Код документа: RU2144211C1
Изобретение относится к области обработки сигналов, в частности к обработке измеренных сигналов для удаления их нежелательных составляющих.
Устройства обработки сигналов обычно используются для удаления нежелательных составляющих из составного измеренного сигнала, включающего желательную и нежелательную составляющие сигнала. Если нежелательная составляющая сигнала находится на другом частотном спектре, чем желательный сигнал, то можно использовать традиционные способы фильтрации, такие как фильтры подавления НЧ-шумов, полосовые фильтры и фильтры верхних частот для отделения желательной составляющей от всего сигнала. Можно также использовать отдельные неперестраиваемые фильтры или ряд узкополосных режекторных фильтров, если нежелательная составляющая (составляющие) сигнала находится на фиксированной частоте (частотах).
Однако часто случается, что перекрывание частотного спектра желательной и нежелательной составляющих сигнала все же имеет место, а статистические характеристики обоих сигналов меняются со временем. В таких случаях традиционные методы фильтрации полностью неэффективны для выделения желательного сигнала. Однако если можно получить описание нежелательной составляющей, можно использовать адаптивное устройство подавления шумов для удаления нежелательной составляющей сигнала при возможности измерения желательной составляющей. Адаптивные устройства подавления шумов динамически меняют свою передаточную функцию для сигнала и для их удаления. Адаптивные устройства подавления шумов требуют применения опорного шумового сигнала, который контролируется с нежелательной составляющей сигнала. Опорный шумовой сигнал не обязательно должен быть представлением нежелательной составляющей, но его частотный спектр должен быть аналогичным спектру нежелательного сигнала. Во многих случаях требуется большая изобретательность для определения шумового сигнала, поскольку образование провалов в спектре априорно известно в отношении нежелательной составляющей сигнала.
Физиологический мониторинг это одна из областей, где составные измеренные сигналы представляют собой желательную составляющую сигнала, а об имеющемся нежелательном сигнале нет никакой информации. Аппараты для физиологического мониторинга (отслеживания) обычно измеряют сигналы, полученные из физиологической системы, например от человеческого тела. Измерения, производимые обычно посредством систем физиологического мониторинга, включают в себя электронную кардиографию, измерение кровяного давления, насыщение газом крови (например, насыщение крови кислородом), капнографию. измерение частоты работы сердца, измерение скорости дыхания, глубину анастезии. Например, другие виды измерений включают в себя методы измерения давления и количества вещества, находящегося в теле, например проверку на содержание алкоголя в дыхании, проверку на содержание в теле наркотиков, проверку на содержание холестерола, глюкозы, проверку на содержание в артериях двуокиси углерода; проверку на содержание протеина, а также проверку на содержание одноокиси углерода. В этих измерениях часто источником нежелательного сигнала является подвижность пациента, как внешняя, так и внутренняя (например, подвижность мышц) в ходе процесса измерения.
Очень важным может быть знание о физиологических системах, например, во время проведения хирургических операций, таких как количество кислорода в крови пациента. Данные можно получить путем длительного внедрительного процесса извлечения и обследования вещества пациента, например его крови, или путем использования более целесообразных, невнедрительных методов. Можно создать много видов невнедрительных измерений с использованием известных характеристик затухания энергии, когда выбранный вид энергии проходит через физиологическую среду.
Затем энергия должна направляться на физиологическую среду, либо взятую у пациента, либо находящуюся в нем, и потом измеряется амплитуда переданной или отраженной энергии. Степень затухания падающей энергии, вызванная физиологической средой, находится в сильной зависимости от толщины и состава среды, через которую должна пройти эта энергия, а также от вида выбранных форм энергии. При удалении шумов можно получить информацию о физиологической системе из данных, полученных из ослабленного сигнала падающей энергии, переданного через среду. Однако невнедрительные измерения часто не представляют возможности селективного наблюдения помех, вызывающих появление нежелательной составляющей сигнала, что создает трудности с его удалением.
Часто эти нежелательные составляющие сигнала возникают как из источника переменного тока, так и из источника постоянного тока. Первая нежелательная составляющая это легко удаляемый компонент постоянного тока, вызванный передачей энергии через отличающиеся друг от друга среды с относительно постоянной толщиной внутри тела, например через кости, ткань, кожу, кровь и т.д. Во-вторых, это неустойчивый компонент переменного тока, вызванный тем, что измеряемые отличающиеся друг от друга среды нарушаются и тем самым меняют свою толщину при измерениях. Поскольку большинство материалов тела или полученных из тела легко сжимаются, толщина таких материалов меняется, когда пациент совершает движения в ходе невнедрительных физиологических измерений. Движения пациента могут заставить неустойчиво меняться характеристики затухания энергии. Традиционные методы фильтрации сигнала часто бывают полностью неэффективными и совсем несовершенными при удалении из сигнала этих эффектов, вызванных движениями. Неустойчивый и непредсказуемый характер нежелательных компонентов сигнала, вызванных движением, является основным препятствием для их удаления. Таким образом, существующие сейчас физиологические мониторы в основном оказываются полностью неработающими в периоды передвижений пациента.
Один из примеров физиологической мониторной системы, основанной на измерении затухания энергии в биологических тканях или веществах, это монитор для измерения уровня газов в крови. Мониторы измерения газов в крови передают световой поток в ткань и измеряют затухание потока с течением времени. Выходной сигнал монитора газа в крови, являющийся чувствительным к потоку артериальной крови, содержит компонент, представляющий собой кривую пульсов артериальной крови. Этот вид сигнала, который содержит компонент, связанный с пульсом пациента, называется плетисмографическими импульсами и представлен на фиг. 1 в виде кривой Y. Плетисмографические импульсы используются, например, при измерении кровяного давления или насыщения крови газом. При биении сердца количество крови в артериях увеличивается и уменьшается, что вызывает увеличение и уменьшение затухания энергии, как показано циклическими импульсами Y на фиг. 1.
Обычно часть тела, например палец, мочка уха или другой участок тела, где кровь протекает вблизи кожи, используется в качестве среды, через которую передается световая энергия для измерения затухания в кровяных газах. Палец содержит кожу, жир, кости, мышцы и т.д., схематически показанные на фиг. 2, и все они ослабляют энергию, падающую на палец, обычно предсказуемым и постоянным образом. Однако когда содержащие мясо участки пальца регулярно сжимаются, например, при движении пальца, затухание энергии становится хаотичным.
Пример более реалистичных замеренных импульсов S показан на фиг. 3 и иллюстрирует эффект, производимый движением. Желательная часть сигнала Y это импульсы, представляющие пульс и соответствующие зубчатой форме импульсов на фиг. 1. Большие вызванные движением отклонения амплитуды сигнала скрывают желательный сигнал Y. Легко видеть, как даже малые изменения амплитуды затрудняют нахождение желательного сигнала Y в присутствии шумового компонента n.
Особым примером аппарата, отслеживающего газы в крови, является импульсный оксиметр, измеряющий насыщение крови кислородом. Насосообразная работа сердца вгоняет насыщенную новым кислородом кровь в артерии, вызывая более высокое затухание энергии. Степень насыщения крови кислородом можно определить по глубине впадин относительно пиков плетисмографических колебательных процессов при измерении на отдельных длинах волн. Однако для того, чтобы оксиметр мог продолжать измерения в течение периодов подвижности пациента, вызванные движением нежелательные составляющие сигнала или артефакты движения необходимо удалить из измеряемого сигнала.
Задачей настоящего изобретения являлось создание устройства и способа обработки сигнала, в частности обеспечить удаление нежелательных составляющих при сложных процессах, например при подвижности объекта исследования, в частности, тела человека.
Настоящее изобретение представляет собой устройство обработки сигналов, принимающее 1-й и 2-й сигналы, прошедшие через среду распространения. В этом устройстве имеется детектор, который принимает первый сигнал после того, как он прошел через среду распространения, и формирует первый принятый сигнал, и который принимает второй сигнал после того, как он прошел через среду распространения, и формирует второй принятый сигнал. Первый принятый сигнал имеет первую желательную составляющую сигнала и первую нежелательную составляющую сигнала, а второй принятый сигнал имеет вторую желательную составляющую сигнала и вторую нежелательную составляющую сигнала. Первый принятый сигнал имеет первое отношение желательной составляющей сигнала к первому нежелательному сигналу и второй принятый сигнал имеет второе отношение второй желательной составляющей сигнала ко второй нежелательной составляющей сигнала. Устройство обработки сигналов включает в себя соединенное с детектором устройство обработки опорного сигнала, реагирующее на первый и второй принятые сигналы и комбинирующее первый и второй принятые сигналы для генерирования опорного сигнала, который для значений первого и второго отношений в диапазоне от менее одного до более одного является прежде всего функцией первой и второй нежелательных составляющих сигналов.
В одном из вариантов данного изобретения это устройство обработки сигналов содержит адаптивное устройство обработки сигналов для приема опорного и первого сигналов и для получения из них выходного сигнала, имеющего первичную компоненту, являющуюся (функцией первой желательной составляющей первого сигнала. В другом варианте это устройство обработки сигналов содержит адаптивное устройство обработки сигналов для приема опорного и второго сигналов для получения из них выходного сигнала, имеющего первичную компоненту, являющуюся функцией второй желательной составляющей второго сигнала.
В одном из вариантов адаптивное устройство обработки сигналов включает в себя адаптивное устройство подавления шумов. Еще в одном варианте адаптивное устройство подавления шумов содержит устройство оценки совместных процессов в виде сеточного устройства прогнозирования по методу наименьших квадратов и регрессионного фильтра.
К детектору может быть присоединен оксиметр для определения кислорода в живом организме в зависимости от первого и второго сигналов, принятых детектором. Измеряемой средой (средой распространения) может служить живая ткань, например палец руки или палец ноги.
В одном из вариантов данного изобретения при обработке светового сигнала первая и вторая желательные составляющие имеют компонент, представляющий собой плетисмографическую форму импульса, а первая и вторая нежелательные части имеют компонент, представляющий собой нежелательную составляющую.
Кроме того, опорный сигнал имеет, как правило, частотный спектр, скоррелированный с частотным спектром характеристики, усложняющей амплитуду сигнала. При этом устройство содержит адаптивное устройство подавления шумов, имеющее сигнальный вход для приема принятого сигнала и опорный вход для приема опорного сигнала, при этом адаптивное устройство подавления шумов реагирует на первый принятый сигнал и на опорный сигнал для получения выходного сигнала, имеющего первичную компоненту, полученную из компонент первого и второго сигналов, представляющих собой плетисмографическую форму импульса.
Помимо этого настоящее изобретение реализует физиологический монитор, содержащий первый излучатель света, формирующий первый световой сигнал, второй излучатель света, формирующий второй световой сигнал, детектор для приема первого и второго сигналов, прошедших через среду распространения, первый принятый сигнал имеет первую желательную составляющую сигнала и первую нежелательную составляющую сигнала, а второй принятый сигнал имеет вторую желательную составляющую сигнала и вторую нежелательную составляющую сигнала, причем монитор включает в себя устройство обработки сигналов, соединенное с детектором, реагирующее на первый и второй принятые сигналы и комбинирующее первый и второй принятые сигналы для генерирования опорного сигнала, который прежде всего является функцией первой и второй нежелательных составляющих сигналов.
Предпочтительно, чтобы среда распространения включала в себя живую ткань, причем первый и второй сигналы указывают на физиологическое состояние живой ткани. В этом варианте среда распространения представляет собой палец человека на руке или ноге.
В одном из вариантов данного изобретения монитор далее содержит адаптивное устройство обработки сигналов для приема опорного и первого сигналов с возможностью получения из них выходного сигнала, являющегося прежде всего функцией первой желательной составляющей сигнала. В другом варианте монитор содержит адаптивное устройство обработки сигналов для приема опорного и второго сигналов с возможностью получения из них выходного сигнала, являющегося прежде всего функцией второй желательной составляющей сигнала. При этом устройство обработки сигналов включает в себя адаптивное устройство подавления шумов, которое содержит устройство оценки совместных процессов в виде сеточного устройства прогнозирования по методу наименьших квадратов и регрессионного фильтра.
Монитор может также содержать импульсный оксиметр, соединенный со светочувствительным детектором, реагирующим на первичную компоненту первой желательной составляющей сигнала и второй желательной составляющей сигнала для анализа кислорода в живом организме.
Еще одним аспектом данного изобретения является аппарат для измерения составляющей крови, содержащий источник энергии для создания направленных на испытываемый объект ряда заранее определенных длин волн электромагнитной энергии и детектор для приема указанных волн электромагнитной энергии из испытываемого объекта, формирующих электрические сигналы, соответствующие указанным длинам волн, где каждый из, как минимум, двух указанных электрических сигналов имеет желательную и нежелательную составляющие. Этот аппарат снабжен устройством обработки опорного сигнала, имеющим вход для приема указанных электрических сигналов и выполненным с возможностью комбинирования данных сигналов с формированием опорного сигнала, имеющего первичную компоненту, являющуюся функцией упомянутых нежелательных составляющих сигналов.
В одном из вариантов данного изобретения аппарат снабжен адаптивным устройством обработки сигналов для приема указанных опорного и одного из, как минимум, двух электрических сигналов с возможностью получения из них выходного сигнала, имеющего первичную компоненту, являющуюся функцией желательной составляющей одного из этих электрических сигналов. Это адаптивное устройство подавления шумов содержит устройство оценки совместных процессов в виде сеточного устройства прогнозирования по методу наименьших квадратов и регрессионного фильтра.
Еще одним аспектом данного изобретения является монитор для определения газонасыщения крови при бескровном измерении составляющей крови в теле, содержащий источник света, выполненный с возможностью направления, как минимум, двух заранее определенных длин волн света на тело, и детектор для приема указанных волн света из тела, формирующих, как минимум, два электрических сигнала, соответствующих указанным длинам волн, где каждый из упомянутых электрических сигналов имеет желательную и нежелательную составляющие. Этот монитор снабжен устройством обработки опорного сигнала, имеющим вход, соединенный с детектором для приема указанных электрических сигналов, и выполненным с возможностью комбинирования, как минимум, двух электрических сигналов с формированием опорного сигнала, имеющего первичную компоненту, являющуюся функцией упомянутых нежелательных составляющих сигналов. Адаптивное устройство подавления шумов содержит устройство оценки совместных процессов в виде сеточного устройства прогнозирования по методу наименьших квадратов и регрессионного фильтра.
Наконец, еще одним аспектом данного изобретения является способ определения шумового опорного сигнала в устройстве обработки сигналов на основе выходных сигналов адаптивного устройства подавления шумов, которые содержат информацию, требуемую для определения физиологического параметра, включающий в себя прием детектором первого и второго сигналов для получения первого и второго принятых сигналов. Этот способ дополнительно включает в себя следующие этапы получения из первого и второго принятых сигналов шумового опорного сигнала, коррелированного с нежелательной составляющей сигнала, приложения этого опорного сигнала к первому и второму сигналам для исключения в принципе нежелательной составляющей из первого и второго сигналов с получением первого и второго выходных сигналов, содержащих информацию, требуемую при определении указанного физиологического параметра, и определения физиологического параметра.
Этап расчета физиологического параметра включает в себя расчет насыщения крови кислородом в пациенте, который может выполняться в реальном или почти реальном времени.
Кроме того, в данном способе этап приложения выполняют в адаптивном устройстве подавления шумов с использованием опорного сигнала в качестве адаптивного управляющего входа в адаптивное устройство подавления шумов.
Изобретение иллюстрируется чертежами.
Фиг. 1 иллюстрирует идеальную картину плетисмографического процесса.
Фиг. 2 схематически показывает обычный палец в сечении.
Фиг. 3 показывает картину плетисмографического колебательного процесса, включающую в себя нежелательную нестабильную составляющую сигнала, вызванную движением.
Фиг. 4 показывает схематическую диаграмму монитора для физиологических процессов, содержащего устройство обработки согласно данному изобретению и адаптивное устройство по давления шумов.
Фиг. 5 показывает функцию переноса множественного узкополосного режекторного фильтра.
Фиг. 6 иллюстрирует пример адаптивного устройства подавления шумов, которое можно использовать в мониторе для физиологических процессов.
Фиг. 7 показывает схематично абсорбирующий материал, содержащий N составляющих.
Фиг. 8 показывает схематически другой абсорбирующий материал, содержащий N составляющих.
Фиг. 9 - это схематическая модель устройства оценки совместных процессов, содержащего сеточное устройство прогнозирования методом наименьших квадратов и регрессионный фильтр.
Фиг. 10 - это диаграмма, представляющая подпрограмму, способную реализовать устройство оценки совместных процессов, смоделированное на фиг. 7.
Фиг. 11 - это схематическая модель устройства оценки совместных процессов с сеточным устройством прогнозирования методом наименьших квадратов и 2-мя регрессионными фильтрами.
Фиг. 12 - это пример монитора для физиологических процессов, содержащий устройство обработки и адаптивное устройство подавления шумов внутри микропроцессора. Этот монитор для физиологических процессов специально предназначен для измерения плетисмографического колебательного процесса и выполнения измерений импульсной оксиметрии.
Фиг. 13 - это график коэффициентов абсорбции при насыщении кислородом и при обеднении кислородом относительно длины волны.
Фиг. 14 - это график отношения коэффициентов абсорбции обедненного кислородом гемоглобина, к коэффициентам для насыщенного кислородом гемоглобина относительно длины волны.
Фиг. 15 - это увеличенный вид части фиг. 13, обозначенной кружком.
Фиг. 16 показывает сигнал, измеренный на 1-й длине волны красного света λa= λred1= 650 нм для использования в устройстве обработки с применением логометрического метода определения опорного шумового сигнала n'(t) и для использования в устройстве оценки совместных процессов. Измеренный сигнал содержит желательную составляющую
Фиг. 20 показывает хорошее приближение
Фиг. 21 показывает хорошее приближение
Фиг. 22 показывает сигнал, измеренный на длине волны λa= λred1= 660 нм, для использования в устройстве обработки с применением метода постоянного насыщения для определения опорного шумового сигнала n'(t) и для применения в устройстве оценки совместных процессов. Измеренный сигнал содержит желательную составляющую
Фиг. 25 показывает хорошее приближение
Фиг. 26 показывает хорошее приближение
Настоящее изобретение представляет собой устройство обработки, которое определяет опорный шумовой сигнал n'(t) для использования в адаптивном устройстве подавления шумов.
Адаптивное устройство подавления шумов оценивает хорошее приближение Y'(t) к желательному сигналу Y(t) из составного сигнала S(t)=Y(t)+n(t), который, в дополнение к желательной составляющей Y(t), содержит нежелательную составляющую n(t). Нежелательная составляющая n(t) может содержать одну или большее число постоянных составляющих, предсказуемую составляющую, нестабильную составляющую, случайную составляющую и т.д. Приближение к желательному сигналу Y'(t) возникает путем удаления из составного сигнала S(t) как можно большего числа нежелательных составляющих n(t). Постоянная и предсказуемая составляющая легко удаляются с помощью традиционных методов фильтрации, как, например, простое вычитание, фильтр нижних частот, полосовой фильтр, фильтр верхних частот. Нестабильную составляющую удалить труднее из-за ее непредсказуемого характера. Если что-нибудь известно о нестабильном сигнале, хотя бы статистически, его можно удалить из измеренного сигнала с помощью традиционных методов фильтрации. Однако часто бывает так, что об относительно нестабильной составляющей шумов не имеется никакой информации. В этом случае традиционные методы фильтрации обычно недостаточны. Часто не существует информации относительно нестабильной составляющей измеренного сигнала. Поэтому в данном изобретении применяется адаптивное устройство подавления шумов для удаления нестабильной составляющей.
В общем случае адаптивное устройство подавления шумов имеет два сигнальных входа и один выход. Один из входов это опорный шумовой сигнал n'(t), который скоррелирован относительно нестабильных составляющих нежелательного сигнала n(t), присутствующих в составном сигнале S(t). Другой вход предназначен для составного сигнала S(t). В идеале выход адаптивного устройства подавления шумов Y'(t) соответствует только желательной составляющей сигнала Y'(t). Часто самым трудным при применении адаптивных устройств подавления шумов является определение опорного шумового сигнала n'(t) измеренного сигнала S(t), поскольку, как указывалось выше, непредсказуемые составляющие сигнала обычно очень трудно изолировать от измеренного сигнала S(t). В устройстве обработки сигналов согласно данному изобретению опорный шумовой сигнал n'(t) определяется исходя из двух составных сигналов, измеряемых одновременно, или почти одновременно, на двух различных длинах волн, λa и λb. Устройство обработки сигналов можно с успехом использовать в мониторном устройстве, например в мониторе, хорошо приспособленном для физиологического отслеживания.
Блок-диаграмма монитора общего вида, включающего в себя устройство обработки сигналов, или устройство обработки опорного сигнала и адаптивное устройство подавления шумов показаны на фиг. 4. Детектор 1 принимает измеренные сигналы
Процесс согласования включает в себя, но не ограничивается этим, такие процедуры, как фильтрация сигналов для удаления постоянных составляющих и усиление сигналов для облегчения работы с ними. Затем сигналы преобразуются в цифровые данные с помощью аналого-цифрового преобразователя 4 и 5. 1-й измеренный сигнал
Адаптивное устройство подавления шумов 9, пример которого показан на блок-диаграмме фиг. 6, применяется для удаления нестабильных, нежелательных составляющих сигнала
На фиг. 5 показана передаточная функция множественного узкополосного режекторного фильтра. Провалы или углубления амплитуды передаточной функции указывают частоты, которые ослаблены или удалены, когда составной измеренный сигнал проходит через узкополосный режекторный фильтр. Выход узкополосного режекторного фильтра это составной сигнал, имеющий частоты, на которых существует провал. По аналогии с адаптивным устройством подавления шумов, частоты, на которых присутствуют провалы, непрерывно меняются, основываясь на выходных сигналах адаптивного устройства подавления сигналов.
Адаптивное устройство подавления сигналов 9, показанное на фиг. 2.6, выдает по обратной связи, обозначенный здесь
Один из алгоритмов, который можно использовать для регулировки передаточной функции внутреннего устройства обработки 10, это алгоритм наименьших квадратов, как он описан в главе 6 и главе 12 книги под названием "Адаптивная обработка сигналов" Бернарда Уидроу и Сэмьюэла Стернса, опубликованной издательством "Прентис Холл", копирайт 1985 г.
Адаптивные устройства обработки 9 с успехом применялись для ряда проблем, включая уменьшение бокового лепестка антенны, распознавание образов, вообще исключение периодических помех и исключение эха в линиях дальней телефонной связи. Однако часто требуется значительная изобретательность для нахождения подходящего опорного и шумового сигнала n'(t) для данного применения, поскольку случайные или нестабильные составляющие
Объяснение, описывающее, как можно определить опорный шумовой сигнал n'(t), таково, 1-й сигнал измеряется, например, на длине волны λa детектором, формирующим сигнал
Аналогичное измерение производится одновременно, или почти одновременно, на другой длине волны λb
что дает
Для того, чтобы получить опорный шумовой сигнал n'(t), измеренные сигналы
Адаптивное подавление шумов особенно полезно в большом ряде измерений, обычно называемых измерениями поглощения. Примером монитора абсорбционного типа, который может с успехом использовать адаптивное подавление шумов, основываясь на опорном шумовом сигнале n'(t), определенном устройством обработки является монитор, определяющий концентрацию поглощающей энергию составляющей внутри поглощающего материала, когда материал подвержен возмущениям. Такие возмущения могут вызываться сигналами, о которых желательно получить информацию, или же случайными или нестабильными силами, например механическими силами, приложенными к материалу. Случайные или нестабильные помехи, такие как подвижность, генерируют нежелательные шумовые компоненты в измеряемом сигнале. Эти нежелательные компоненты можно удалить с помощью адаптивного устройства подавления шумов, если известен подходящий опорный шумовой сигнал n'(t).
Схематически показанный материал с N составляющими, содержащий контейнер 11, имеющий N разных поглощающих составляющих, обозначенных A1, A2, A3, ... AN, показан на фиг. 7. Составляющие от A1 до AN размещены внутри контейнера 11 и упорядочено и послойно. Примером частного типа поглощающей системы является система, в которой световая энергия проходит через контейнер 11 и поглощается согласно обобщенному закону поглощения света Беера-Ламберта.
Для света с длиной волны λa это затухание можно приблизительно выразить как
Когда материал не подвержен любым силам, вызывающим возмущение в толщинах слоев, длина оптической траектории каждого слоя xi(t) обычно постоянна. Это приводит к в принципе постоянному затуханию оптической энергии и, таким образом, к в принципе постоянному смещению измеряемого сигнала. Обычно эта часть сигнала представляет малый интерес, поскольку как правило нужно знать о силе, вызывающей возмущение в материале. Необходимо удалить любую часть сигнала, находящуюся вне представляющей интерес и известной полосы частот, включая постоянную нежелательную составляющую часть сигнала, являющуюся результатом в принципе постоянного поглощения составляющими, когда они не подвержены возмущению. Это обычно достигается традиционными методами полосовой фильтрации. Однако когда материал подвержен воздействию сил, на каждый слой составляющих возмущение может подействовать иначе, чем на другой слой. Некоторые возмущения длин оптических траекторий каждого слоя xi(t) могут привести к отклонениям измеряемого сигнала, которые представляют собой желательную информацию. Другие нарушения длин оптической траектории каждого слоя xi(t) вызывают нежелательные отклонения, маскирующие желательную информацию в измеряемом сигнале. Нежелательные компоненты сигнала, связанные с нежелательными отклонениями, должны также удаляться для получения желательной информации из измеряемого сигнала.
Адаптивное устройство подавления шумов удаляет из составного сигнала, измеряемого после его прохождения через поглощающий материал или после его отражения от поглощающего материала, нежелательные компоненты сигнала, вызванные силами, которые возмущают материал отлично от сил, вызывающих возмущение материала с желательными компонентами сигнала. Для целей иллюстрации примем, что составляющая измеряемого сигнала, считающаяся желательным сигналом
Часто бывает, что суммарное возмущение, влияющее на слои, связанные с нежелательными компонентами сигнала, вызывается случайными или нестабильными силами. Это заставляет нестабильно меняться толщину слоев и нестабильно меняться длине оптической траектории xi(t), что формирует случайные или нестабильные нежелательные компоненты сигнала
Адаптивное устройство подавления шумов выдает хорошее приближение к желательному сигналу
Адаптивное устройство подавления шумов использует образец опорного шумового сигнала n'(t), определенного из 2-х в принципе одновременно измеренных сигналов
На фиг. 8 представлен другой материал, имеющий N признак разных составляющих, расположенных слоями. В этом материале две составляющие A5 и A6 находятся внутри одного слоя с толщиной x5,6(t)=x5(t)+x6(t) и размещены произвольно внутри слоя. Это аналогично комбинированию слоев составляющих A5 и A6 на фиг. 7. Комбинирование слоев, например комбинирование слоев составляющих A5 и A6, возможно, если два слоя находятся под действием тех же суммарных сил, приводящих к тому же самому возмущению длин оптических траекторий x5(t) и x6(t) слоев.
Часто желательно найти концентрацию или насыщение, т.е. процентную концентрацию, одной составляющей внутри данной толщины, содержащей более одной составляющей и подверженной действию особенных видов сил. Концентрацию или насыщение составляющей внутри данного объема можно определить в присутствии любого числа составляющих в объеме, содержащем много составляющих, необходимо иметь столько же сигналов, прошедших измерение, сколько имеется составляющих, поглощающих энергию падающего светового пучка. Понятно, что составляющие, которые не поглощают энергию, не являются важными в определении насыщения. Для определения концентрации необходимо иметь столько же сигналов, сколько имеется составляющих, поглощающих энергию падающего света, а также нужна информация о сумме концентраций.
Часто бывает, что толщина материи, совершающей специфическое движение, содержит только две составляющих. Например, может быть желательным узнать концентрацию или насыщение A5 внутри данного объема, содержащего A5 и A6. В этом случае желательные сигналы
Два метода, которые может использовать устройство опорного шумового сигнала N'(t), это логометрический метод и метод постоянного насыщения. Предпочтительная реализация монитора для физиологических процессов, включающего в себя устройство обработки, использует логометрический метод, где длина двух длин волн λa и λb, на которых измеряются сигналы
Умножая уравнение (24) на ωг3 и вычитая получившееся в результате уравнение из уравнения (23), определяем не равный нулю опорный шумовой сигнал:
Предположение о постоянном значении насыщения эквивалентно
предположению о том, что:
C5(t)/C6(t)=constan t, (30)
поскольку только еще один член уравнения (29) постоянен, а именно число 1.
Используя это
предположение, получаем постоянную пропорциональности ωs3(t), которая позволяет определить опорный шумовой сигнал n'(t)5
При использовании метода постоянного насыщения, необходимо, чтобы пациент не двигался в течение короткого периода времени, чтобы можно было определить точное начальное значение насыщения с помощью известных методов, отличных от адаптивного подавления шумов, на котором будут основываться все другие расчеты. При отсутствии нестабильных, вызванных движением нежелательных составляющих сигнала монитор для физиологических процессов может очень быстро выдать начальное значение насыщения в A5 в объеме, содержащем A5 и A6. Пример расчета насыщения приведен в статье Дж.А. Мука и др. "Спектрофотометрическое определение насыщение крови кислородом независимо от наличия зеленого индоцианина", где рассматривается определение кислородного насыщения артериальной крови.
Другая статья, в которой обсуждается расчет кислородного насыщения, это "Импульсная оксиметрия: физические принципы, техническая реализация и существующие ограничения" Майкла Р.Ньюмена. Затем, когда определены величины
Когда опорный шумовой сигнал n'(t) определен устройством обработки с помощью описанных выше методов - либо логометрического, либо постоянного насыщения, адаптивное устройство подавления шумов могут реализовывать либо как аппаратные, либо как программные средства.
Реализация методом наименьших квадратов (МНК) вышеописанного внутреннего устройства обработки 10 в сочетании с адаптивным устройством подавления шумов фиг. 6 относительно легко выполнима, однако ей не хватает скорости адаптации, желательной для большинства областей применения отслеживания физиологических процессов. Таким образом, предпочтительнее использовать более быстрый метод адаптивного подавления шумов, называемый моделью сеточного устройства оценки совместных процессов. Устройство оценки совместных процессов 12 показано в виде диаграммы на фиг. 9 и подробно описано в главе 9 книги "Теория адаптивных фильтров" Саймона Хейкина, опубликованной издательством" "Прентис-Холл", авторское право 1986 г. Функцией устройства оценки совместных процессов является удаление нежелательных составляющих сигнала
Для каждого набора выборок, т.е. 1-ая выборка опорного шумового сигнала n'(t), полученная в принципе одновременно с 1-й выборкой измеряемого сигнала
Ошибка в обратном прогнозе bm(t) подается на совпадающий каскад m регрессионного фильтра 14. Там она направляется на вход регистра 20, содержащего значение коэффициента мультипликативной регрессии
Промежуточные переменные включают в себя взвешенную сумму квадратов ошибки в переднем прогнозе Fm(t), взвешенную сумму квадратов ошибки в обратном прогнозе βm(t), параметр пересчетного устройства Δm(t), фактор преобразования γm(t) и другой параметр пересчетного устройства
Устройство оценки совместных процессов 12 работает следующим образом. Когда устройство оценки совместных процессов 12 включено, инициализируются: начальные значения промежуточной переменной и сигнала, включая параметр Δm-1(t), взвешенную сумму сигналов ошибки в переднем прогнозе Fm-1(t), взвешенную сумму сигналов ошибки в обратном прогнозе βm-1(t), параметр
После этого коэффициент переднего отражения Γf,m′(t), коэффициент обратного отражения Γb, m′(t) и величины регистров 15, 16 и 20 коэффициента регрессии
Эти уравнения приводят к тому, что сигналы ошибки fm(t), bm(t),
После того, как с помощью устройства оценки совместных процессов 12 было определено хорошее приближение к желательному сигналу
В устройстве обработки сигналов, таком как монитор для физиологических процессов, включающем в себя устройство обработки опорного сигнала согласно данному изобретению для определения опорного шумового сигнала n'(t) для введения в адаптивное устройство подавления шумов, адаптивное устройство подавления шумов типа устройства оценки совместных шумов 12 обычно реализуется посредством программных средств, имеющих цикл итерации. Одна итерация цикла аналогична одиночному каскаду устройства оценки совместных процессов, как это показано на фиг. 9. Таким образом, если цикл повторяется m раз, это эквивалентно устройству оценки совместных процессов 12 с m каскадами.
Блок-схема подпрограммы для оценки желательной составляющей сигнала
Имеет место только одновременная инициализация, когда монитор для физиологических процессов включен, как указано в блоке "Инициализировать устройство подавления шумов" 22. Инициализация устанавливает все регистры 15, 16 и 20 и переменные элемента задержки 19 на величины, описанные выше в уравнениях от (40) до (44).
Затем набор одновременных выборок измеряемых сигналов
Потом, используя набор выборок измеряемых сигналов
Затем производится обновление порядка нулевого каскада, как показано в блоке 25 "Обновление нулевого каскада". Ошибка в обратном прогнозе нулевого каскада b0(t) и ошибка в переднем прогнозе нулевого каскада устанавливаются равными по величине опорного шумового сигнала n'(t). Кроме того, взвешенная сумма ошибок в переднем прогнозе Fm(t) и взвешенная сумма ошибок в обратном прогнозе βm(t) устанавливаются равными величине, определенной в уравнении (46).
Затем инициализируется счетчик циклов m, как показано в блоке 26 "m=0". Также определяется максимальная величина m, определяющая суммарное число каскадов, которые должна использовать подпрограмма в соответствии с блок-схемой фиг. 10. Обычно цикл составляется таким образом, что он перестает итерацию, если критерий схождения после наилучшего приближения к желательному сигналу выполняется устройством оценки совместных процессов 12. Кроме того, можно выбрать максимальное число итераций цикла, при котором цикл прекращает итерацию. В предпочтительной реализации монитора для физиологических процессов согласно данному изобретению с успехом выбрано максимальное число итераций, от m=60 до m=80.
Внутри цикла сначала рассчитываются величины регистров 15 и 16 коэффициентов переднего и обратного отражения Γf,m(t) и Γb,m(t) в X-обрэзном (сеточном) фильтре по методу наименьших квадратов, как показано блоком 27 "Обновление порядка MTH-ячейки LSL сетки" на фиг. 10. Это требует расчета величин промежуточной переменной и сигнала, используемых при определении величин регистров 15, 16 и 20 в данном каскаде, следующем каскаде, а также регрессионного фильтра 14.
Затем производится расчет величины регистра 20 регрессионного фильтра
Новый набор выборок 2-х измеряемых сигналов
Устройство оценки совместных процессов 12, имеющее два регрессионных фильтра 32 и 33, показано на фиг. 11. 1-й регрессионный фильтр 32 принимает измеряемый сигнал
2-й
регрессионный фильтр 33 содержит регистры 34 и суммирующие элементы 35, расположенные аналогично элементам 1-го регрессионного фильтра 32. 2-й регрессионный фильтр 33 работает через дополнительную
промежуточную переменную в сочетании с теми переменами, которые были определены уравнениями от (48) до (58), т.е.:
Когда устройством оценки совместных процессов 12 были определены: хорошее приближение к желательным сигналам
Особый пример монитора для физиологических процессов, использующего устройство обработки для определения шумового сигнала для подачи на вход адаптивного устройства подавления шумов, удаляющего нестабильные составляющие сигнала, вызванные движением, - это импульсный оксиметр. Обычно импульсный оксиметр прогоняет энергию через среду, в которой кровь протекает близко к поверхности, как например мочка уха, палец или лоб. Ослабленный сигнал измеряется после его прохождения через среду или после его отражения от среды. Импульсный оксиметр оценивает степень насыщения кислородом крови.
Насыщенная кислородом кровь накачивается под большим давлением от сердца в артерии тела. Объем крови в артериях меняется с частотой биения сердца, что приводит к изменениям в поглощении энергии с частотой сердцебиения или пульса.
Лишенная кислорода или обедненная кислородом кровь возвращается в сердце по венам вместе с использованной обогащенной кислородом кровью. Объем крови в венах меняется с частотой сердцебиения, и это изменение обычно намного медленнее, чем сердцебиение. Таким образом, когда в толщине вен не возникает изменений, вызванных движением, венозная кровь вызывает малые изменения частоты при поглощении энергии. Когда в толщине вен возникают вызванные движением изменения, низкочастотные изменения поглощения сочетаются с хаотическим изменением поглощения, вызванным артефактом движения.
При измерениях поглощения с использованием передачи энергии через среду два светодиода (СИД) помещаются на одной части тела, где кровь протекает вблизи поверхности, например, пальца, а фотодетектор помещается с противоположной стороны пальца. Как обычно бывает при измерениях с помощью импульсной оксиметрии, один СИД излучает на видимой длине волны, желательно красной, а другой СИД излучает на инфракрасной длине волны.
Однако можно использовать и другие комбинации длин волн.
Палец содержит кожу, ткани, мышцы, артериальную и венозную кровь, и все они по-разному поглощают световую энергию из-за разных коэффициентов поглощения, разных концентраций и разной толщины слоя. Если пациент не двигается, поглощение в принципе постоянно, за исключением кроветока. Это постоянное затухание можно определить и вычесть из сигнала с помощью традиционных методов фильтрации. Когда пациент движется, поглощение становится нестабильным. Шумы, вызванные нестабильным, хаотическим движением, обычно нельзя заранее определить и вычесть из измеряемого сигнала с помощью традиционных методов фильтрации. Таким образом, определение насыщения кислородом артериальной крови затрудняется.
Схема монитора для физиологических измерений методом импульсной оксиметрии представлена на фиг. 12. 2 СИД примыкают к пальцу 36 - один СИД 37 излучает на красных длинах волн, другой СИД 38 излучает на инфракрасных длинах волн. Фотодетектор 39, выдающий электрический сигнал, который соответствует сигналам энергии ослабленного видимого и инфракрасного света, расположен напротив СИД 37 и 38. Фотодетектор 39 подключен к единственному каналу общих схем обработки сигнала, включающему усилитель 40, который, в свою очередь, подсоединен к полосовому фильтру 41. Полосовой фильтр 41 пропускает сигналы и направляет их на синхронизированный демодулятор 42, имеющий ряд выходных каналов. Один выходной канал предназначен для сигналов, соответствующих видимым длинам волн, а другой выходной канал предназначен для сигналов, соответствующих инфракрасным длинам волн.
Выходные каналы синхронизированного демодулятора для сигналов, соответствующих как видимым, так и инфракрасным длинам волн, подсоединены к различным трактам, причем каждый тракт содержит схемы дальнейшей обработки сигналов. Каждый тракт содержит элемент постоянного тока для удаления смещения 43 и 44, например, дифференциальный усилитель, усилитель с программируемой регулировкой усиления 45 и 46 и фильтр нижних частот 47 и 48. Выходной сигнал каждого фильтра нижних частот 47 и 48 усиливается во 2-м усилителе с программируемой регулировкой усиления 49 и 50, а затем подается на вход мультиплексора 51.
Мультиплексор 51 подсоединен к аналого-цифровому преобразователю 52, который, в свою очередь, подключен к микропроцессору 53. Образуются линии управления между микропроцессором 53 и мультиплексором 51, микропроцессором 53 и аналого-цифровым преобразователем 52, и между микропроцессором 53 и каждым усилителем с программируемой регулировкой усиления 45,46, 49 и 50. Микропроцессор 53 имеет дополнительные линии управления, одна из которых ведет к дисплею 54, а другая - к возбудителю СИД, расположенному в петле обратной связи с 2-мя СИД 37 и 38.
СИД 37 и 38 излучают энергию, которая поглощается пальцем 36 и принимается фотодетектором 39. Фотодетектор 39 формирует электрический сигнал, соответствующий интенсивности световой энергии, падающей наг поверхность фотодетектора. Усилитель 40 усиливает этот электрический сигнал для облегчения обработки. Затем, полосовой фильтр 41 удаляет нежелательные высокие и низкие частоты. Синхронизированный демодулятор 42 разделяет электрический сигнал на электрические сигналы, соответствующие компонентам световой энергии красного и инфракрасного света. Заранее определенное опорное напряжение Vref вычитается в элементе постоянного тока для удаления смещения 43 и 44 из каждого отдельного сигнала для удаления в принципе постоянного поглощения, которое соответствует поглощению, когда отсутствует компонент сигнала, вызванный нежелательными движениями. Затем для легкости манипуляций 1-е усилители с программируемой регулировкой усиления 45 и 46 усиливают каждый сигнал. Фильтры нижних частот 47 и 48 интегрируют каждый сигнал для удаления нежелательных частотных компонентов, а 2-е усилители с программируемой регулировкой усиления 49 и 50 усиливают каждый сигнал для дальнейшего облегчения обработки.
Мультипликатор 51 работает как аналоговый переключатель между электрическими сигналами, соответствующими красной и инфракрасной световой энергии, что позволяет сначала сигналу, соответствующему красному свету, поступить в аналого-цифровой преобразователь 52, а потом сигналу, соответствующему инфракрасному свету, поступить в аналого-цифровой преобразователь 52. Это снимает необходимость использовать множественные аналого-цифровые преобразователи 52. Аналого-цифровой преобразователь 52 подает данные на вход микропроцессора 53 для расчета опорного шумового сигнала методом обработки согласно данному изобретению и для удаления нежелательных составляющих сигнала посредством адаптивного устройства подавления шумов. Находящийся в центре микропроцессор 53 управляет мультиплексором 51, аналого-цифровым преобразователем 52, и 1-ми и 2-ми усилителями с программируемой регулировкой усиления 45 и 49 как для красного, так и для инфракрасного каналов. Кроме того, микропроцессор 53 управляет интенсивностью СИД 38 и 55 через возбудитель СИД 56 в серво-петле для того, чтобы поддерживать интенсивность (среднюю) света, принимаемого фотодетектором 39, внутри соответствующего диапазона. Внутри микропроцессора 53 рассчитывается опорный шумовой сигнал n'(t) либо посредством метода постоянного насыщения, либо посредством логометрического метода, как описано выше, причем в основном предпочтительнее логометрический метод. Этот сигнал используется в основном в адаптивном устройстве подавления шумов типа устройства оценки совместных процессов 12, описанного выше.
Мультиплексор 51 уплотняет по времени, или последовательно переключает, электрические сигналы, соответствующие энергии красного и инфракрасного света. Это позволяет использовать один канал для детектирования и для начала обработки электрических сигналов. Например, красный СИД 37 начинает работать первым, и ослабленный сигнал измеряется фотодетектором 39. Электрической сигнал, соответствующий интенсивности ослабленной энергии красного света, подается на общие схемы обработки сигнала. Затем начинает работать инфракрасный СИД 38, и ослабленный сигнал измеряется фотодетектором 39. Электрический сигнал, соответствующий интенсивности ослабленной энергии инфракрасного света, подается на общие схемы обработки сигнала. Затем снова начинает работать красный СИД 37 и соответствующий электрический сигнал подается на общие схемы обработки сигнала. Последовательное включение СИД 37 и 38 происходит непрерывно, пока работает импульсный оксиметр.
Схемы обработки сигнала разделены на отдельные тракты после синхронизированного демодулятора 42 для уменьшения временных ограничений, вызванных временным мультиплексированием. В предпочтительной реализации импульсного оксиметра, показанного на фиг. 12, с успехом используется скорость (частота) выборки, или частота включения СИД, в 1000 Гц. Таким образом, электрические сигналы достигают синхронизированный демодулятор 42 с частотой 1000 Гц. Временное мультиплексирование не применяется на месте отдельных трактов из-за ограничений по времени установления автоматического регулирования фильтров нижних частот 47, 48 и 57.
На фиг. 12 показан 3-й СИД, примыкающий к пальцу и расположенный рядом с СИД 37 и 38. 3-й СИД 55 используется для измерения 3-го сигнала
Пройдя обработку в операционном усилителе 40, полосовом фильтре 41 и в синхронизированном демодуляторе 42, 3-й электрический сигнал, соответствующий световой энергии с длиной волны λc, подается на вход отдельного тракта, включающего элемент постоянного тока для удаления смещения 58, 1-й усилитель с программируемой регулировкой усиления 59, фильтр нижних частот 57, 2-й усилитель с программируемой регулировкой усиления 60. Затем 3-й сигнал подается на вход мультиплексора 51.
Соединение, обозначенное пунктирной линией для 3-го СИД 55, указывает на то,
что 3-й СИД 55 включен в импульсный оксиметр при использовании логометрического метода; оно не обязательно для метода постоянного насыщения. При использовании 3-го СИД 55 мультиплексор 51 работает как
аналоговый переключатель между сигналами всех 3-х СИД 37, 38 и 55. Если используется 3-й СИД 55, также формируются петли обратной связи между микропроцессором 53 и 1-м и 2-м усилителем с
программируемой регулировкой усиления 59 и 60 в тракте длины волны λc.
Для измерений по методу импульсной оксиметрии с использованием логометрического метода сигналы
(преобразованные по логоритму), прошедшие через палец 36 на каждой длине волны λa, λb и λc таковы:
В случае логометрического метода две выбранные длины волн находятся обычно в диапазоне видимого красного света, т.е. λa и λb, а одна длина волны находится в инфракрасном диапазоне, т.е. λc. Как описано выше, длины волн измерения выбраны λa и λb для удовлетворения соотношения пропорциональности, которое удаляет желательную составляющую сигнала
Фиг. 13 это график коэффициентов поглощения обогащенного и необогащенного
кислородом гемоглобина εHb02 и εHb относительно длины волны (λ).
Фиг. 14 это график отношения коэффициентов поглощения относительно длины волны,
т.е. εHb/εHb02 относительно λ по диапазону длин волн внутри кружка 13 на фиг. 13. Везде, где горизонтальная линия касается кривой фиг. 14 дважды, как это
делает линия 400, условие уравнения (84) выполняется.
Фиг. 15 показывает вид в увеличении области фиг. 13 внутри кружка 13. Величины εHb02 и εHb на длинах волн, где горизонтальная линия касается кривой фиг. 14 дважды, можно затем определить исходя из данных фиг. 15 для решения соотношения пропорциональности уравнения (85).
Особый случай логометрического метода возникает тогда, когда коэффициенты поглощения εHb02 и εHb равны на какой-то длине волны. Стрелка 410 на фиг. 13 указывает одно такое местоположение, называемое изобестической точкой. Для того, чтобы использовать изобестические точки при логометрическом методе, определяются две длины волны из изобестических точек для выполнения уравнения (84).
Умножением уравнения (82) на ωr4 и последующим вычитанием уравнения (82) из уравнения (81) определяется не равный нулю опорный шумовой сигнал:
При измерениях импульсной оксиметрии с использованием метода постоянного насыщения сигналы (преобразованные по логарифму), прошедшие через палец 36 на
каждой длине волны λa и λb таковы:
Путем умножения уравнения (89) на ωs4(t) и последующего вычитания уравнения (89) из уравнения (88) определяется не равный нулю опорный шумовой сигнал
n'(t):
С использованием того или иного метода опорный шумовой сигнал определяется устройством обработки для использования в адаптивном устройстве подавления шумов, определяемом программными средствами в микропроцессоре. Предпочтительное адаптивное устройство подавления шумов это устройство оценки совместных процессов 12, описанное выше.
В качестве иллюстрации действия логометрического метода согласно данному изобретению фиг. 16, 17 и 18 показывают измеряемые сигналы для использования при определении насыщения обогащенной кислородом артериальной крови с использованием устройства обработки опорного сигнала, которое использует логометрический метод, т.е. сигналы
На фиг. 19 показан опорный шумовой сигнал n'(t) =
На фиг. 21 и 21 показаны приближения
Иллюстрируя действие метода постоянного насыщения, фиг. 22 и 23 показывают сигналы, измеряемые для подачи на вход устройства обработки опорного сигнала, которое использует метод постоянного насыщения, т. е. сигналы
На фиг. 24 показан опорный шумовой сигнал
Третий сегмент 24c опорного шумового сигнала n'(t) в общем плоский, снова в соответствии с отсутствием артефакта движения в третьих сегментах 22b и 23c каждого измеряемого сигнала.
На фиг. 25 и 26 показано приближение
Экземпляр компьютерной подпрограммы, написанной на языке программирования "Си", рассчитывает опорный шумовой сигнал n'(t) с применением логометрического метода и, используя устройство оценки совместных процессов 12, оценивает желательные составляющие сигнала 2-х измеряемых сигналов, каждый из которых имеет нежелательную составляющую, скоррелированную относительно опорного шумового сигнала n'(t), один из которых не пользовался для расчета опорного шумового сигнала n'(t). Например,
Программа
проводит оценку желательных составляющих сигнала двух сигналов световой энергии, один из которых предпочтительно соответствует свету в видимом красном диапазоне, так что можно определить количество
кислорода в теле или насыщение кислородом артериальной крови. Расчет у насыщения производится в отдельной подпрограмме. Известны различные методы расчета кислородного насыщения. Один такой расчет
описан в статье Дж.А. Мука и др. и в статье Майкла Р. Ньюмена, цитированных выше. Когда определена концентрация обогащенного кислородом гемоглобина и обедненного кислородом гемоглобина, значение
насыщения определяется аналогично уравнениям от (73) до (80), где измерения в моменты времени t1 и t2 проводятся в разные, но близкие друг к другу моменты времени, между которыми
насыщение относительно постоянно. Затем для импульсной оксиметрии определяется среднее насыщение в момент времени t=(t1+t2)/2:
Насыщение (t)=CHb02(t)/[CHb02(t)+CHb(t)], (95)
Соответствие переменных программы переменным, определенным при обсуждении устройства оценки совместных процессов, таково:
Третья часть программы вычисляет опорный шумовой сигнал, как в блоке 24 "Рассчитать опорный шумовой сигнал (n'(t)) для двух выборок измеряемых сигналов с применением постоянной пропорциональности ωr4, определенной логометрическим методом, как в уравнении (85).
Четвертая часть программы выполняет обновление нулевого каскада, как в блоке 25 "Обновление нулевого каскада", где ошибка в переднем прогнозе нулевого каскада f0(t) и ошибка в обратном прогнозе нулевого каскада b0(t) устанавливаются равными величине только что рассчитанного опорного шумового сигнала n'(t). Кроме того, величины для нулевого каскада промежуточных переменных F0(t) и βo(t)/nc[ ].Fswsqr и nc[ ].Bswsqr в программе/рассчитываются для использования при установке величин регистров 15, 16, 20 и 34 в сеточном устройстве прогнозирования по методу наименьших квадратов 13 и регрессионных фильтров 32 и 33.
Пятая часть программы это цикл итерации,
где счетчик циклов m вновь устанавливается на нуле с максимумом m=NC_CELLS, как в блоке 26 "m=0" фиг. 10. NC_ CELLS это заранее определенное максимальное значение итераций для цикла. Например, обычное
значение NC_CELLS находится между 60 и 80. Условия цикла установлены такими, что цикл повторяется минимум 5 раз и продолжает повторяться до тех пор, пока не выполнится тест для преобразования или
m=NC_ CELLS. Тест для преобразования состоит в следующем: меньше ли сумма взвешенной суммы ошибок в переднем прогнозе плюс взвешенная сумма ошибок в обратном прогнозе некого малого числа, обычно 0,
00001 (т.е. Fm(t)+βm(t)≤0,00001
Шестая часть программы рассчитывает величины регистров 15 и 16 коэффициентов переднего и обратного отражения Γm,
f(t) и Γm,b(t) (nc[ ].fref и nc[ ].bref в программе), как в блоке 27 "Обновление порядка m-го каскада LSL-устройства прогнозирования" и в уравнениях (49) и (50). Затем
рассчитываются ошибки в переднем и обратном прогнозе fm(t) и bm(t) (nc[ ].ferr и nc[ ].berr в программе), как в уравнениях (51) и (52). Кроме того, рассчитываются промежуточные
переменные Fm(t),βm(t) и γm(t)(nc[ ].Fswsqr, nc[ ].Bswsqr, nc[ ]. Gamma в программе), как в уравнениях (53), (54) и (55). Первый цикл циклического
повторения использует величины для nc[o].Fswsqr и nc[о].Bswsqr, рассчитанные в части программы "Обновление нулевого каскада".
Седьмая часть программы, все еще находящаяся внутри цикла, рассчитывает величины регистров 20 и 34 коэффициентов регрессии
Тест на сходимость устройства оценки совместных процессов выполняется каждый раз при итерации цикла, аналогично блоку 29 "Выполнено". Если сумма взвешенных сумм ошибок в переднем и обратном прогнозе Fm(t)+βm(t) меньше или равна 0,00001, цикл заканчивается. В ином случае повторяется шестая и седьмая часть программы.
Когда-либо тест на сходимость пройден, либо m=NC_CELLS, восьмая часть программы рассчитывает выход устройства подавления шумов, как в блоке 30 "Рассчитать выход". Этот выход является хорошим приближением к обоим желательным сигналам
Соответствие переменных программ переменным, определенным в
обсуждении устройства оценки совместных процессов, таково:
Третья часть подпрограммы рассчитывает опорный шумовой сигнал, как в блоке 24 "Рассчитать опорный шумовой сигнал (n'(t)) для двух выборок измеряемых сигналов" для сигналов
Седьмая часть программы, все еще находящаяся внутри цикла, начатого в пятой части программы, рассчитывает величины регистров 20 и 34 коэффициентов регрессии
Цикл повторяется до тех пор, пока не будет пройден тест на сходимость, причем этот тест тот же самый, что и описанный выше для подпрограммы, предназначенной для логометрического метода. Выход настоящей подпрограммы это хорошее приближение к желательным сигналам
Независимо от используемого метода, логометрического или постоянного насыщения, приближения к желательным составляющим сигналов
Хотя одна реализация монитора для физиологических процессов, включающая устройство обработки для определения опорного шумового сигнала для применения в адаптивном устройстве подавления шумов с целью удаления нестабильных шумовых составляющих из физиологических измерений, была описана в виде импульсного оксиметра, понятно, что другие типы мониторов для физиологических процессов также могут применять вышеописанные способы понижения шумов в составном измеряемом сигнале в присутствии шумов.
Более того, очевидно, что возможны другие преобразования измеряемых сигналов, чем логарифмическое преобразование и определение коэффициента пропорциональности, что позволяет удалять желательные составляющие сигнала для определения опорного шумового сигнала. Кроме того, хотя коэффициент пропорциональности w описан здесь как отношение составляющей первого сигнала к составляющей второго сигнала, в устройстве обработки согласно данному изобретению можно с таким же успехом использовать аналогичную постоянную пропорциональности, определенную как отношение составляющей второго сигнала к составляющей первого сигнала. В последнем случае опорный шумовой сигнал в общем случае будет напоминать
Более того, понятно, что любая область тела пациента или материала, полученного из пациента, может быть использована для проведения измерений на мониторе для физиологических процессов данного изобретения, содержащем устройство обработки и адаптивное устройство подавления шумов. Такие области тела включают палец, но не ограничиваются им.
Множество типов мониторов для физиологических процессов могут использовать устройство обработки сигнала в сочетании с адаптивным устройством подавления шумов. Другие типы мониторов для физиологических процессов включают в себя, но не ограничиваясь этим, электронные кардиографы, мониторы для отслеживания кровяного давления, мониторы для определения газонасыщения крови (кроме кислородного насыщения), капнографы, мониторы для слежения за частотой биения сердца, мониторы дыхания или мониторы глубины анестезии. Кроме того, мониторы, измеряющие давление и количество веществ в теле, такие как алкогольно-респираторные трубки, мониторы содержания наркотиков, мониторы содержания холестирола, мониторы содержания глюкозы, мониторы содержания двуокиси углерода или мониторы содержания окиси углерода, могут также применять описанные выше методы удаления нежелательных составляющих сигнала.
Описанные выше методы удаления шумов из составного сигнала, содержащего шумовые компоненты, могут также выполняться с сигналами отраженной, а не проходящей энергии. Понятно, что желательная составляющая сигнала энергии любого типа, включая звуковую энергию, но не ограничиваясь ей, энергию рентгеновских, гамма-лучей или световую энергию, может быть оценена описанными выше методами удаления шумов. Таким образом, устройство обработки и адаптивное устройство обработки подавления шумов могут применяться в таких мониторах, как мониторы, использующие ультразвук, где сигнал передается через участок тела и отражается обратно изнутри тела, проходя на обратном пути через эту область тела. Кроме того, такие мониторы как эхо-кардиографы также могут применять способы данного изобретения, т.к. они также основываются на передаче и отражении энергии.
Хотя данное изобретение описано в качестве монитора для физиологических процессов, ясно, что способы обработки сигнала согласно данному изобретению можно применять во многих областях, включая, но не ограничиваясь этим, обработку физиологического сигнала. Данное изобретение можно применять в любой ситуации, когда устройство обработки сигнала, содержащее детектор, принимает второй сигнал, включающий в себя первую нежелательную составляющую сигнала, и второй сигнал, включающий в себя вторую желательную составляющую сигнала и вторую нежелательную составляющую сигнала. Первый и второй сигнал распространяются через общую им среду, а первая и вторая желательная составляющая сигналов скорректированы относительно друг друга. Кроме того, как минимум часть первой и второй нежелательных составляющих скоррелированы друг с другом из-за пертрубации среды, когда первый и второй сигналы распространяются через эту среду. Процессор принимает первый и второй сигналы и комбинирует первый и второй сигналы с формированием опорного шумового сигнала, в котором первичная компонента получена из первой и второй нежелательных составляющих сигналов. Таким образом, устройство обработки сигналов согласно данному изобретению легко применимо в различных областях обработки сигнала.
Изобретение относится к обработке сигналов. Его использование в физиологическом мониторинге позволяет обеспечить удаление нежелательных составляющих из обрабатываемых сигналов. Устройство, реализующее способ, содержит детектор для приема первого и второго сигналов, прошедших через среду распространения и имеющих желательную и нежелательную составляющие. Технический результат достигается благодаря тому, что первый принятый сигнал имеет первую желательную составляющую сигнала и первую нежелательную составляющую сигнала, а второй принятый сигнал имеет вторую желательную составляющую сигнала и вторую нежелательную составляющую сигнала, причем первый принятый сигнал имеет первое отношение желательной составляющей сигнала к первому нежелательному сигналу и второй принятый сигнал имеет второе отношение второй желательной составляющей сигнала к второй нежелательной составляющей сигнала, при этом устройство включает в себя устройство обработки опорного сигнала, соединенное с детектором, реагирующее на первый и второй принятые сигналы и комбинирующее первый и второй принятые сигналы для генерирования опорного сигнала, который для значений первого и второго отношений в диапазоне от менее одного до более одного является прежде всего функцией первой и второй нежелательных составляющих сигналов. 5 с. и 31 з.п.ф-лы, 26 ил.