Код документа: RU2652462C2
Область техники, к которой относится изобретение
[0001] Настоящее раскрытие относится к детандеру-компрессору, холодильному устройству и способу эксплуатации холодильного устройства.
Уровень техники
[0002] В качестве компрессора для выполнения такта сжатия в цикле охлаждения в холодильном устройстве используется компрессор, использующий бесконтактный подшипник, такой как магнитный подшипник, в качестве подшипника для выходного вала двигателя, приводящего в действие компрессор. Бесконтактный подшипник поддерживает вращающийся вал, например, выходной вал двигателя, без контакта. Таким образом, по сравнению с роликовым подшипником, который поддерживает вращающийся вал в контакте с вращающимся валом, бесконтактный подшипник не вызывает механические потери на трение с вращающимся валом, и он имеет отличную долговечность из-за отсутствия трения. Таким образом, компрессор, использующий бесконтактный подшипник, такой как магнитный подшипник, в качестве подшипника для выходного вала двигателя, используется, когда двигатель должен использоваться при высокой скорости вращения, например.
[0003] Патентный документ 1 раскрывает турбинный компрессор, использующий магнитный подшипник, где крыльчатка турбины устанавливается на одном конце, а крыльчатка компрессора - на другом конце вала, и вал поддерживается магнитным подшипником, что представляет собой пример детандера-компрессора, использующего бесконтактный подшипник, как описано выше.
Список ссылок
Патентная литература
[0004] Патентный документ 1: JP H7-91760 A
Сущность раскрытия
Техническая проблема
[0005] Когда детандер-компрессор, который раскрыт в патентном документе 1, используется для холодильного устройства, часть энергии расширения, создаваемой, когда текучая среда расширяется в детандере, восстанавливается, и восстановленная энергия расширения используется в качестве энергии вращения для вращающегося вала двигателя для приведения в действие компрессора. Таким образом, мощность для двигателя может быть уменьшена, и коэффициент полезного действия (КПД) может быть увеличен.
В связи с этим для того чтобы дополнительно улучшать энергоэффективность, желательно дополнительно увеличивать КПД.
[0006] Задачей по меньшей мере одного варианта выполнения является обеспечение детандера-компрессора, холодильного устройства и способа работы холодильного устройства, способного увеличивать КПД холодильного устройства.
Решение проблемы
[0007] Детандер-компрессор в соответствии по меньшей мере с одним вариантом выполнения настоящего изобретения содержит: двигатель; компрессор, соединенный с выходным валом двигателя и выполненный с возможностью приведения в действие двигателем для сжатия текучей среды; детандер, соединенный с выходным валом двигателя и выполненный с возможностью расширения текучей среды для восстановления энергии для выходного вала из текучей среды; по меньшей мере один бесконтактный подшипник, расположенный между компрессором и детандером, и выполненный с возможностью поддержки выходного вала без контакта; корпус для размещения двигателя, компрессора, детандера и указанного по меньшей мере одного бесконтактного подшипника; и линию отбора, сообщающуюся с областью между компрессором и детандером во внутреннем пространстве корпуса и выполненную с возможностью отбора и направления по меньшей мере части просачивающейся текучей среды со стороны компрессора к стороне детандера во внутреннем пространстве корпуса, из указанной области к линии для текучей среды, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса. Корпус выполнен с возможностью уплотнения указанной области с внешней стороны корпуса так, что поток указанной по меньшей мере части просачивающейся текучей среды через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса.
[0008] В детандере-компрессоре область между детандером и компрессором во внутреннем пространстве корпуса не является первоначальным путем потока рабочей текучей среды. Таким образом, обычно обеспечены уплотнения между компрессором и вышеописанной областью и между детандером и вышеописанной областью так, что рабочая текучая среда не просачивается от компрессора или детандера в вышеописанную область. Однако, даже если такие уплотнения обеспечены, трудно полностью уплотнять рабочую текучую среду для предотвращения ее от просачивания со стороны компрессора.
В результате обширного исследования, проведенного авторами настоящего изобретения, они обнаружили, что часть рабочей текучей среды, сжимаемой компрессором, может просачиваться через небольшой зазор в уплотнении со стороны компрессора через указанную область к стороне детандера, и, что просачивающаяся текучая среда, протекшая в сторону детандера и имеющая высокую температуру, может вызывать снижение адиабатической эффективности детандера.
Детандер-компрессор согласно вышеописанному варианту выполнения был выполнен, основываясь на вышеописанном открытии авторов настоящего изобретения, и в вышеописанном варианте выполнения линия отбора выполнен сообщающейся с областью между компрессором и детандером во внутреннем пространстве корпуса, и по меньшей мере часть просачивающейся текучей среды со стороны компрессора к стороне детандера в корпусе отбирается и направляется из указанной области к линии для текучей среды, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса. Таким образом, количество просачивающейся текучей среды, имеющей высокую температуру, текущей в сторону детандера, уменьшается, и передача тепла от высокотемпературной просачивающейся текучей среды детандеру уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера из-за просачивающейся текучей среды со стороны компрессора. Тем самым, возможно увеличивать КПД холодильного устройства, использующего детандер-компрессор.
Дополнительно, если корпус не уплотнен с внешней стороны, и газ, отличный от просачивающейся текучей среды из указанной области к линии для текучей среды, имеет возможность протекать с внешней стороны корпуса в указанную область, тепло может передаваться от газа, который протекает с внешней стороны корпуса в указанную область к стороне детандера, которая имеет относительно низкую температуру. Таким образом, не только просачивающаяся текучая среда, но и газ, протекший с внешней стороны корпуса в указанную область, может быть фактором непреднамеренного подвода тепла к стороне детандера, и даже если предусмотрена линия отбора, трудно эффективно подавлять такой непреднамеренный подвод тепла к стороне детандера.
Для сравнения, в детандере-компрессоре согласно вышеописанному варианту выполнения указанная область уплотнена с внешней стороны корпуса так, что поток указанной по меньшей мере части просачивающейся текучей среды через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса. Таким образом, фактором непреднамеренного подвода тепла к стороне детандера в основном является только просачивающаяся текучая среда. Таким образом, формируя поток рабочей текучей среды для введения по меньшей мере части просачивающейся текучей среды со стороны компрессора к стороне детандера в указанной области в линию для текучей среды, возможно эффективно подавлять непреднамеренный подвод тепла к стороне детандера и, тем самым, существенно увеличивать КПД.
[0009] В некоторых вариантах выполнения детандер-компрессор дополнительно содержит по меньшей мере один второй компрессор, отличный от вышеописанного компрессора. Второй компрессор соединен с выходным валом двигателя.
[0010] В некоторых вариантах выполнения детандер-компрессор дополнительно содержит по меньшей мере один второй компрессор, отличный от вышеописанного компрессора. Второй компрессор соединен со вторым выходным валом, отличным от выходного вала двигателя.
[0011] Холодильное устройство согласно по меньшей мере одному варианту выполнения настоящего изобретения содержит: охлаждающую часть для охлаждения охлаждаемого объекта путем теплообмена с хладагентом; детандер-компрессор, имеющий компрессор для сжатия хладагента и встроенный детандер для расширения хладагента; и линию циркуляции хладагента, выполненную с возможностью позволять хладагенту циркулировать через компрессор, детандер и охлаждающую часть. Детандер-компрессор содержит: двигатель; компрессор, соединенный с выходным валом двигателя и выполненный с возможностью приведения в действие двигателем для сжатия хладагента; детандер, соединенный с выходным валом двигателя и выполненный с возможностью расширения хладагента для восстановления энергии для выходного вала из хладагента; по меньшей мере один бесконтактный подшипник, расположенный между компрессором и детандером и выполненный с возможностью поддержки выходного вала без контакта; корпус для размещения двигателя, компрессора, детандера и по меньшей мере одного бесконтактного подшипника; и линию отбора, сообщающуюся с областью между компрессором и детандером во внутреннем пространстве корпуса и выполненную с возможностью отбора и направления по меньшей мере части просачивающегося хладагента со стороны компрессора к стороне детандера во внутреннем пространстве корпуса, из указанной области к линии циркуляции хладагента, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса. Корпус выполнен с возможностью уплотнения указанной области с внешней стороны корпуса так, что поток указанной по меньшей мере части просачивающегося текучей среды через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса.
[0012] В холодильном устройстве согласно вышеописанному варианту выполнения детандер-компрессор имеет линию отбора, сообщающуюся с областью между компрессором и детандером во внутреннем пространстве корпуса, и по меньшей мере часть просачивающегося хладагента со стороны компрессора к стороне детандера в корпусе отбирается и направляется из указанной области к линии циркуляции хладагента, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса. Таким образом, количество просачивающегося хладагента, имеющего высокую температуру, текущего в сторону детандера, уменьшается, и передача тепла от высокотемпературного просачивающегося хладагента детандеру уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера из-за просачивающегося хладагента со стороны компрессора. Тем самым, возможно увеличивать КПД холодильного устройства, использующего детандер-компрессор.
Дополнительно, если корпус не уплотнен с внешней стороны, и газ, отличный от просачивающейся текучей среды из указанной области к линии циркуляции хладагента, имеет возможность протекать с внешней стороны корпуса в указанную область, тепло может передаваться от газа, который протекает с внешней стороны корпуса в указанную область к стороне детандера, которая имеет относительно низкую температуру. Таким образом, не только просачивающийся хладагент, но и газ, протекший с внешней стороны корпуса в указанную область, может быть фактором непреднамеренного подвода тепла к стороне детандера, и даже если обеспечена линия отбора, трудно эффективно подавлять такой непреднамеренный подвод тепла к стороне детандера.
Для сравнения, в холодильном устройстве согласно вышеописанному варианту выполнения указанная область уплотнена с внешней стороны корпуса так, что поток по меньшей мере части просачивающегося хладагента через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса. Таким образом, фактором непреднамеренного подвода тепла к стороне детандера в основном является только просачивающийся хладагент. Таким образом, формируя поток рабочей текучей среды для введения по меньшей мере части просачивающегося хладагента со стороны компрессора к стороне детандера в указанной области в линию для текучей среды, возможно эффективно подавлять непреднамеренный подвод тепла к стороне детандера и, тем самым, существенно увеличивать КПД.
[0013] Детандер-компрессор дополнительно содержит клапан отбора, выполненный на линии отбора для регулирования величины отбора просачивающегося хладагента и контроллер для управления клапаном отбора. Контроллер выполнен с возможностью управления степенью открытия клапана отбора на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между температурой на стороне впуска и температурой на стороне выпуска детандера.
КПД холодильного устройства может быть получен из КПД (COPb), основанного на потреблении мощности, представленного следующей формулой (1), КПД (COPc), основанного на энергии сжатия, представленной следующей формулой (2), или т.п.:
где в вышеприведенных формулах (1) и (2) G - массовый расход [кг/с] хладагента, циркулирующего на линии циркуляции хладагента, P - мощность (потребление мощности) [Вт] двигателя, h1 - энтальпия [Дж/кг] на впуске компрессора, h2 - энтальпия [Дж/кг] на выпуске компрессора, h5 - энтальпия [Дж/кг] на впуске теплообменника для охлаждающей части и h6 - энтальпия [Дж/кг] на выпуске теплообменника для охлаждающей части.
Тепло, текущее в сторону детандера из-за просачивающегося хладагента уменьшается, так как величина отбора просачивающегося хладагента, отправляемого к линии циркуляции хладагента, увеличивается. С другой стороны, если величина отбора является слишком большой, увеличивается количество просачивающегося хладагента, который сжимается компрессором, но который не циркулирует на линии циркуляции хладагента и не способствует охлаждению охлаждаемого объекта, что может приводить к увеличению мощности двигателя, используемой для сжатия, и снижению эффективности компрессора. Таким образом, имеется величина отбора (максимальная величина отбора КПД), с которой КПД холодильного устройства, использующего детандер-компрессор, становится самым большим.
C учетом этого вышеописанный холодильное устройство согласно вышеописанному варианту выполнения имеет контроллер, выполненный с возможностью управления степенью открытия клапана отбора на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между температурой на стороне впуска и температурой на стороне выпуска компрессора. Таким образом, управляя величиной отбора на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между температурой на стороне впуска и температурой на стороне выпуска детандера так, что величина отбора становится значением вблизи максимальной величины отбора КПД в зависимости от рабочих условий, возможно увеличивать КПД холодильного устройства.
При работе, когда изменения в условиях невелики, степень открытия может регулироваться ручным клапаном, и степень открытия может быть постоянной.
[0014] Способ работы холодильного устройства согласно варианту выполнения настоящего изобретения представляет собой способ работы холодильного устройства, включающего в себя детандер-компрессор, содержащий: двигатель; компрессор, соединенный с выходным валом двигателя; детандер, соединенный с выходным валом двигателя; по меньшей мере один бесконтактный подшипник, расположенный между компрессором и детандером и выполненный с возможностью поддержки выходного вала без контакта; и корпус для размещения двигателя, компрессора, детандера и по меньшей мере одного бесконтактного подшипника. Корпус выполнен с возможностью уплотнения указанной области с внешней стороны корпуса так, что поток по меньшей мере части просачивающейся текучей среды через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса. Способ содержит: этап сжатия, на котором сжимают хладагент с использованием компрессора; этап расширения, на котором расширяют хладагент, сжатый на этапе сжатия, с использованием детандера; этап охлаждения, на котором охлаждают охлаждаемый объект путем теплообмена с хладагентом, расширенным на этапе расширения; и этап отбора, на котором отбирают и отправляют через линию отбора, сообщающуюся с областью между компрессором и детандером во внутреннем пространстве корпуса, по меньшей мере часть просачивающегося хладагента со стороны компрессора к стороне детандера во внутреннем пространстве корпуса, из указанной области к лини циркуляции хладагента, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса.
[0015] Согласно способу работы согласно вышеописанному варианту выполнения на этапе отбора по меньшей мере часть просачивающегося хладагента со стороны компрессора к стороне детандера в корпусе отбирают и отправляют из указанной области к линии циркуляции хладагента, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса, через линию отбора, сообщающуюся с областью между компрессором и детандером во внутреннем пространстве корпуса детандера-компрессора. Таким образом, количество просачивающегося хладагента, имеющего высокую температуру, текущего в сторону детандера, уменьшается, и передача тепла от высокотемпературного просачивающегося хладагента детандеру уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера из-за просачивающегося хладагента со стороны компрессора. Тем самым, возможно увеличивать КПД холодильного устройства, использующего детандер-компрессор.
Дополнительно, если корпус не уплотнен с внешней стороны, и газ, отличный от просачивающейся текучей среды из указанной области к линии циркуляции хладагента, имеет возможность протекать с внешней стороны корпуса в указанную область, тепло может передаваться от газа, который протекает с внешней стороны корпуса в указанную область к стороне детандера, которая имеет относительно низкую температуру. Таким образом, не только просачивающийся хладагент, но и газ, протекший с внешней стороны корпуса в указанную область, может быть фактором непреднамеренного подвода тепла к стороне детандера, и даже если предусмотрена линия отбора, трудно эффективно подавлять такой непреднамеренный подвод тепла к стороне детандера.
Для сравнения, в способе работы согласно вышеописанному варианту выполнения указанная область уплотнена с внешней стороны корпуса так, что поток по меньшей мере части просачивающегося хладагента через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса. Таким образом, фактором непреднамеренного подвода тепла к стороне детандера в основном является только просачивающийся хладагент. Таким образом, формируя поток рабочей текучей среды для введения по меньшей мере части просачивающегося хладагента со стороны компрессора к стороне детандера в указанной области в линию для текучей среды, возможно эффективно подавлять непреднамеренный подвод тепла к стороне детандера и, тем самым, существенно увеличивать КПД.
[0016] В некоторых вариантах выполнения способ работы дополнительно содержит этап регулирования величины отбора, на котором регулируют величину отбора из указанной области во внутреннем пространстве корпуса к стороне впуска компрессора на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между температурой на стороне впуска и температурой на стороне выпуска компрессора.
В этом случае, так как величина отбора регулируется на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между температурой на стороне впуска и температурой на стороне выпуска компрессора, возможно увеличивать КПД холодильного устройства.
Полезные эффекты изобретения
[0017] Согласно по меньшей мере одному варианту выполнения настоящего изобретения возможно уменьшать передачу тепла от текучей среды, просочившейся со стороны компрессора в корпусе детандера-компрессора, детандеру, тем самым, улучшать коэффициент полезного действия (КПД) холодильного устройства.
Краткое описание чертежей
[0018] Фиг. 1 представляет собой схематическое изображение, иллюстрирующее детандер-компрессор согласно варианту выполнения.
Фиг. 2 представляет собой схематическое изображение, иллюстрирующее холодильное устройство согласно варианту выполнения.
Фиг. 3 представляет собой схематическое изображение, иллюстрирующее холодильное устройство согласно варианту выполнения.
Фиг. 4 представляет собой схематическое изображение, иллюстрирующее холодильное устройство согласно варианту выполнения.
Фиг. 5 представляет собой график, показывающий сравнение отношения адиабатической эффективности между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру.
Фиг. 6 представляет собой график, показывающий сравнение отношения холодопроизводительностей между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру.
Фиг. 7 представляет собой график, показывающий сравнение отношения КПД между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру.
Подробное описание
[0019] Варианты выполнения настоящего изобретения далее будут описаны подробно со ссылкой на сопровождающие чертежи. Однако предполагается, что, если особо не оговорено, размеры, материалы, формы, относительные положения и т.п. компонентов, описанных в вариантах выполнения, должны интерпретироваться только как иллюстративные и не ограничивающие объем охраны настоящего изобретения.
[0020] Фиг. 1 представляет собой схематическое изображение детандера-компрессора согласно варианту выполнения. Как проиллюстрировано на Фиг. 1, детандер-компрессор 1 включает в себя двигатель 2, компрессор 4, детандер 6, бесконтактные подшипники 32, 34 и 36, корпус 9 и линию 24 отбора.
Компрессор 4 соединен с выходным валом 3 двигателя 2 и выполнен с возможностью приведения в действие двигателем 2 для сжатия текучей среды. С другой стороны, детандер 6 соединен с выходным валом 3 двигателя 2 и выполнен с возможностью расширения текучей среды для восстановления энергии для выходного вала 3 из текучей среды. Двигатель 2 может быть выполнен между компрессором 4 и детандером 6, как проиллюстрировано на Фиг. 1. В другом варианте выполнения двигатель 2 может быть выполнен вне компрессора 4 и детандера (то есть двигатель 2, компрессор 4 и детандер 6 могут быть выполнены в указанном порядке в аксиальном направлении выходного вала 3).
Выходной вал 3 двигателя 2 поддерживается без контакта радиальными магнитными подшипниками 32, 34 и упорным магнитным подшипником 36 (далее упоминаемыми также как бесконтактные подшипники 32, 34, 36 или магнитные подшипники 32, 34, 36 в этом описании), которые выполнены между компрессором 4 и детандером 6 без контакта. Радиальные магнитные подшипники 32, 34 выполнены на противоположных сторонах в аксиальном направлении выходного вала 3 и поднимают в воздух выходной вал 3 с помощью магнитной силы, чтобы нести радиальную нагрузку выходного вала 3. С другой стороны, упорный магнитный подшипник 36 выполнен на стороне двигателя 2 (между двигателем 2 и детандером 6 в варианте выполнения, проиллюстрированном на Фиг. 1) в аксиальном направлении выходного вала 3 и несет осевую нагрузку выходного вала 3 с помощью магнитной силы так, что образуется зазор между упорным магнитным подшипником 36 и аксиальным роторным диском 37.
Корпус 9 вмещает двигатель 2, компрессор 4, детандер 6, и радиальные магнитные подшипники 32, 34, и упорный магнитный подшипник 36.
Упорный магнитный подшипник 36 и аксиальный роторный диск 37, выполненные на выходном валу 3, могут быть расположены между компрессором 4 и двигателем 2.
[0021] В некоторых вариантах выполнения внутри корпуса 9 детандера-компрессора 1 выполнен уплотнительный участок 44 для подавления просачивания рабочей текучей среды из компрессора 4 во внутреннее пространство корпуса 9. Уплотнительный участок 64 также может быть выполнен для подавления просачивания рабочей текучей среды из детандера 6 во внутреннее пространство корпуса 9. Уплотнительные участки 44, 64 могут, например, быть лабиринтными уплотнениями. В этом случае лабиринтные уплотнения 44, 64 могут быть выполнены на задней лицевой стороне крыльчатки 42 компрессора 4 или турбинного ротора 62 детандера 6 и между корпусом 9 и крыльчаткой 42 или турбинным ротором 62 и могут быть выполнены вокруг выходного вала 3 и между выходным валом 3 и корпусом 9 соответственно, как проиллюстрировано на Фиг. 1.
Тем не менее, даже когда уплотнительный участок 44 выполнен для подавления просачивания рабочей текучей среды из компрессора 4 во внутреннее пространство корпуса 9, трудно полностью предотвращать просачивание рабочей текучей среды из компрессора 4 во внутреннее пространство корпуса 9. То есть внутри корпуса 9 детандера-компрессора 1 часть рабочей текучей среды, сжимаемой компрессором 4, чтобы иметь повышенную температуру, течет со стороны компрессора 4 в область 5 через небольшой зазор в уплотнительном участке 44 для уплотнения области 5 с задней стороны крыльчатки 42 компрессора. Просачивающаяся текучая среда, текущая со стороны компрессора 4 в область 5, проходит через зазоры между выходным валом 3 и магнитными подшипниками 32, 34, 36, и дополнительно просачивается к стороне детандера 6, где рабочая температура является относительно низкой по сравнению с рабочей температурой компрессора 4.
Таким образом, из-за просачивающейся текучей среды, имеющей высокую температуру, со стороны компрессора 4, тепло непреднамеренно подводится к детандеру 6, и, тем самым, адиабатическая эффективность детандера 6 может быть снижен.
[0022] В связи с этим в некоторых вариантах выполнения линия 24 отбора выполнена так, чтобы отбирать по меньшей мере часть просачивающейся текучей среды в корпусе 9 со стороны компрессора 4 к стороне детандера 6 и отправлять по меньшей мере часть просачивающейся текучей среды к линии для текучей среды, соединенной со стороной впуска или стороной выпуска компрессора 4 с внешней стороны корпуса 9.
Линия 24 отбора выполнена так, чтобы быть в сообщении с областью 5 между компрессором 4 и детандером 6 во внутреннем пространстве корпуса 9. В одном варианте выполнения линия 24 отбора продолжается вдоль радиального направления так, чтобы проникать в корпус 9. Положение в аксиальном направлении линии отбора особо не ограничено, и линия 24 отбора может быть образована в том же положении, что и аксиальный роторный диск 37, выполненный на выходном валу 3, в аксиальном направлении, как проиллюстрировано на Фиг. 1.
Обеспечивая линию 24 отбора, количество высокотемпературной просачивающейся текучей среды, текущей в сторону детандера 6, может быть уменьшено, и, тем самым, передача тепла от высокотемпературной просачивающейся текучей среды детандеру 6 может быть уменьшена. Тем самым, возможно подавлять снижение адиабатической эффективности детандера 6 из-за просачивающейся текучей среды со стороны компрессора 4 и, тем самым, увеличивать КПД холодильного устройства, использующего детандер-компрессор.
[0023] В некоторых вариантах выполнения корпус 9 выполнен с возможностью уплотнения области 5 с внешней стороны корпуса 9 так, что поток по меньшей мере части просачивающейся текучей среды через линию 24 отбора представляет собой единственный поток текучей среды между указанной областью 5 и внешней стороной корпуса 9.
Если корпус 9 не уплотнен с внешней стороны, и газ, отличный от просачивающейся текучей среды из области 5 к линии для текучей среды, имеет возможность протекать с внешней стороны корпуса 9 в область 5, тепло может передаваться от газа, текущего с внешней стороны корпуса 9 в область 5, к стороне детандера 6, которая имеет относительно низкую температуру. Таким образом, не только просачивающаяся текучая среда, но и газ, текущий с внешней стороны корпуса 9 в область 5, также может быть фактором непреднамеренного подвода тепла к стороне детандера 6, и даже если выполнена линия 24 отбора, трудно эффективно предотвращать факторы непреднамеренного подвода тепла к стороне детандера 6.
Для сравнения, в детандере-компрессоре 1 согласно варианту выполнения область 5 уплотнена с внешней стороны корпуса 9 так, что поток по меньшей мере части просачивающейся текучей среды через линию 24 отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса 9. Таким образом, в основном только текучая среда является фактором непреднамеренного подвода тепла к стороне детандера 6. Таким образом, формируя поток рабочей текучей среды, используя линию 24 отбора для введения по меньшей мере части просачивающейся текучей среды со стороны компрессора 4 к стороне детандера 6 в области 5, возможно эффективно предотвращать непреднамеренный подвод тепла к стороне детандера 6, тем самым, существенно увеличивать КПД.
[0024] В некоторых вариантах выполнения детандер-компрессор дополнительно включает в себя второй компрессор, который отличается от вышеописанного компрессора, и второй компрессор соединен с выходным валом двигателя.
Например, второй компрессор, компрессор 4 и детандер 6 могут быть соединены с выходным валом 3 двигателя 2 так, что второй компрессор, компрессор 4, двигатель 2, и детандер 6 размещены в указанном порядке.
Дополнительно, в некоторых вариантах выполнения детандер-компрессор 1 может включать в себя по меньшей мере два вторых компрессора, отличных от компрессора 4.
По меньшей мере один второй компрессор может быть соединен с выходным валом двигателя, отличного от двигателя 2 и приводимого в действие этим двигателем. Например, второй компрессор может быть соединен с каждой из противоположных сторон выходного вала двигателя, отличного от двигателя 2, то есть детандер-компрессор может иметь три компрессора для одного детандера.
[0025] Холодильное устройство согласно вариантам выполнения далее будет описан со ссылкой на Фиг. 2-4.
Каждая из Фиг. 2-4 представляет собой схематическое изображение, иллюстрирующее холодильное устройство согласно варианту выполнения.
[0026] Как проиллюстрировано на Фиг. 2-4, холодильное устройство 100 включает в себя охлаждающую часть 16 для охлаждения охлаждаемого объекта, детандер-компрессор 1, имеющий компрессор 4 и встроенный детандер 6, и линию 22 циркуляции хладагента. В холодильном устройстве 100, проиллюстрированном на Фиг. 2-4, детандер-компрессор 1, который проиллюстрирован на Фиг. 1, который имеет линию 24 отбора, используется в качестве детандера-компрессора 1.
[0027] В некоторых вариантах выполнения, которые проиллюстрированы на Фиг. 2-4, компрессор 4, теплообменник 12, теплообменник 14 восстановления холодного теплоносителя, детандер 6 и охлаждающая часть 16 выполнены в указанном порядке на линии 22 циркуляции хладагента, и линия 22 циркуляции хладагента выполнена с возможностью позволять хладагенту циркулировать через эти устройства.
Компрессор 4 соединен с выходным валом 3 двигателя 2 и выполнен с возможностью приводиться в действие двигателем 2 для сжатия текучей среды. Детандер 6 соединен с выходным валом 3 двигателя 2 и выполнен с возможностью расширения текучей среды для восстановления энергии для выходного вала 3 из текучей среды.
Теплообменник 12 выполнен для охлаждения хладагента путем теплообмена с охлаждающей водой, и теплообменник 14 восстановления холодного теплоносителя выполнен для восстановления холодного теплоносителя хладагента.
Охлаждающая часть 16 выполнена для охлаждения охлаждаемого объекта путем теплообмена с хладагентом.
[0028] Хладагент, циркулирующий на линии 22 циркуляции хладагента, сжимается компрессором 4, чтобы иметь повышенную температуру и давление, а затем охлаждается путем теплообмена с охлаждающей водой в теплообменнике 12, выполненном на расположенной дальше по ходу стороне. После этого хладагент дополнительно охлаждается теплообменником 14 восстановления холодного теплоносителя, а затем расширяется с помощью детандера 6, чтобы иметь пониженную температуру и давление, тем самым, чтобы генерировать холодный теплоноситель.
Хладагент, выпускаемый из детандера 6, охлаждает охлаждаемый объект путем теплообмена с охлаждаемым объектом в охлаждающей части 16, и температура хладагента повышается при тепловой нагрузке.
Хладагент, имеющий температуру, повышенную охлаждающей частью 16, вводиться в теплообменник 14 восстановления холодного теплоносителя, и осуществляет теплообмен со сжатым хладагентом, прошедшим через теплообменник 12 и имеющим относительно высокую температуру, чтобы позволять сжатому хладагенту восстанавливать оставшийся холодный теплоноситель. Далее хладагент входит обратно в компрессор 4, а затем снова сжимается компрессором 4, как описано выше.
Этот цикл охлаждения образован в холодильном устройстве 100.
[0029] В некоторых вариантах выполнения объект, охлаждаемый путем теплообмена с хладагентом в охлаждающей части 16, представляет собой жидкий азот для охлаждения сверхпроводящего устройства, такого как сверхпроводящий кабель. В этом случае охлаждение при очень низкой температуре необходимо для сверхпроводящего устройства, чтобы быть в сверхпроводящем состоянии. В связи с этим, так как хладагент имеет очень низкую температуру на стороне выпуска детандера 6 холодильного устройства 100, имеется разница между температурой на стороне компрессора 4 и температурой на стороне детандера 6 на линии 22 циркуляции хладагента. Например, в одном варианте выполнения в то время как температура на линии 22 циркуляции хладагента составляет от около 30°C до около 40°C на стороне впуска компрессора 4 и от около 90°C до около 120°C на его стороне выпуска, температура составляет от около -190°C до около -200°C на стороне впуска детандера 6 и от около -210°C до около -220°C на его стороне выпуска.
Так как разница температур между стороной компрессора 4 и стороной детандера 6 является большой, таким образом, также имеется большая разница температур в корпусе 9 между стороной компрессора 4 и стороной детандера 6. Даже если количество просачивающегося хладагента со стороны компрессора 4 к стороне детандера 6 является небольшим, просачивающийся хладагент может быть фактором снижения адиабатической эффективности детандера. Таким образом, во многом значимым особенно в области обработки при низких температурах является то, что тепло, текущее со стороны компрессора 4 к стороне детандера 6, может быть уменьшено путем выполнения линии отбора для отбора высокотемпературного просачивающегося хладагента и отправления его наружу корпуса 9.
[0030] Хладагент, текущий по линии циркуляции хладагента, может быть соответственно выбран, например, в зависимости от целевой температуры охлаждаемого объекта, и он может, например, быть гелием, неоном, водородом, азотом, воздухом или углеводородом.
[0031] В некоторых вариантах выполнения, которые проиллюстрированы на Фиг. 2-4, линия 24 отбора, связанная с областью 5 между компрессором 4 и детандером 6 во внутреннем пространстве корпуса 9 детандера-компрессора 1, соединена с линией 22а циркуляции хладагента, которая соединена со стороной впуска компрессора 4 с внешней стороны корпуса 9. На линии 24 отбора выполнен клапан 26 отбора для регулирования величины отбора.
[0032] Обеспечивая линию 24 отбора, количество высокотемпературной просачивающейся текучей среды, текущей в сторону детандера 6, уменьшается, и передача тепла от высокотемпературной текучей среды детандеру 6 уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера 6 из-за просачивающейся текучей среды со стороны компрессора 4. Дополнительно, позволяя высокотемпературной просачивающейся текучей среде, текущей в сторону детандера 6, протекать обратно к линии 22 циркуляции хладагента через линию 24 отбора, возможно позволять просачивающейся текучей среде способствовать охлаждению охлаждаемого объекта. Таким образом, возможно увеличивать КПД холодильного устройства 100.
[0033] Дополнительно, так как клапан 26 отбора выполнен на линии 24 отбора, возникает разность давлений на линии 24 отбора до и после клапана 26 отбора. То есть на расположенной ближе по ходу стороне (стороне области 5) клапана 26 отбора на линии 24 отбора давление является относительно высоким, так как присутствует холодильное устройство, сжатый компрессором и имеющий повышенную температуру. Для сравнения, на расположенной дальше по ходу стороне (стороне линии 22а циркуляции хладагента) клапана 26 отбора на линии 24 отбора хладагент имеет относительно низкое давление перед сжатием компрессором 4. Таким образом, так как возникает разность давлений до и после клапана 26 отбора на линии 24 отбора, просачивающийся хладагент, присутствующий на стороне области 5, где давление является относительно высоким, естественным образом течет к стороне линии 22а циркуляции хладагента, где давление является относительно низким, из-за разности давлений. Таким образом, возможно легко позволять просачивающемуся хладагенту, присутствующему в области 5, протекать обратно к линии 22 циркуляции хладагента, не подавая энергию, посредством чего возможно обеспечивать отличную энергоэффективность и увеличивать КПД.
[0034] Линия 22а циркуляции хладагента, соединенная со стороной впуска компрессора 4, представляет собой часть на линии 22 циркуляции хладагента, по которой хладагент, имеющий пониженную температуру, протекает обратно после того, как холодный теплоноситель был израсходован, и часть имеет относительно высокую температуру по всей линии 22 циркуляции хладагента. Таким образом, даже если высокотемпературный просачивающийся хладагент, присутствующий в области 5 в корпусе 9, имеет возможность протекать в линию 22а циркуляции хладагента, соединенную со стороной впуска стороны компрессора 4, это является менее вероятным фактором снижения производительности холодильного устройства 100.
[0035] В холодильном устройстве 100, проиллюстрированном на Фиг. 3, линия 24 отбора, находящаяся в сообщении с областью 5 между компрессором 4 и детандером 6 во внутреннем пространстве корпуса 9 детандера-компрессора 1, соединена с линией 22b циркуляции хладагента, которая соединена со стороной выпуска компрессора 4 с внешней стороны корпуса 9. Дополнительно, на линии 24 отбора выполнен компрессор 18 отбора для сжатия и отправления просачивающегося хладагента, который течет со стороны компрессора 4 к стороне детандера 6 в корпусе 9, из области 5 к линии 22b циркуляции хладагента.
[0036] Обеспечивая линию 24 отбора, количество высокотемпературной просачивающейся текучей среды, текущей в сторону детандера 6, уменьшается, и передача тепла от высокотемпературной просачивающейся текучей среды детандеру 6 уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера 6 из-за просачивающейся текучей среды со стороны компрессора 4. Дополнительно, позволяя высокотемпературной просачивающейся текучей среде, текущей к стороне детандера 6, протекать обратно к линии 22b циркуляции хладагента через линию 24 отбора, возможно уменьшать мощность для двигателя 2 по сравнению со случаем, когда линия 24 отбора соединена с линией 22а циркуляции хладагента.
[0037] На линии 24 отбора выполнен компрессор 18 отбора для сжатия и отправления просачивающегося хладагента из области 5 к линии 22b циркуляции хладагента. С помощью линии 24 отбора просачивающийся хладагент сжимается и отправляется к линии 22b циркуляции хладагента, а затем соединяется с хладагентом, сжатым компрессором 4 и имеющим повышенное давление, и может использоваться в качестве хладагента для охлаждения охлаждаемого объекта.
В связи с этим необходима энергия для приведения в действие компрессора 18 отбора отдельно от энергии для приведения в действие двигателя 2 детандера-компрессора 1; однако, вместо этого, хладагент, имеющий относительно высокое давление по сравнению с хладагентом, текущим по линии 22b циркуляции хладагента, соединяется с хладагентом на линии 22b циркуляции хладагента, и, таким образом, скорость нагнетаемого потока компрессора 18 отбора добавляется в холодильном устройстве 100 в целом, посредством чего холодопроизводительность увеличивается. Таким образом, возможно увеличивать КПД.
[0038] Дополнительно, линия 22b циркуляции хладагента, соединенная со стороной выпуска компрессора 4, представляет собой часть линии 22 циркуляции хладагента, к которой течет хладагент, сжатый компрессором 4 и имеющий повышенную температуру, и часть имеет относительно высокую температуру на линии 22 циркуляции хладагента. Таким образом, даже если высокотемпературный просачивающийся хладагент, присутствующий в области 5 в корпусе, имеет возможность протекать в линию 22b циркуляции хладагента, соединенную со стороной выпуска детандера 4, это является менее вероятным фактором снижения производительности холодильного устройства 100.
[0039] В примерном варианте выполнения, проиллюстрированном на Фиг. 4, детандер-компрессор 1 дополнительно имеет контроллер 70 для управления клапаном 26 отбора в дополнение к таким же компонентам холодильного устройства, как проиллюстрированы на Фиг. 2.
Контроллер 70 выполнен с возможностью управлять степенью открытия клапана 26 отбора на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между стороной впуска и стороной выпуска детандера 6.
[0040] КПД холодильного устройства может быть вычислен, например, из результата измерения мощности (потребления мощности) двигателя 2. В таком случае мощность измеряется датчиком 71 мощности, и результат измерения отправляется контроллеру 70.
Температуры на стороне впуска и стороне выпуска детандера 6 измеряются датчиком 72 температуры, выполненным на стороне впуска детандера 6, и датчиком 73 температуры, выполненным на стороне выпуска детандера 6, на линии 22 циркуляции хладагента соответственно, и результаты измерений отправляются контроллеру 70. Контроллер 70 вычисляет разницу температур хладагента между стороной впуска и стороной выпуска детандера 6 из температур, измеренных датчиком 72 температуры и датчиком 73 температуры.
Дополнительно, величина отбора просачивающегося хладагента, отбираемого из области 5 и отправляемого к линии 22а циркуляции хладагента, соединенной со стороной впуска компрессора 4 с внешней стороны корпуса 9, измеряется с помощью датчика 74 скорости потока, выполненного на линии 24 отбора, и результат измерения отправляется контроллеру 70.
[0041] В некоторых вариантах выполнения контроллер 70 выполнен с возможностью регулирования величины отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 на основе измерения, например, скорости потока просачивающегося хладагента в линии 24 отбора, мощности двигателя 2, КПД холодильного устройства 100 или разницы температур хладагента между стороной впуска и стороной выпуска детандера 6. КПД холодильного устройства может быть получен из КПД (COPb), основанного на потреблении мощности, представленного вышеуказанной формулой (1), или КПД (COPc), основанного на энергии сжатия, например, представленной вышеуказанной формулой (1). В формулах (1) и (2) G - массовый расход [кг/с] хладагента, циркулирующего на линии 22 циркуляции хладагента, P - мощность (потребление мощности) [Вт] двигателя 2, h1 - энтальпия [Дж/кг] на впуске компрессора 4, h2 - энтальпия [Дж/кг] на выпуске компрессора 4, h5 - энтальпия [Дж/кг] на впуске теплообменника для охлаждающей части 16 и h6 - энтальпия [Дж/кг] на выпуске теплообменника для охлаждающей части 16.
В одном варианте выполнения контроллер 70 имеет память, которая хранит информацию о рабочих условиях для холодильного устройства 100, включая по меньшей мере одно из целевого КПД холодильного устройства (далее упоминаемого также как «целевой КПД холодильного устройства») или разницы температур между стороной впуска и стороной выпуска детандера 6, и контроллер управляет степенью открытия клапана 26 отбора для регулирования величины отбора на основе по меньшей мере одного из КПД холодильного устройства (далее упоминаемого также как «измеренный КПД холодильного устройства»), вычисленного из результата измерения датчика 71 мощности и т.д. или результатов измерений датчиков 72, 73 температуры так, что рабочие условия удовлетворяются. Контроллер 70 может определять командное значение степени открытия для клапана 26 отбора на основе отклонения между информацией о рабочих условиях для холодильного устройства 100, сохраненных в памяти, и по меньшей мере одним из измеренного КПД хладагента или результата измерения датчиков 72, 73 температуры. В таком случае контроллер 70 может включать в себя контроллер, такой как контроллер Р, контроллер PI или контроллер PID, для определения командного значения степени открытия клапана 26 отбора. Рабочие условия для холодильного устройства 100, при которых КПД становится самым большим, могут изменяться в зависимости от нагрузки охлаждения на охлаждающую часть 16. В этом случае контроллер 70 может регулировать величину отбора на основе по меньшей мере одного из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры.
Энтальпии h1, h2, h5 и h6 могут быть вычислены из измеренных значений давлений P1, P2, P5 и P6 и температур T1, T2, T5 и T6, измеренных в соответственных точках. В некоторых вариантах выполнения холодильное устройство 100 может быть выполнен расходомером (не показан) для измерения массового расхода хладагента, циркулирующего по линии 22 циркуляции хладагента, датчиками температуры (не показаны) и датчиками давления (не показаны) для измерения температур и давлений на впуске и выпуске компрессора 4 или на впуске и выпуске охлаждающей части 16.
В других вариантах выполнения контроллер 70 имеет память, которая хранит информацию о по меньшей мере одном из целевого КПД холодильного устройства или максимального значения разницы температур между стороной впуска и стороной выпуска детандера 6, и управляет степенью открытия клапана 26 отбора для регулирования величины отбора так, что по меньшей мере одно из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры становится близким к целевому КПД холодильного устройства или максимальному значению разницы температур между стороной впуска и стороной выпуска детандера 6. Контроллер 70 может определять командное значение степени открытия для клапана 26 отбора на основе отклонения между информацией, сохраненной в памяти, о целевом КПД холодильного устройства или максимальном значении разницы температур между стороной впуска и стороной выпуска детандера 6, и по меньшей мере одним из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры. В этом случае контроллер 70 может включать в себя контроллер, такой как контроллер Р, контроллер PI или контроллер PID, для определения командного значения степени открытия клапана 26 отбора.
[0042] В некоторых вариантах выполнения контроллер 70 выполнен с возможностью регулирования величины отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 так, что величина отбора не превышает верхнее предельное значение, которое определено так, что допустимое значение нагрузки (осевой нагрузки) на упорный магнитный подшипник 36 не превышается.
Магнитная сила упорного магнитного подшипника 36 регулируется путем регулирования тока так, что поднятое положение выходного вала 3 поддерживается при осевой нагрузке, прикладываемой к выходному валу 3. Упорный магнитный подшипник 36 имеет допустимое значение (максимальное значение) нагрузки.
Осевая нагрузка, прикладываемая к выходному валу 3, определяется разницей между силой, вызываемой давлением на этапе сжатия на стороне компрессора 4 (во внешней периферийной части крыльчатки 42), и силой, вызываемой давлением на этапе расширения на стороне детандера 6 (во внешней периферийной части турбинного ротора 62). Таким образом, когда холодильное устройство работает в состоянии, в котором клапан 26 отбора закрыт, нагрузка в соответствии с осевой нагрузкой, прикладываемой к выходному валу 3, прикладывается к упорному магнитному подшипнику 36, и ток регулируется так, что поднятое положение выходного вала 3 поддерживается при этой нагрузке.
Затем, если клапан 26 отбора открывается, просачивающийся хладагент отбирается и отправляется наружу через линию 24 отбора, посредством чего давление в корпусе понижается. В этом случае если диаметр крыльчатки 42 компрессора 4 больше, чем диаметр турбинного ротора 62 детандера 6, как проиллюстрировано на Фиг. 2, разница в силе между передней стороной и задней стороной крыльчатки 42 больше, чем у турбинного ротора 62. Если степень открытия клапана 26 отбора увеличивается, осевая нагрузка со стороны компрессора 4 к стороне детандера 6 соответственно увеличивается. Таким образом, существует величина отбора, соответствующая максимальному значению осевой нагрузки, которую упорный магнитный подшипник 36 способен нести.
В связи с этим, как в вышеописанном варианте выполнения, управляя степенью открытия клапана 26 отбора так, что величина отбора не превышает верхнее предельное значение, определенное так, что нагрузка на упорный магнитный подшипник 36 не превышает допустимое значение, возможно управлять величиной отбора в пределах подходящего диапазона, где холодильное устройство может работать без проблем.
[0043] В другом варианте выполнения контроллер выполнен с возможностью управления величиной отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 так, что осевая нагрузка, которую несет упорный магнитный подшипник 36, не превышает нагрузочную способность упорного магнитного подшипника 36.
В одном варианте выполнения контроллер 70 управляет степенью открытия клапана 26 отбора так, что отбор становится таким, что осевая нагрузка, которую несет упорный магнитный подшипник 36, соответствует допустимой осевой нагрузке, которая представляет собой нагрузочную способность упорного магнитного подшипника 36, умноженную на коэффициент безопасности.
В этом случае может быть, что детандер-компрессор 1 имеет датчик нагрузки для измерения нагрузки на упорном магнитном подшипнике 36, и что результат измерения датчиком нагрузки отправляется контроллеру.
[0044] Далее способ работы холодильного устройства согласно варианту выполнения будет описан со ссылкой на Фиг. 1 и Фиг. 2.
[0045] Способ работы холодильного устройства согласно варианту выполнения представляет собой способ работы холодильного устройства, включающего в себя детандер-компрессор 1, проиллюстрированный на Фиг. 1, и включает в себя этап сжатия, этап расширения, этап охлаждения и этап отбора.
[0046] На этапе сжатия хладагент сжимают с помощью компрессора 4, а затем на этапе расширения хладагент, сжатый на этапе сжатия, расширяют с помощью детандера 6. Затем на этапе охлаждения охлаждаемый объект охлаждают путем теплообмена с хладагентом, расширенным на этапе расширения. В некоторых вариантах выполнения способ может дополнительно включать в себя после этапа сжатия и перед этапом расширения этап охлаждения хладагента, сжатого на этапе сжатия.
На этапе отбора по меньшей мере часть просачивающегося хладагента со стороны компрессора 4 к стороне детандера 6 в корпусе 9 извлекают из области 5 в корпусе 9 и отправляют к линии 22а циркуляции хладагента, которая соединена со стороной впуска компрессора 4 с внешней стороны корпуса 9, через линию 24 отбора, выполненную так, чтобы быть в сообщении с областью 5 между компрессором 4 и детандером 6 во внутреннем пространстве корпуса 9.
[0047] На этапе отбора по меньшей мере часть просачивающегося хладагента извлекают из области 5 в корпусе 9 и отправляют к линии 22а циркуляции хладагента, соединенной со стороной впуска компрессора 4. Делая таким образом, количество высокотемпературной просачивающейся текучей среды, текущей в сторону детандера 6, уменьшается, и передача тепла от высокотемпературной просачивающейся текучей среды детандеру 6 уменьшается, посредством чего возможно подавлять снижение адиабатической эффективности детандера 6 из-за просачивающейся текучей среды со стороны компрессора 4. Дополнительно, позволяя высокотемпературной просачивающейся текучей среде, текущей к стороне детандера 6, протекать обратно к линии циркуляции хладагента через линию 24 отбора, возможно соответственно обрабатывать просачивающуюся текучую среду, не уменьшая холодопроизводительность. В связи с этим возможно увеличивать КПД холодильного устройства 100.
[0048] Далее способ работы холодильного устройства согласно другому варианту выполнения будет описан со ссылкой на Фиг. 1 и Фиг. 4.
Способ работы холодильного устройства согласно варианту выполнения представляет собой способ работы холодильного устройства, включающего в себя детандер-компрессор 1, проиллюстрированный на Фиг. 1, и включает в себя этап сжатия, этап расширения, этап охлаждения, этап отбора и этап регулирования величины отбора.
[0049] Этап сжатия, этап расширения, этап охлаждения и этап отбора являются такими же, как и в способе работы холодильного устройства в соответствии с вышеописанным вариантом выполнения, и их описание будет опущено.
[0050] На этапе регулирования величины отбора величину отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 регулируют на основе по меньшей мере одного из КПД холодильного устройства или разницы температур хладагента между стороной впуска и стороной выпуска детандера 6.
[0051] В некоторых вариантах выполнения мощность двигателя 2 для вычисления КПД холодильного устройства измеряется датчиком 71 мощности для измерения мощности (потребления мощности) двигателя 2, и результат измерения отправляется контроллеру 70.
Температуры на стороне впуска и стороне выпуска детандера 6 измеряются датчиком 72 температуры, выполненным на стороне впуска детандера 6, и датчиком 73 температуры, выполненным на стороне выпуска детандера 6, на линии 22 циркуляции хладагента соответственно, и результаты измерений отправляются контроллеру 70. Контроллер 70 вычисляет разницу температур хладагента между стороной впуска и стороной выпуска детандера 6 из температур, измеренных датчиком 72 температуры и датчиком 73 температуры.
Дополнительно, величина отбора просачивающегося хладагента, отбираемого из области 5 и отправляемого к линии 22а циркуляции хладагента, соединенной со стороной впуска компрессора 4 с внешней стороны корпуса 9, измеряется с помощью датчика 74 скорости потока, выполненного на линии 24 отбора, и результат измерения отправляется контроллеру 70.
[0052] В некоторых вариантах выполнения контроллер 70 выполнен с возможностью регулирования величины отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 на основе измерения, например, скорости потока просачивающегося хладагента в линии 24 отбора, мощности двигателя 2, КПД холодильного устройства 100 или разницы температур хладагента между стороной впуска и стороной выпуска детандера 6.
В одном варианте выполнения контроллер 70 имеет память, которая хранит информацию о рабочих условиях для холодильного устройства 100, включая по меньшей мере одно из целевого КПД холодильного устройства или разницы температур между стороной впуска и стороной выпуска детандера 6, и контроллер управляет степенью открытия клапана 26 отбора для регулирования величины отбора на основе по меньшей мере одного из результата измерения датчика 71 мощности или результатов измерений датчиков 72, 73 температуры так, что рабочие условия удовлетворяются. Контроллер 70 может определять командное значение степени открытия для клапана 26 отбора на основе отклонения между информацией о рабочих условиях для холодильного устройства 100, сохраненных в памяти, и по меньшей мере одним из результата измерения датчика 71 мощности или результатов измерений датчиков 72, 73 температуры. В таком случае контроллер 70 может включать в себя контроллер, такой как контроллер Р, контроллер PI или контроллер PID для определения командного значения степени открытия клапана 26 отбора. Рабочие условия для холодильного устройства 100, при которых КПД становится самым большим, могут изменяться в зависимости от нагрузки охлаждения на охлаждающую часть 16. В этом случае контроллер 70 может регулировать величину отбора на основе по меньшей мере одного из результата измерения датчика 71 мощности или результатов измерений датчиков 72, 73 температуры так, что рабочие условия, соответствующие нагрузке охлаждения в охлаждающей части 16, удовлетворяются.
[0053] В других вариантах выполнения контроллер 70 имеет память, которая хранит информацию о по меньшей мере одном из целевого КПД холодильного устройства или максимального значения разницы температур между стороной впуска и стороной выпуска детандера 6, и управляет степенью открытия клапана 26 отбора для регулирования величины отбора так, что по меньшей мере одно из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры становится ближе к целевому КПД холодильного устройства или максимальному значению разницы температур между стороной впуска и стороной выпуска детандера 6. Контроллер 70 может определять командное значение степени открытия для клапана 26 отбора на основе отклонения между информацией, сохраненной в памяти, о целевом КПД холодильного устройства или максимальном значении разницы температур между стороной впуска и стороной выпуска детандера 6 и по меньшей мере одним из результата измерения датчика 71 мощности или результатов измерений датчиков 72, 73 температуры. В этом случае контроллер 70 может включать в себя контроллер, такой как контроллер Р, контроллер PI или контроллер PID для определения командного значения степени открытия клапана 26 отбора.
[0054] В другом варианте выполнения контроллер выполнен с возможностью управления величиной отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 так, что осевая нагрузка, которую несет упорный магнитный подшипник 36, не превышает нагрузочную способность упорного магнитного подшипника 36.
В одном варианте выполнения контроллер 70 управляет степенью открытия клапана 26 отбора так, что величина отбора становится такой, что осевая нагрузка, которую несет упорный магнитный подшипник 36, соответствует допустимой осевой нагрузке, которая представляет собой нагрузочную способность упорного магнитного подшипника 36, умноженную на коэффициент безопасности.
В этом случае может быть, что детандер-компрессор 1 имеет датчик нагрузки для измерения нагрузки на упорном магнитном подшипнике 36, и что результат измерения датчиком нагрузки отправляется контроллеру.
[0055] На этапе регулирования величины отбора величина отбора может регулироваться вручную без использования контроллера.
[0056] В некоторых вариантах выполнения величина отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 регулируется на основе измерения, например, скорости потока просачивающегося хладагента в линии 24 отбора, мощности двигателя 2, КПД холодильного устройства 100 или разницы температур между стороной впуска и стороной выпуска детандера 6.
В одном варианте выполнения подготавливается запись информации о рабочих условиях для холодильного устройства 100, включающих себя по меньшей мере одно из целевого КПД холодильного устройства, при котором КПД становится самым большим, и разницы температур между стороной впуска и стороной выпуска детандера 6, и величина отбора регулируется путем управления степенью открытия клапана 26 отбора так, что рабочие условия удовлетворяются на основе записи и по меньшей мере одного из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры.
Рабочие условия для холодильного устройства 100, с которыми КПД становится самым большим, могут изменяться в зависимости от нагрузки охлаждения на охлаждающую часть 16. В этом случае величина отбора может регулироваться на основе по меньшей мере одного из результата измерения датчика 71 мощности или результатов измерений датчиков 72, 73 температуры так, что рабочие условия, соответствующие нагрузке охлаждения в охлаждающей части 16, удовлетворяются.
[0057] В другом варианте выполнения подготавливается запись информации о по меньшей мере одном из целевого КПД холодильного устройства или максимального значения разницы температур между стороной впуска и стороной выпуска детандера 6, и величина отбора регулируется путем управления степенью открытия клапана 26 отбора так, что по меньшей мере одно из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры становится ближе к целевому КПД холодильного устройства или максимальному значению разницы температур между стороной впуска и стороной выпуска детандера 6.
Командное значение степени открытия для клапана 26 отбора может быть определено на основе отклонения между записанной информацией о целевом КПД холодильного устройства или максимальном значении разницы температур между стороной впуска и стороной выпуска детандера 6, и по меньшей мере одним из измеренного КПД холодильного устройства или результатов измерений датчиков 72, 73 температуры.
[0058] В другом варианте выполнения величина отбора из области 5 в корпусе 9 к стороне впуска компрессора 4 регулируется так, что осевая нагрузка, которую несет упорный магнитный подшипник 36, не превышает нагрузочную способность упорного магнитного подшипника 36.
В одном варианте выполнения степень открытия клапана 26 отбора регулируется так, что величина отбора становится такой, что осевая нагрузка, которую несет упорный магнитный подшипник 36, соответствует допустимой осевой нагрузке, которая представляет собой нагрузочную способность упорного магнитного подшипника 36, умноженную на коэффициент безопасности.
[0059] Далее эффект увеличения КПД холодильного устройства согласно варианту выполнения будет описан со ссылкой на Фиг. 5-7.
Фиг. 5 представляет собой график, показывающий сравнение отношения адиабатической эффективности между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру. Фиг. 6 представляет собой график, показывающий сравнение отношения холодопроизводительностей между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру. Фиг. 7 представляет собой график, показывающий сравнение отношения КПД между холодильным устройством согласно варианту выполнения и холодильным устройством согласно сравнительному примеру.
[0060] Для того чтобы оценить эффект увеличения КПД холодильного устройства 100 согласно варианту выполнения настоящего изобретения, некоторые измерения были выполнены, используя холодильное устройство 100, проиллюстрированный на Фиг. 2, выполненный линией 24 отбора и клапаном 26 отбора. Неон был использован в качестве хладагента.
В качестве холодильного устройства сравнительного примера был использован холодильное устройство, имеющий такую же конфигурацию, что и холодильное устройство 100, проиллюстрированный на Фиг. 2, за исключением того, что линия 24 отбора и клапан 26 отбора не были предусмотрены.
[0061] Были построены холодильное устройство 100, проиллюстрированный на Фиг. 2, и вышеописанный холодильное устройство, и мощность двигателя 2, температуры на стороне впуска и стороне выпуска детандера 6, и т.д. были измерены с различным давлением на впускной стороне компрессора 4 для получения адиабатической эффективности детандера, холодопроизводительности и КПД. Результаты показаны на Фиг. 5-7. Каждое из отношения адиабатической эффективности детандера, отношения холодопроизводительностей и отношения КПД представляет отношение, учитывая, что результат при выполнении измерения «без отбора» составляет 1. Дополнительно, на Фиг. 5-7 опорное давление (давление на впуске компрессора=1) «давления на впуске компрессора (представленного отношением)» соответствует 120 кПа.
[0062] Как показано на Фиг. 5, в отношении холодильного устройства 100 («с отбором») адиабатической эффективности детандера был увеличен в пределах измеренного диапазона давления на стороне впуска компрессора 4, и адиабатическая эффективность детандера холодильного устройства 100 был больше на около 18%, чем адиабатической эффективности детандера холодильного устройства сравнительного примера («без отбора»). Дополнительно, как показано на Фиг. 6, холодопроизводительность холодильного устройства 100 была больше на около 28%, чем в сравнительном примере. Дополнительно, как показано на Фиг. 7, КПД (основанный на мощности компрессора) был также больше на около 37%, чем в сравнительном примере.
Результаты показывают, что холодильное устройство 100, имеющий линию 24 отбора и клапан 26 отбора, обеспечивает существенно увеличенный КПД по сравнению с холодильным устройством сравнительного примера без линии 24 отбора или клапана 26 отбора.
Список ссылочных позиций
[0063] 1 Детандер-компрессор
2 Двигатель
3 Выходной вал
4 Компрессор
5 Область
6 Детандер
9 Корпус
12 Теплообменник
14 Теплообменник восстановления холодного теплоносителя
16 Охлаждающая часть
18 Компрессор отбора
22 Линия циркуляции хладагента
24 Линия отбора
26 Клапан отбора
32 Радиальный магнитный подшипник
34 Радиальный магнитный подшипник
36 Упорный магнитный подшипник
37 Аксиальный роторный диск
70 Контроллер
71 Датчик мощности
72 Датчик температуры
73 Датчик температуры
74 Расходомер
100 Холодильное устройство
Детандер-компрессор включает в себя двигатель, компрессор, соединенный с выходным валом двигателя, детандер, соединенный с выходным валом двигателя, бесконтактный подшипник, расположенный между компрессором и детандером, корпус и линию отбора, обеспеченную так, чтобы быть в сообщении с областью между компрессором и детандером во внутреннем пространстве корпуса, и выполненную с возможностью отбора из области просачивающейся текучей среды со стороны компрессора к стороне детандера в корпусе и отправления просачивающейся текучей среды к линии для текучей среды, соединенной со стороной впуска или стороной выпуска компрессора с внешней стороны корпуса. Корпус выполнен с возможностью уплотнения области с внешней стороны корпуса так, что поток по меньшей мере части просачивающейся текучей среды через линию отбора представляет собой единственный поток текучей среды между указанной областью и внешней стороной корпуса. Изобретение направлено на увеличение кпд холодильного устройства 5 н. и 1 з.п. ф-лы, 7 ил.