530 можно размещать между первым прозрачным электродом 545 и вторым прозрачным электродом 520. Второй прозрачный электрод 520 можно присоединять к нижнему слою подложки 510, причем устройство, образованное от нижнего слоя подложки 510 к верхнему слою подложки 550, может содержать часть с изменяемыми оптическими свойствами 500 офтальмологической линзы. Два ориентирующих слоя также могут размещаться в элементах 540 и 525 на диэлектрическом слое и окружать жидкокристаллический слой 530. Ориентирующие слои в элементах 540 и 525 могут служить для образования ориентации покоя офтальмологической линзы. В некоторых примерах осуществления слои электродов 520 и 545 находятся в электрической связи с жидкокристаллическим слоем 530 и вызывают сдвиг от ориентации покоя к минимум одной ориентации с энергообеспечением.
На Фиг. 6 показан альтернативный вариант вставки с изменяемыми оптическими свойствами 600, которую можно вставлять в офтальмологическую линзу, а также два жидкокристаллических слоя 640 и 620. Каждый из аспектов различных слоев, окружающих жидкокристаллическую зону, может отличаться подобным разнообразием, как описано выше применительно к вставке с изменяемыми оптическими свойствами 500, показанной на Фиг. 5. В некоторых примерах осуществления ориентирующие слои могут вносить поляризационную чувствительность в функционирование единственного жидкокристаллического элемента. Комбинируя первый элемент на основе жидких кристаллов, образованный первой подложкой 610, промежуточные слои которой в пространстве вокруг 620 и вторая подложка 630 могут иметь первый поляризационный приоритет, со вторым элементом на основе жидких кристаллов, образованным второй поверхностью на второй подложке 630, промежуточными слоями в пространстве вокруг 640 и третьей подложкой 650 со вторым поляризационным приоритетом можно сформировать комбинацию, позволяющую получить электрически изменяемые фокальные свойства линзы, нечувствительной к поляризационным аспектам падающего на нее света.
В приведенном примере элемента 600 комбинацию двух электрически активных жидкокристаллических слоев различного типа и разнообразие, связанное с примером элемента 500, можно получить при помощи трех слоев подложки. В других примерах такое устройство можно формировать комбинацией четырех различных подложек. В таких примерах промежуточную подложку 630 можно подразделять на два слоя. Если эти подложки объединяются позднее, можно получить устройство, функционирующее аналогично элементу 600. Комбинация четырех слоев представляет собой пример изготовления элемента, в котором аналогичные устройства могут быть выполнены вокруг жидкокристаллических слоев 620 и 640, где различия при обработке могут быть связаны с частью стадий, образующих элементы центрирования жидкокристаллического элемента. В других примерах, если элемент линзы вокруг одного жидкокристаллического слоя, такого как представленный элементом 500, является сферически-симметричным или симметричным при повороте на девяносто градусов, то две части можно собрать в конструкцию того же типа, который представлен элементом 600, путем поворота двух частей на девяносто градусов относительно друг друга перед сборкой.
В целом, в примерах осуществления, рассматриваемых в связи с Фиг. 6, может существовать множество промежуточных элементов, включенных в формирование офтальмологической линзы. Каждый из этих элементов может образовывать области между элементами, где могут быть образованы различные слои, например, без ограничений, жидкокристаллические слои, ориентирующие слои и электроды. Специалисту в данной области может быть ясно, что офтальмологическое устройство со вставкой, образованной из многочисленных элементов вставки, может иметь электроды, прилагаемые к некоторым или ко всем поверхностям вставки, присутствующим в устройстве. Поэтому электрический потенциал можно прилагать к ряду возможных комбинаций поверхностей вставки, на которых имеется приложенный электрод.
МАТЕРИАЛЫ
Варианты осуществления в виде микроинъекционного литья могут включать в себя, например, смолу на основе сополимера поли(4-метилпент)-1-ен, используемую для образования линз с диаметром от приблизительно 6 мм до 10 мм, радиусом передней поверхности от приблизительно 6 мм до 10 мм, радиусом задней поверхности от приблизительно 6 мм до 10 мм и толщиной центра от приблизительно 0,050 мм до 1,0 мм. Некоторые примеры осуществления включают в себя вставку с диаметром приблизительно 8,9 мм, радиусом передней поверхности приблизительно 7,9 мм, радиусом задней поверхности приблизительно 7,8 мм, толщиной центра приблизительно 0,200 мм и толщиной края приблизительно 0,050 мм.
Вставку с изменяемыми оптическими свойствами 104, показанную на Фиг. 1, можно помещать в форму для литья 101 и 102, используемую для формирования офтальмологической линзы. Материал части формы для литья 101 и 102 может включать в себя, например, полиолефин одного или более из следующих типов: полипропилен, полистирол, полиэтилен, полиметилметакрилат, а также модифицированные полиолефины. Иные формы для литья могут включать в себя керамический или металлический материал.
Предпочтительный алициклический сополимер содержит два разных алициклических полимера. Различные марки алициклических сополимеров могут иметь температуру стеклования от 105°C до 160°C.
В некоторых примерах осуществления формы для литья настоящего изобретения могут содержать такие полимеры, как полипропилен, полиэтилен, полистирол, полиметилметакрилат, модифицированные полиолефины с алициклическим фрагментом в основной цепи и циклические полиолефины. Смесь можно использовать на любой или обеих половинах формы для литья, причем предпочтительно данная смесь используется для выполнения задней криволинейной поверхности, а передняя криволинейная поверхность состоит из алициклических сополимеров.
В ряде предпочтительных способов изготовления форм для литья 100 для целей настоящего изобретения используется литье под давлением в соответствии с известными методиками, однако примеры осуществления также могут включать формы для литья, изготовленные по другим методикам, в том числе: токарной обработкой, алмазным точением, а также лазерной резкой.
Как правило, линзы образуются по меньшей мере на одной поверхности обеих частей формы для литья 101 и 102. Однако в некоторых примерах осуществления одну поверхность линзы можно сформировать из части формы для литья 101 или 102, а другую поверхность линзы можно сформировать методом токарной обработки или любыми другими способами.
В некоторых примерах осуществления предпочтительный материал линзы включает в себя силиконсодержащий компонент. Под «силиконсодержащим компонентом» подразумевается любой компонент, содержащий по меньшей мере одно звено [-Si-O-] в составе мономера, макромера или форполимера. Полное содержание Si и непосредственно связанного с ним O в рассматриваемом силиконсодержащем компоненте предпочтительно составляет более чем приблизительно 20 весовых процентов, а еще предпочтительнее более чем 30 весовых процентов полного молекулярного веса силиконсодержащего компонента. Подходящие для целей настоящего изобретения силиконсодержащие компоненты предпочтительно содержат полимеризуемые функциональные группы, такие как акрилатная, метакрилатная, акриламидная, метакриламидная, виниловая, N-виниллактамовая, N-виниламидная и стириловая функциональные группы.
В некоторых примерах осуществления края офтальмологической линзы, также называемые герметизирующим вставку слоем, который окружает вставку, могут быть образованы из стандартных гидрогелевых составов для офтальмологической линзы. Примеры материалов с характеристиками, которые могут обеспечивать приемлемое сочетание со множеством материалов вставки, могут включать в себя материалы семейства нарафилкона (включая нарафилкон A и нарафилкон B) и семейства этафилкона (включая этафилкон A). Ниже приведено более полное с технической точки зрения описание характера материалов, которые могут применяться в области, представленной в настоящем документе. Специалисту в данной области будет понятно, что другие материалы, отличные от описанных ниже, также позволяют сформировать приемлемую оболочку или частичную оболочку для герметизированных вставок и должны считаться соответствующими и включенными в объем формулы изобретения.
Подходящие для целей настоящего изобретения силиконсодержащие компоненты включают в себя соединения Формулы I
где
R1 независимо выбирают из группы, включающей моновалентные реакционноспособные группы, моновалентные алкильные группы или моновалентные арильные группы, причем каждая из перечисленных химических групп может дополнительно иметь в своем составе функциональные группы, выбираемые из следующего ряда: гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамат, карбонат, галоген или их различные комбинации; а моновалентные силоксановые цепи имеют в своем составе 1-100 повторяющихся Si-O блоков и могут дополнительно иметь в своем составе функциональные группы, выбираемые из следующего ряда: алкил, гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамат, галоген или их различные комбинации;
где b = от 0 до 500, причем подразумевается, что если b отлично от 0, то по b имеется распределение с модой, равной указанному значению;
причем по меньшей мере один R1 содержит одновалентную реакционноспособную группу, а в некоторых примерах осуществления от одного до 3 R1 содержат одновалентные реакционноспособные группы.
Используемый в настоящем документе термин «моновалентные реакционноспособные группы» относится к группам, способным к реакциям свободнорадикальной и/или катионной полимеризации. Не имеющие ограничительного характера примеры свободнорадикальных реакционноспособных групп включают в себя (мет)акрилаты, стирилы, винилы, виниловые эфиры, C1-6алкил(мет)акрилаты, (мет)акриламиды, C1-6алкил(мет)акриламиды, N-виниллактамы, N-виниламиды, C2-12алкенилы, C2-12алкенилфенилы, C2-12алкенилнафтилы, C2-6алкенилфенил-C1-6алкилы, O-винилкарбаматы и O-винилкарбонаты. Не имеющие ограничительного характера примеры катионных реакционноспособных групп включают в себя винилэфирные или эпоксидные группы и их смеси. В одном варианте осуществления свободнорадикальные реакционные группы содержат (мет)акрилаты, акрилокси, (мет)акриламиды и их смеси.
Подходящие для целей настоящего изобретения одновалентные алкильные и арильные группы включают в себя незамещенные одновалентные C1-C16алкильные группы, C6-C14арильные группы, такие как замещенные и незамещенные метил, этил, пропил, бутил, 2-гидроксипропил, пропоксипропил, полиэтиленоксипропил, их комбинации и т.п.
В одном примере осуществления b равно нулю, один R1 представляет собой одновалентную реакционноспособную группу, и по меньшей мере 3 R1 выбирают из одновалентных алкильных групп, имеющих от одного до 16 атомов углерода, а в другом примере осуществления - из одновалентных алкильных групп, имеющих от одного до 6 атомов углерода. Не имеющие ограничительного характера примеры силиконсодержащих компонентов в данном варианте осуществления включают в себя 2-метил-, 2-гидрокси-3-[3-[1,3,3,3-тетраметил-1-[(триметилсилил)окси]дисилоксанил]пропокси]пропиловый эфир (SiGMA),
2-гидрокси-3-метакрилоксипропилоксипропилтрис(триметилсилокси)силан,
3-метакрилоксипропилтрис(триметилсилокси)силан (TRIS),
3-метакрилоксипропилбис(триметилсилокси)метилсилан и
3-метакрилоксипропилпентаметилдисилоксан.
В другом примере осуществления b равно от 2 до 20, от 3 до 15 или в некоторых примерах осуществления от 3 до 10; по меньшей мере один концевой R1 содержит одновалентную реакционноспособную группу, а остальные R1 выбирают из одновалентных алкильных групп, имеющих от 1 до 16 атомов углерода, а в другом варианте осуществления - из одновалентных алкильных групп, имеющих от 1 до 6 атомов углерода. В другом варианте осуществления b равно от 3 до 15, один концевой R1 содержит одновалентную реакционноспособную группу, другой концевой R1 содержит одновалентную алкильную группу, имеющую от 1 до 6 атомов углерода, а остальные R1 содержат одновалентные алкильные группы, имеющие от 1 до 3 атомов углерода. Не имеющие ограничительного характера примеры силиконсодержащих компонентов такого варианта осуществления включают в себя (полидиметилсилоксан (МВ 400-1000) с концевой моно-(2-гидрокси-3-метакрилоксипропил)-пропил эфирной группой) (OH-mPDMS), (полидиметилсилоксаны (МВ 800-1000) с концевыми моно-н-бутильными и концевыми монометакрилоксипропильными группами), (mPDMS).
В другом примере осуществления b равно от 5 до 400 или от 10 до 300, оба концевых R1 содержат одновалентные реакционноспособные группы, а остальные R1 независимо выбирают из одновалентных алкильных групп, имеющих от 1 до 18 атомов углерода, которые могут иметь эфирные связи между атомами углерода и могут дополнительно содержать галоген.
В одном примере осуществления, где желательно использовать линзы из силиконового гидрогеля, линзы настоящего изобретения изготавливают из реакционной смеси, содержащей по меньшей мере приблизительно 20 и предпочтительно от 20 до 70 вес. % силиконсодержащих компонентов в расчете на общую массу реакционных компонентов мономерной смеси, из которой образуется полимер.
В другом варианте осуществления от одного до четырех R1 содержат винилкарбонат или карбамат следующей формулы:
Формула II
где: Y обозначает O-, S- или NH-;
R обозначает водород или метил; d равен 1, 2, 3 или 4; q равен 0 или 1.
Силиконсодержащие винилкарбонатные или винилкарбаматные мономеры конкретно включают в себя: 1,3-бис[4-(винилоксикарбонилокси)бут-1-ил]тетраметилдисилоксан; 3-(винилоксикарбонилтио)пропил-[трис(триметилсилокси)силан]; 3-[трис(триметилсилокси)силил]пропилаллилкарбамат; 3-[трис(триметилсилокси)силил]пропилвинилкарбамат; триметилсилилэтилвинилкарбонат; триметилсилилметилвинилкарбонат, и
Если необходимы биомедицинские устройства с модулем упругости менее приблизительно 200, только один R1 должен содержать моновалентную реакционноспособную группу и не более двух из остальных R1 должны содержать моновалентные силоксановые группы.
Другой класс силиконсодержащих компонентов включает полиуретановые макромеры со следующими формулами:
Формулы IV-VI
(*D*A*D*G)a *D*D*E1;
E(*D*G*D*A)a *D*G*D*E1 или;
E(*D*A*D*G)a *D*A*D*E1,
где:
D обозначает алкильный бирадикал, алкилциклоалкильный бирадикал, циклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, содержащий от 6 до 30 атомов углерода,
G обозначает алкильный бирадикал, циклоалкильный бирадикал, алкилциклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, содержащий от 1 до 40 атомов углерода, который может иметь в основной цепи эфирные, тиоэфирные или аминовые мостиковые группы;
* обозначает уретановую или уреидо мостиковую группу;
a равен по меньшей мере 1;
A обозначает двухвалентный полимерный радикал со следующей формулой:
Формула VII
R11 независимо обозначает алкильную или фторзамещенную алкильную группу, имеющую от 1 до 10 атомов углерода, которая может иметь эфирные связи между атомами углерода; y равно по меньшей мере 1; и p обеспечивает молекулярную массу фрагмента от 400 до 10000; каждый из E и E1 независимо обозначает полимеризуемый ненасыщенный органический радикал, представленный следующей формулой:
Формула VIII
где: R12 представляет собой водород или метил; R13 представляет собой водород, алкильный радикал, имеющий от 1 до 6 атомов углерода, или радикал -CO-Y-R15, в котором Y представляет собой -O-, Y-S- или -NH-; R14 представляет собой двухвалентный радикал, имеющий от 1 до 12 атомов углерода; X означает -CO- или -OCO-; Z означает -O- или -NH-; Ar означает ароматический радикал, имеющий от 6 до 30 атомов углерода; w равно от 0 до 6; x равно 0 или 1; y равно 0 или 1; z равно 0 или 1.
Предпочтительный силиконсодержащий компонент представляет собой полиуретановый макромер, представленный следующей формулой:
Формула IX
где R16 представляет собой бирадикал диизоцианата после удаления собственно изоцианатной группы, например, бирадикал изофорондиизоцианата. Другим силиконсодержащим макромером, соответствующим целям настоящего изобретения, является соединение Формулы X (где x+y представляет собой число в диапазоне от 10 до 30), получаемое при реакции фторэфира, полидиметилсилоксана с концевой гидроксильной группой, изофорондиизоцианата и изоцианатэтилметакрилата.
Формула X
Иные силиконсодержащие компоненты, соответствующие целям настоящего изобретения, включают макромеры, содержащие полисилоксановые, полиалкиленэфирные, диизоцианатные, полифторуглеводородные, полифторэфирные и полисахаридные группы; полисилоксаны с полярной фторированной привитой или боковой группой, содержащей атом водорода, присоединенный к концевому дифторзамещенному атому углерода; гидрофильные силоксанилметакрилаты, содержащие эфирные и силоксанильные мостиковые группы, а также поперечно-сшиваемые мономеры, содержащие полиэфирные и полисилоксанильные группы. Для целей настоящего изобретения любой из перечисленных выше полисилоксанов можно также использовать в качестве силиконсодержащего компонента.
ЖИДКОКРИСТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ
Существуют многочисленные материалы, обладающие характеристиками, которые соответствуют типам жидкокристаллических слоев, рассмотренных выше. Можно предположить, что жидкокристаллические материалы с благоприятными токсическими свойствами окажутся предпочтительными и что природные жидкокристаллические материалы на основе холестерина могут быть подходящими. В других примерах технология обложки и материалы офтальмологических вставок могут обеспечить широкий выбор материалов, которые могут включать в себя материалы, относящиеся к ЖК-дисплею, которые, как правило, могут охватывать широкие категории, связанные с нематическими (N), холестерическими или смектическими жидкими кристаллами или жидкокристаллическими смесями. Коммерчески доступные смеси, такие как смеси Licristal на основе специализированных химикалий Merck для применений в технологиях TN, VA, PSVA, IPS и FFS, и другие коммерчески доступные смеси создают широкие возможности выбора для формирования жидкокристаллического слоя.
В не имеющем ограничительного характера смысле, смеси и составы могут содержать следующие жидкокристаллические материалы: жидкий кристалл 1-(транс-4-гексилциклогексил)-4-изотиоцианатобензол, соединения бензойной кислоты, включая (4-октилбензойную кислоту и 4-гексилбензойную кислоту), карбонитрильные соединения, включая (4′-пентил-4-бифенилкарбонитрил, 4′-октил-4-бифенилкарбонитрил, 4′-(октилокси)-4-бифенилкарбонитрил, 4′-(гексилокси)-4-бифенилкарбонитрил, 4-(транс-4-пентилциклогексил)бензонитрил, 4′-(пентокси)-4-бифенилкарбонитрил, 4′-гексил-4-бифенилкарбонитрил) и 4,4′-азоксианизол.
В не имеющем ограничительного характера смысле, составы, демонстрирующие особенно высокое двупреломление, составляющее nпар-nперп>0,3 при комнатной температуре, можно использовать в качестве материала для формирования жидкокристаллического слоя. Например, такой состав под названием W1825 можно приобрести у компаний AWAT и BEAM Engineering for Advanced Measurements Co. (BEAMCO).
Для реализации концептов, обладающих признаками изобретения, могут быть подходящими и другие классы жидкокристаллических материалов. Например, ферроэлектрические жидкие кристаллы могут обеспечивать выполнение основной функции при варианте осуществления с жидкими кристаллами с ориентацией вдоль электрического поля, но могут вносить и другие эффекты, такие как взаимодействие с магнитным полем. Виды взаимодействия электромагнитного излучения с материалами также могут различаться.
МАТЕРИАЛЫ ОРИЕНТИРУЮЩИХ СЛОЕВ:
Во многих примерах осуществления, описанных выше, может возникнуть необходимость центрирования жидкокристаллических слоев внутри офтальмологических линз различными способами на границах вставок. Центрирование может быть, например, параллельным или перпендикулярным границам вставок, при этом такое центрирование можно получать путем надлежащей обработки различных поверхностей. Эта обработка может включать в себя покрытие подложек вставок, содержащих жидкий кристалл (ЖК) ориентирующими слоями. Эти ориентирующие слои раскрыты в настоящем описании.
В устройствах на основе жидких кристаллов различных типов широко применяется способ шлифовки. Этот способ можно применить с возможностью учета кривизны поверхностей, таких как поверхности элементов вставки, используемых для образования оболочки жидкого кристалла. В одном из примеров поверхности можно покрыть слоем поливинилового спирта (ПВС). Например, покрытие на слой ПВС можно нанести методом центрифугирования с использованием водного раствора, 1% масс. Раствор можно наносить в процессе центрифугирования при 1000 об/мин в течение приблизительно 60 с, а затем высушивать. После этого просушенный слой можно отшлифовать мягкой тканью. В качестве примера, не имеющего ограничительного характера, мягкая ткань может представлять собой бархат.
В качестве другого способа получения ориентирующих слоев на жидкокристаллических оболочках можно применять фотоцентрирование. В некоторых примерах осуществления фотоцентрирование наиболее востребовано вследствие своего бесконтактного характера и возможности осуществления крупносерийного производства. В качестве примера, не имеющего ограничительного характера, фотоориентирующий слой, используемый в жидкокристаллической части с изменяемыми оптическими свойствами, может содержать дихроичный азобензольный краситель (азокраситель), способный к ориентации преимущественно в направлении, перпендикулярном поляризации линейно поляризованного света типичных ультрафиолетовых волн. Такое центрирование может быть результатом повторяющихся транс-цис-транс-фотоизомерзационных процессов.
В качестве примера, азокрасители серии PAAD можно наносить методом центрифугирования с использованием водного раствора, 1% масс., в DMF при 3000 об/мин в течение 30 с. В дальнейшем полученный слой можно подвергнуть воздействию линейно поляризованного светового луча, имеющего длину волны в УФ-диапазоне (например, 325 нм, 351 нм, 365 нм) или даже в видимом диапазоне (400-500 нм). Источник света может иметь различные формы. В некоторых примерах осуществления свет может поступать, например, от лазерных источников. Другими примерами, не имеющими ограничительного характера, могут служить такие световые источники, как СИД, галогенные источники и лампы накаливания. До или после поляризации различных форм света, выполняемой согласно различным схемам в зависимости от конкретного случая, свет можно коллимировать различными способами, например, путем применения оптических линзовых устройств. Свет от лазерного источника может, например, обладать некоторой степенью коллимирования, внутренне присущей источнику.
В настоящее время известно большое количество фотоанизотропных материалов на основе азобензольных полимеров, полиэфиров, жидких кристаллов из фотосшитого полимера с боковыми группами мезогенного 4-(4-метоксициннамоилокси)бифенила и т.п. Примеры таких материалов включают в себя сульфоновый биазокраситель SD1 и другие азобензольные красители, в частности, материалы серии PAAD, доступные от компании BEAM Engineering for Advanced Measurements Co. (BEAMCO), поли(винилциннаматы) и другие.
В некоторых примерах осуществления может потребоваться применение водных или спиртовых растворов азокрасителей серии PAAD. Некоторые азобензольные красители, например, метиловый красный краситель, можно использовать для фотоцентрирования путем создания жидкокристаллического слоя с помощью прямого легирования. Воздействие поляризованного света на азобензольный краситель может вызвать диффузию азокрасителей внутрь объема жидкокристаллического слоя и их сцепление с граничными слоями, что создает требуемые условия центрирования.
Азобензольные красители, такие как метиловый красный краситель, можно также использовать в комбинации с полимером, например, ПВС. В настоящее время известны также другие фотоанизотропные материалы, способные улучшать центрирование смежных жидкокристаллических слоев. Такие примеры могут включать в себя материалы на основе кумаринов, полиэфиров, жидкие кристаллы из фотосшитого полимера с боковыми группами мезогенного 4-(4-метоксициннамоилокси)бифенила, поли(виниловые циннаматы) и другие. Технология фотоцентрирования может быть преимущественной в вариантах осуществления, содержащих упорядоченную ориентацию жидкого кристалла.
В другом примере осуществления производства слоев центрирования слой центрирования можно получить посредством вакуумного напыления оксида кремния (SiOx, где 1<=x<=2) на подложки элемента вставки. Например, SiO2 можно напылять при низком давлении, таком как ~10-4 Па (10-6 мбар). Элементы центрирования можно получить в наноразмерном масштабе с помощью инжекционного формования при создании переднего и заднего элементов вставки. Эти формованные элементы можно покрывать различными способами с помощью материалов, упомянутых выше, или других материалов, которые могут непосредственно взаимодействовать с физическими элементами центрирования и передавать центрирование формируемого рисунка в центрированную ориентацию молекул жидкого кристалла.
Ионно-лучевое центрирование может представлять собой еще один способ получения слоев центрирования на жидкокристаллических оболочках. В некоторых примерах осуществления ориентирующий слой могут бомбардировать коллимированным аргоновым ионным или сфокусированным галлиевым ионным лучом, имеющим определенный угол/ориентацию. Этот тип центрирования можно также использовать для ориентации оксида кремния, алмазоподобного углерода (DLC), полиимида и других материалов центрирования.
Дополнительные примеры осуществления могут быть связаны с созданием физических элементов центрирования элементов вставок после их формования. Методы шлифовки, общепринятые в других областях применения жидких кристаллов, могут быть реализованы на формованных поверхностях для создания механических желобков. Поверхности можно также подвергать процессу выдавливания рельефа после формования с целью создания на них небольших желобчатых элементов. Дополнительные примеры можно реализовывать с применением методов травления, которые могут включать оптические способы формирования рисунка различного типа.
ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
В настоящем описании раскрыты диэлектрические пленки и диэлектрики. В качестве примеров, не имеющих ограничительного характера, диэлектрические пленки или диэлектрики, используемые в жидкокристаллической части с изменяемыми оптическими свойствами, обладают характеристиками, подходящими для настоящего изобретения, описанного в настоящем документе. Диэлектрик может содержать один или более слоев материала, функционирующих по отдельности или вместе в качестве диэлектрика. Можно использовать несколько слоев для достижения диэлектрических характеристик, превосходящих характеристики одиночного диэлектрика.
Диэлектрик может допускать наличие бездефектного изолирующего слоя толщиной, требуемой для части с дискретно изменяемыми оптическими свойствами, например, между 1 и 10 мкм. Как известно специалистам в данной области, дефект могут называть «микроотверстием», которое представляет собой отверстие в диэлектрике, допускающее возможность электрического и/или химического контакта через диэлектрик. Диэлектрик, при определенной толщине, может отвечать требованиям в отношении напряжения пробоя, согласно которым, например, диэлектрик должен выдерживать напряжение 100 вольт или более.
Диэлектрик можно изготавливать на криволинейных, конических, сферических и сложных трехмерных поверхностях (например, криволинейных поверхностях или неплоских поверхностях). Можно использовать типовые способы покрытия методом погружения и центрифугирования или применять другие способы.
Диэлектрик может сопротивляться повреждению от воздействия химикатов в части с изменяемыми оптическими свойствами, например, жидкого кристалла или жидкокристаллической смеси, растворителей, кислот и оснований или других материалов, которые могут присутствовать при формировании жидкокристаллического участка. Диэлектрик может сопротивляться повреждению от воздействия инфракрасного, ультрафиолетового и видимого света. Нежелательное повреждение может включать в себя ухудшение параметров, раскрытых в настоящем описании, например, напряжения пробоя и светопропускания. Диэлектрик может сопротивляться проникновению ионов. Диэлектрик может препятствовать электромиграции, росту дендритов и другим видам разложения расположенных ниже электродов. Диэлектрик можно прикреплять к нижележащему электроду и/или подложке, например, с помощью слоя, повышающего адгезию. Диэлектрик можно изготавливать с использованием способа, обеспечивающего низкий уровень загрязнения, малую концентрацию поверхностных дефектов, однородное покрытие и низкую шероховатость поверхности.
Диэлектрик может обладать относительной проницаемостью или диэлектрической постоянной, совместимой с электрической эксплуатацией системы, например, низкой относительной проницаемостью для уменьшения емкости в определенной зоне электрода. Диэлектрик может обладать высоким удельным сопротивлением, таким образом пропуская лишь очень небольшой ток, даже если приложено высокое напряжение. Диэлектрик может обладать свойствами, желательными для оптического устройства, например, высоким пропусканием, низкой дисперсией и показателем преломления в определенном диапазоне.
В качестве примера, не имеющего ограничительного характера, диэлектрические материалы включают в себя один или более таких материалов, как парилен-C, парилен-HT, диоксид кремния, нитрид кремния и тефлон AF.
ЭЛЕКТРОДНЫЕ МАТЕРИАЛЫ
Электроды, раскрытые в настоящем описании, служат для приложения электрического потенциала с целью получения электрического поля в жидкокристаллической зоне. По существу, электрод содержит один или более слоев материала, функционирующих по отдельности или вместе в качестве электрода.
Электрод можно прикреплять к нижележащей подложке, диэлектрическому покрытию или другим объектам в системе, возможно, с применением усилителя адгезии (например, метакрилоксипропилтриметоксисилан). Электрод может формировать оказывающий полезное воздействие естественный оксид или подвергаться обработке для создания полезного оксидного слоя. Электрод может быть прозрачным, почти прозрачным или непрозрачным, обладать высоким светопропусканием и слабым отражением. Электрод можно подвергать структурированию или травлению с помощью известных способов обработки. Например, электроды можно подвергать испарению, металлизации напылением или гальванизации с использованием формирования рисунка методом фотолитографии и/или взрывной литографии.
Конструкцию электрода могут выполнять с возможностью обладания удельным сопротивлением, подходящим для применения в электрической системе, раскрытой в настоящем описании, например, в соответствии с требованиями к сопротивлению в определенной геометрической конструкции.
Электроды можно изготавливать из одного или более материалов, таких как оксид индия и олова (ITO), оксид цинка с примесью алюминия (AZO), золото, нержавеющая сталь, хром, графен, слои легированного графена и алюминий. Следует понимать, что данный список не является исчерпывающим.
Электроды можно использовать для формирования электрического поля на участке между электродами. В некоторых примерах осуществления электроды можно формировать на множестве поверхностей. Электроды можно помещать на любой или на всех образованных поверхностях, а электрическое поле можно создавать на участке между любыми поверхностями, на которых образованы электроды, путем приложения электрического потенциала по меньшей мере к двум таким поверхностям.
СПОСОБЫ
Следующие стадии способа предложены как примеры способов, которые можно реализовать в соответствии с некоторыми аспектами настоящего изобретения. Следует понимать, что порядок представления стадий способа не является ограничивающим, и для реализации настоящего изобретения можно использовать и другие последовательности. Кроме того, не все из стадий являются необходимыми для реализации настоящего изобретения, и в различные примеры осуществления настоящего изобретения можно включать дополнительные стадии. Специалисту в данной области может быть очевидно, что на практике возможны дополнительные варианты осуществления, и такие способы также входят в объем формулы изобретения.
На Фиг. 7 представлена блок-схема с примерами стадий, которые можно использовать для реализации настоящего изобретения. На стадии 701 происходит формирование первого слоя подложки, который может содержать заднюю криволинейную поверхность и иметь верхнюю поверхность с формой первого типа, которая может отличаться от формы поверхности других слоев подложки. В некоторых примерах осуществления разница может включать в себя различный радиус кривизны поверхности по меньшей мере в некоторой части, расположенной в оптической зоне. На стадии 702 происходит формирование второго слоя подложки, который может содержать переднюю криволинейную поверхность или промежуточную поверхность или часть промежуточной поверхности для более сложных устройств. На стадии 703 электродный слой можно нанести на первый слой подложки. Нанесение может происходить, например, путем осаждения из паровой фазы или методом нанесения гальванического покрытия. В ряде примеров осуществления первый слой подложки может быть частью вставки, которая имеет участки как в оптической, так и в неоптической зоне. Способ осаждения покрытия на электрод может одновременно образовывать соединительные элементы в некоторых вариантах осуществления. В некоторых примерах осуществления диэлектрический слой можно формировать на соединительных элементах или электродах. Диэлектрический слой может содержать многочисленные изолирующие и диэлектрические слои, такие как диоксид кремния.
На стадии 704 первый слой подложки можно дополнительно обработать, чтобы добавить ориентирующий слой на предварительно нанесенный диэлектрический или электродный слой. Ориентирующие слои можно нанести на верхний слой подложки, а затем обработать стандартным способом, например, шлифованием, для создания желобков, характерных для стандартных ориентирующих слоев, или посредством обработки с использованием воздействия энергетических частиц или света. Тонкие слои фотоанизотропных материалов можно обрабатывать посредством светового воздействия в целях формирования ориентирующих слоев с различными характеристиками. Как указано выше, способы с образованием жидкокристаллических слоев, с помощью которых получают участки полимерных сеток с размещенными в промежутках жидкими кристаллами, могут не включать в себя стадии, связанные с созданием ориентирующих слоев.
На стадии 705 второй слой подложки можно подвергнуть дополнительной обработке. Электродный слой можно нанести на второй слой подложки способом, аналогичным описанному на стадии 703. Затем в некоторых вариантах осуществления, на стадии 706, диэлектрический слой могут наносить на второй слой подложки, расположенный на электродном слое. Диэлектрический слой можно сформировать с переменной толщиной по всей его поверхности. Например, диэлектрический слой можно формовать на первом слое подложки. Альтернативно, предварительно сформированный диэлектрический слой можно прикрепить на электродную поверхность второго элемента подложки.
На стадии 707 ориентирующий слой можно сформировать на втором слое подложки способом, аналогичным описанному для стадии обработки 704. После стадии 707 два отдельных слоя подложки, которые могут образовывать по меньшей мере часть вставки офтальмологической линзы, готовы к присоединению. В некоторых примерах осуществления на стадии 708 эти два элемента будут приведены в непосредственную близость друг к другу, а затем между ними будет введен жидкокристаллический материал. Существуют многочисленные способы введения жидкого кристалла между частями, включая, в качестве примера, не имеющего ограничительного характера, вакуумное введение, при котором полость вакуумируют, после чего обеспечивают возможность стекания жидкокристаллического материала в вакуумированное пространство. Кроме того, заполнению пространства жидкокристаллическим материалом будут способствовать капиллярные силы, присутствующие в пространстве между элементами вставки линзы. На стадии 709 два элемента можно расположить смежно друг с другом, а затем герметизировать с образованием элемента с изменяемыми оптическими свойствами с жидким кристаллом. Существуют многочисленные способы совместной герметизации элементов, включая применение связывающих веществ, герметизирующих составов и механических уплотнительных компонентов, таких как уплотнительные кольца и фиксаторы с защелкой в качестве примеров, не имеющих ограничительного характера.
В ряде примеров осуществления два элемента такого же типа, какие были образованы на стадии 709, могут быть созданы путем повторения стадий способа от 701 до 709, в которых ориентирующие слои смещены друг от друга, чтобы обеспечить получение линзы, которая может регулировать фокальную оптическую силу неполяризованного света. В таких примерах осуществления, два слоя с изменяемыми оптическими свойствами могут быть объединены с образованием единой вставки с изменяемыми оптическими свойствами. На стадии 710 часть с изменяемыми оптическими свойствами можно соединить с источником энергии и поместить на ней промежуточные или прикрепляемые компоненты.
На стадии 711 вставку с изменяемыми оптическими свойствами, полученную на стадии 710, можно помещать внутри части формы для литья. Вставка с изменяемыми оптическими свойствами также может содержать или не содержать один или более компонентов. В некоторых предпочтительных вариантах осуществления вставку с изменяемыми оптическими свойствами помещают в часть формы для литья механическим способом. Помещение механическим способом может включать в себя, например, использование робота или других средств автоматизации, известных в отрасли в качестве применяемых для помещения компонентов методом поверхностного монтажа. В рамках настоящего изобретения предусмотрено также помещение вставки с изменяемыми оптическими свойствами в форму человеком. Соответственно, для эффективного помещения вставки с изменяемыми оптическими свойствами с источником энергии в часть формы для литья можно использовать любые механические или автоматизированные способы, так чтобы полимеризация реакционной смеси в части формы для литья включала в себя изменяемые оптические свойства в итоговой офтальмологической линзе.
В некоторых примерах осуществления вставку с изменяемыми оптическими свойствами можно помещать в форму для литья, закрепленную в подложке. Источник энергии и один или более компонентов также могут быть прикреплены к подложке и электрически связаны со вставкой с изменяемыми оптическими свойствами. Компоненты могут включать в себя, например, схему для управления оптической силой, прикладываемой к вставке с изменяемыми оптическими свойствами. Соответственно, в некоторых примерах осуществления компонент включает в себя механизм контроля, приводящий в действие вставку с изменяемыми оптическими свойствами, с тем чтобы изменить одну или более оптических характеристик, например, изменить состояние первой оптической силы на вторую оптическую силу.
В некоторых примерах осуществления устройство процессора, микроэлектромеханические системы (МЭМС), наноэлектромеханические системы (НЭМС) или другие компоненты также могут помещаться во вставке с изменяемыми оптическими свойствами и находиться в электрическом контакте с источником энергии. На стадии 712 реакционная смесь мономера может осаждаться в часть формы для литья. На стадии 713 можно привести вставку с изменяемыми оптическими свойствами в контакт с реакционной смесью. В некоторых примерах осуществления порядок помещения изменяемой оптики и осаждения мономерной смеси может быть обратным. На стадии 714 первую часть формы для литья помещают в непосредственной близости от второй части формы для литья с образованием полости для формирования линзы по меньшей мере с частью реакционной смеси мономера и вставкой с изменяемыми оптическими свойствами в полости. Как сказано выше, предпочтительные варианты осуществления включают в себя источник энергии и один или более компонентов, также находящихся в полости, соединенных посредством электрической связи со вставкой с изменяемыми оптическими свойствами.
На стадии 715 реакционную смесь мономера в полости полимеризуют. Полимеризацию можно провести, например, путем воздействия актиничного излучения и/или тепла. На стадии 716 офтальмологическую линзу удаляют из частей формы для литья вместе со вставкой с изменяемыми оптическими свойствами, прикрепленной или инкапсулированной в герметизирующем вставку полимеризованном материале, из которого выполнена офтальмологическая линза.
Хотя настоящее изобретение можно использовать для создания жестких или мягких контактных линз из любого известного материала линз или материала, подходящего для производства таких линз, линзы, составляющие предмет настоящего изобретения, предпочтительно представляют собой мягкие контактные линзы с содержанием воды от приблизительно 0 до приблизительно 90 процентов. Более предпочтительно изготовление линз из мономеров, содержащих гидроксильные группы, карбоксильные группы или оба типа групп, или из силиконсодержащих полимеров, таких как силоксаны, гидрогели, силикон-гидрогели и их комбинации. Материал, подходящий для формирования линз, составляющих предмет настоящего изобретения, можно изготовить путем взаимодействия смесей макромеров, мономеров и их комбинаций вместе с добавками, такими как инициаторы полимеризации. Подходящие материалы включают в себя, без ограничения, силикон-гидрогели, изготовленные из силиконовых макромеров и гидрофильных мономеров.
УСТРОЙСТВО
На Фиг. 8 изображено автоматизированное устройство 810 с одним или более интерфейсами передачи 811. Множество частей формы для литья, каждая из которых связана со вставкой с изменяемыми оптическими свойствами 814, удерживают на поддоне 813 и передают к интерфейсам передачи 811. Примеры осуществления могут включать в себя, например, одну поверхность для отдельного помещения вставки с изменяемыми оптическими свойствами 814, или множество поверхностей (не показаны) для одновременного помещения вставок с изменяемыми оптическими свойствами 814 во множестве частей форм для литья, а в некоторых примерах осуществления - в каждой части формы для литья. Помещение может происходить посредством вертикального движения 815 интерфейсов передачи 811.
Следующий аспект некоторых примеров осуществления настоящего изобретения включает в себя устройство для удерживания вставки с изменяемыми оптическими свойствами 814 во время формования вокруг этих компонентов тела офтальмологической линзы. В некоторых примерах осуществления вставку с изменяемыми оптическими свойствами 814 и источник энергии можно прикреплять к удерживающим точкам на форме для литья линзы (не показано). Точки удерживания можно закреплять полимеризованным материалом того же типа, из которого формируют тело линзы. Другие примеры осуществления включают в себя слой форполимера на той части формы для литья, на которой можно закреплять вставку с изменяемыми оптическими свойствами 814 и источник энергии.
ПРОЦЕССОРЫ, ВКЛЮЧАЕМЫЕ В УСТРОЙСТВО-ВСТАВКУ
На Фиг. 9 представлен контроллер 900, который можно использовать в некоторых примерах осуществления настоящего изобретения. Контроллер 900 включает процессор 910, который может включать в себя один или более процессорных компонентов, соединенных с устройством связи 920. В некоторых примерах осуществления контроллер 900 можно использовать для передачи энергии источнику энергии, помещенному в офтальмологическую линзу.
Контроллер может включать в себя один или более процессоров, соединенных с устройством связи, выполненным с возможностью передачи энергии посредством канала связи. Устройство связи можно использовать для электронного управления одним или более следующими процессами: помещение вставки с изменяемыми оптическими свойствами в офтальмологическую линзу или передача команды для управления устройством с изменяемыми оптическими свойствами.
Устройство связи 920 также можно использовать для сообщения, например, с одним или более устройствами контроллера или компонентами производственного оборудования.
Процессор 910 также может быть в связи с устройством хранения данных 930. Устройство хранения данных 930 может содержать любые соответствующие устройства хранения информации, включая комбинации магнитных устройств хранения данных (например, накопители на магнитных лентах и жестких магнитных дисках), оптических устройств хранения данных и/или полупроводниковых запоминающих устройств, таких как оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).
В устройстве хранения данных 930 можно хранить программу 940 для управления процессором 910. Процессор 910 выполняет команды программы 940 и, таким образом, работает в соответствии с настоящим изобретением. Например, процессор 910 может принимать информацию с описанием расположения вставки с изменяемыми оптическими свойствами, расположения устройства обработки данных и т.п. Устройство хранения данных 930 может также хранить офтальмологические данные в одной или более базах данных 950, 960. Базы данных 950 и 960 могут включать в себя специальную контролирующую логическую схему для управления энергией, идущей к линзе с изменяемыми оптическими свойствами и от нее.
ЖИДКОКРИСТАЛЛИЧЕСКИЕ УСТРОЙСТВА, СОДЕРЖАЩИЕ СЛОИ С УЧАСТКАМИ ОСОБОЙ ФОРМЫ РАЗМЕЩЕННОГО В ПРОМЕЖУТКАХ ПОЛИМЕРНОЙ СЕТКИ ЖИДКОКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА
На Фиг. 10A представлен альтернативный вариант осуществления вставки с изменяемыми оптическими свойствами 1000, которую можно встроить в офтальмологическую линзу, с жидкокристаллическим слоем, содержащим полимеризованные участки 1035, и размещенный в промежутках жидкокристаллический материал 1030. Каждый из аспектов различных элементов, которые можно образовать вокруг жидкокристаллического участка, может отличаться таким же разнообразием, как описано применительно к вставке с изменяемыми оптическими свойствами на Фиг. 10A. Таким образом, возможно существование переднего оптического элемента 1010 и заднего оптического элемента 1045, где в некоторых вариантах осуществления данные оптические элементы могут содержать на себе, например, один или более из электродов 1020 и 1040, диэлектрических слоев и ориентирующих слоев.
Как показано на Фиг. 10B, электрический потенциал можно прилагать через электроды, приводя к установлению электрического поля, показанного в элементе 1090. Когда установится поле достаточной силы, оно может вызывать переориентацию размещенного в промежутках жидкокристаллического материала и центрировать его в направлении электрического поля. Этот эффект проиллюстрирован примером центрирования молекул жидкого кристалла, представленным элементом 1060.
На Фиг. 11A представлена общая картина расположения участков с сетевой структурой из жидкокристаллического материала, показанных пунктирной линией 1105. Могут присутствовать передний оптический элемент 1110 и задний оптический элемент 1140, которые могут также удерживать электроды, диэлектрические слои и ориентирующие слои различным образом, как было описано выше. Между передним оптическим элементом 1110 и задним оптическим элементом 1140 может быть размещен полимеризованный участок, который сам по себе может быть образован из частей с различными характеристиками. Полимеризованный участок вокруг элемента 1120 может быть образован таким образом, чтобы быть свободным от или относительно свободным от жидкого кристалла, тогда как участки с сетевой структурой из жидкокристаллического материала, такие как 1130, могут быть образованы в других местоположениях. Профиль особой формы участка с сетевой структурой, как проиллюстрировано границей в элементе 1105, может образовывать дополнительные средства для образования устройств, использующих жидкокристаллический слой вставки с изменяемыми оптическими свойствами. Оптическое излучение, пересекающее жидкокристаллический слой, будет испытывать суммарное воздействие эффективной толщины участков с сетевой структурой, с которыми оно взаимодействует. Таким образом, части слоя, которые представляют более высокую эффективную толщину света в жидком кристалле в участках с сетевой структурой, будут иметь более высокий эффективный показатель преломления света. Как показано на Фиг. 11B, молекулы жидкого кристалла могут быть размещены в промежутках полимеризованной сети, а в некоторых примерах осуществления можно сформировать слой, в котором главная полимерная цепь сети также может содержать ориентированные участки жидкого кристалла, способные ориентировать свободные размещенные в промежутках жидкие кристаллы. Элементом 1150 представлено, что полимерная сетка может сориентировать жидкие кристаллы. Как показано на Фиг. 11C, применение электрического поля 1170 путем приложения электрического потенциала к электродам с обеих сторон жидкокристаллического слоя может приводить к центрированию молекул жидкого кристалла внутри участков с сетевой структурой, как представлено, например, элементом 1160. Это центрирование приведет к изменению эффективного показателя преломления, которое луч света вблизи участка с сетевой структурой будет воспринимать от участков с сетевой структурой с молекулами жидкого кристалла.
СЛОИ ПОЛИМЕРИЗОВАННОГО ЖИДКОГО КРИСТАЛЛА ОСОБОЙ ФОРМЫ
В некоторых описанных примерах осуществления элементы вставки могут иметь характерную кривизну поверхностей. В некоторых примерах осуществления кривизна некоторых или всех поверхностей элементов вставки может быть одинаковой или аналогичной, а в других примерах осуществления может отличаться. Конфигурация элементов вставки может формировать между элементами участки, образующие пространство, в котором могут находиться различные элементы, описанные в настоящем документе, такие как электродные слои, ориентирующие слои и жидкокристаллические слои. Пространство между элементами вставки может образовывать камеру, в которую можно залить жидкокристаллический слой и в которой в некоторых примерах осуществления он и содержится.
В настоящем изобретении жидкокристаллический слой можно полимеризовать описанными способами, и, следовательно, он может формировать собственный уровень герметизации. Полимеризованный слой в некоторых примерах осуществления можно сформировать в указанной выше камере. В других примерах осуществления между первым элементом вставки и вторым элементом вставки может находиться полимеризованный жидкокристаллический слой, который образует свою собственную герметизацию.
В других примерах осуществления можно создать криволинейный слой полимеризованного жидкокристаллического материала, который после обработки будет существовать в затвердевшем виде сам по себе без дальнейшего присоединения к элементам вставки или элементам формы для литья, которые могут подходить для придания материалу криволинейной формы. После этого полученный изолированный криволинейный слой полимеризованного жидкокристаллического материала может иметь поверхности, к которым можно применять многие дополнительные виды обработки, описанные в настоящем документе. Например, на одной или обеих поверхностях полимеризованного жидкокристаллического слоя можно сформировать электроды, во многом аналогично тому, как их можно формировать на элементах вставки. В некоторых примерах осуществления на полученном изолированном криволинейном слое полимеризованного жидкокристаллического материала можно сформировать ориентирующие слои. В некоторых других вариантах осуществления ориентирующие слои могут присутствовать и быть структурированы либо на поверхности элементов вставки, либо на поверхности элементов формы для литья, использованных для создания полимеризованного элемента. Данные ориентирующие слои, присутствующие на элементах вставки или элементах формы для литья, могут придавать жидкокристаллическим полимерным материалам определенную ориентацию, как описано выше. В процессе удаления элементов вставки или элементов формы для литья и освобождения криволинейного полимеризованного жидкокристаллического слоя ориентирующий слой в некоторых вариантах осуществления можно убрать, а в других вариантах осуществления - полностью или частично оставить.
Полученный объект, созданный путем формирования изолированного элемента с одним или более криволинейными жидкокристаллическими слоями, можно обработать способами, аналогичными применяемым к устройству-вставке для получения офтальмологических устройств, как описано в настоящем документе.
В настоящем описании приводятся ссылки на элементы, изображенные на рисунках. Многие из этих элементов приведены для справки, чтобы проиллюстрировать примеры осуществления настоящего изобретения в целях лучшего понимания. Относительный масштаб фактических элементов может значительно отличаться от изображенных, причем следует понимать, что отличия относительных изображенных масштабов не образуют отступления от существа настоящего изобретения. Например, масштаб молекул жидкого кристалла может быть слишком мал, чтобы их можно было изобразить в реальном масштабе элементов вставки. Таким образом, изображение элементов, представляющих молекулы жидкого кристалла в том же масштабе, что и элементы вставки, чтобы сделать возможным представление таких факторов, как центрирование молекул, является таким примером масштаба изображения, который в реальных вариантах осуществления может быть совсем иным.
Хотя представленные и описанные в настоящем документе варианты осуществления считаются наиболее практичными и предпочтительными, очевидно, что специалистам в данной области будут понятны возможности отступления от конкретных конфигураций и способов, представленных и описанных в настоящем документе, которые можно использовать без отступления от сущности и объема настоящего изобретения. Настоящее изобретение не ограничивается конкретными конструкциями, описанными и показанными в настоящем документе, но все его конструкции должны быть согласованы со всеми модификациями, которые могут входить в объем приложенной формулы изобретения.
Устройство офтальмологической линзы содержит вставку с изменяемыми оптическими свойствами, расположенную по меньшей мере в части оптической зоны линзы. Вставка содержит криволинейные переднюю и заднюю поверхности, выполненные с возможностью формирования по меньшей мере части одной камеры, источник энергии, встроенный во вставку в неоптической зоне, и слой, содержащий жидкокристаллический материал, расположенный внутри по меньшей мере одной камеры. Слой включает участки размещенного в промежутках полимерной сетки жидкокристаллического материала. Полимерная сетка содержит химически присоединенные молекулы жидкого кристалла. Технический результат - улучшение ориентирования жидкокристаллического материала. 6 н. и 27 з.п. ф-лы, 15 ил.