Код документа: RU2650084C2
Изобретение относится к использованию методов электрометрии для исследования земных недр.
Способ может применяться при обследовании гидротехнических сооружений (плотин, дамб), контроле наземных объектов в районе подработанных территорий, при строительстве и эксплуатация шахтных стволов, подземных выработок и сооружений, а также при решении другого вида задач, связанных с прослеживанием динамики изменения физических свойств среды в целях выявления потенциально опасных зон и прогноза развития возможных негативных процессов.
Из патентной литературы известен аналог - способ измерения временных вариаций удельного сопротивления земли (патент РФ №2334253, МПК G01V 3/02, опубл. 20.09.2008 г.). Его суть заключается в следующем. Через два точечных источника пропускают в землю ток. Первый источник располагают вблизи вертикальной границы раздела двух сред, а второй относят в бесконечность. Определяют положение одной из эквипотенциальных линий электрического поля. Измерительные электроды располагают по касательной к эквипотенциальной линии, симметрично относительно точки касания луча, проведенного из вспомогательной точки, представляющей зеркальное отражение точечного источника относительно границ раздела с выбранной эквипотенциальностью. Измерительные электроды могут быть расположены также на линии, перпендикулярной границе раздела, симметрично относительно питающего источника, расположенного вблизи границы. По напряжению на измерительных электродах определяют временные вариации удельного сопротивления.
Недостатками этого способа являются ограниченные условия применения, определяемые заданной моделью среды с вертикальной границей раздела, а также отсутствие возможности контроля пород, залегающих на разных глубинах.
Другим аналогом является геофизическая система сбора и обработки информации (патент РФ №2091820, МПК G01V 3/08, G01V 1/22, опубл. 27.09.1997 г.). В описании к патенту предложена технология для сбора и обработки геофизической информации, в частности для измерения, регистрации и обработки электрических и магнитных составляющих электромагнитного поля, при изучении геодинамических процессов, протекающих в земной коре, методами электроразведки. Устройство содержит генераторную установку, сеть измерительных пунктов, соединенных лучевой структурой с центром управления, сбора и обработки полученных данных, промежуточные измерительные и/или ретрансляционные пункты, введен блок обработки данных, совмещенный с блоком управления и выполненный в виде микроЭВМ, генератор тестовых сигналов и блок измерительных усилителей. Каждый промежуточный пункт состоит из измерительной станции и устройства передачи данных, а ретрансляционный пункт - устройства передачи данных. Все устройства передачи данных, кроме радиопередатчиков с антеннами, снабжены соединенными между собой дешифраторами команд и модемом, связанным двунаправленной связью с микро ЭВМ измерительной станции. В устройство передачи данных промежуточного и ретрансляционных пунктов введены дополнительные радиоприемник, радиопередатчик, фильтр частотных развязок и антенна.
Недостатком этого устройства является сложность конструкции, а также устаревшая аппаратурно-техническая составляющая изобретения, отсутствие мобильности системы и оценки информативности получаемых результатов для разных глубин.
По технологии полевых наблюдений предлагаемому изобретению наиболее близок электрический мониторинг, основанный на использовании метода сплошных зондирований (СЭЗ), переименованного позднее в метод 2D-электротомографии (ЭТ), взятый за прототип [2, 3]. Суть последнего сводится к выполнению зондирования с постоянным шагом приращения разносов Δr=rj+1-rj равным расстоянию между пикетами Δx=xi+1-xi вдоль линии наблюдений. Способ основан на использовании известного принципа электрического зондирования, заключающегося в повышении эффективной глубины проникновения электрического тока при увеличении расстояния между приемными и питающими электродами измерительной установки, называемого разносом установки r [6].
Одним из недостатков данного метода является зависимость длины приемной линии MN от шага между пикетами Δx. Метод предполагает равенство значений этих величин (MN=Δx), которое ставит в некоторое противоречие глубинность, детальность и экономическую эффективность при выборе рациональной методики выполнения работ, которая бы обеспечивала соразмерное по детальности изучение малых и больших глубин геоэлектрического разреза, к примеру, увеличение глубинности до 100 и более метров делает не рациональным использование малого шага (5-10 м), приемлемого для изучения приповерхностной части разреза, поскольку приводит к переопределенности данных относительно изучения больших глубин, существенно снижая при этом производительность работ; увеличение же шага между пикетами (и соответственно увеличение MN) снижает контрастность и детальность оценки латеральной изменчивости свойств пород приповерхностной части разреза.
Кроме того при выполнении сплошных зондирований, в силу уменьшения числа разносов в краевых частях профиля формируется не полная информация о глубинном изменении свойств изучаемого разреза. К настоящему времени метод реализован в однопрофильном варианте малоглубинных исследований. К недостаткам метода можно отнести также и неустойчивость результатов, получаемых используемым для интерпретации способом инверсии, приводящую к наличию помех, не связанных с изменениями геологической среды [3].
Задачей создания изобретения является устранение недостатков прототипа.
Поставленная задача решается с помощью признаков, указанных в формуле изобретения общих с прототипом, таких как способ мониторингового контроля геологической среды методом геоэлектроразведки и отличительных, существенных признаков таких как проводят площадные наблюдения с использованием метода групповых зондирований трехэлектродной измерительной установкой (MN-AB∞), основанного на применении спаренных электродов, выполняющих функцию как приемной MN, так и питающей АВ∞ линий, при независимости размера приемной линии MN от шага между пикетами, с использованием для разноса установки каждого из двух спаренных электродов А при фиксированном электроде В∞, при этом выполняют наблюдения при одинаковой глубине зондирования по всему обследуемому участку за счет использования встречных установок, позволяющих получать одинаковый набор разносов установки для каждого зондирования, с проведением измерений в автоматическом режиме при заданной величине "шум/сигнал" и удаленном доступе к обследуемому объекту с использованием средств Интернет и отображении динамики изменения физических параметров исследуемой толщи пород с помощью интерпретационной системы программ ЗОНД.
Вышеперечисленная совокупность существенных признаков способа и технологии работ позволяет получить следующий технический результат:
1) повышение точности оценки динамических характеристик среды за счет единообразия площадных повторных измерений, существенно снижающего влияние различных геоморфологических факторов (рельефа местности, приповерхностных неоднородностей и др.);
2) повышение информативности за счет возможности выбора оптимальных значений приемной линии MN, определяющей детальности съемки в независимости от шага между пикетами, а также повышения плотности наблюдений по сравнению с аналогами ввиду получения дополнительных разносов установки вследствие измерений при каждом из спаренных электродов А при фиксированным электроде В∞, получения дополнительного зондирований по каждому профилю наблюдений за счет использования спаренных электродов;
3) обеспечение условий для выполнения оперативной количественной интерпретации электрических зондирований, раскрывающей динамику изменения удельных электрических сопротивлений для различных геоэлектрических горизонтов с использованием системы ЗОНД (свидетельство №2005610058 от 11.01. 2005 г.);
4) одновременная регистрация совокупности электрических зондирований с заданной детальностью съемки при использовании аппаратуры АМС-1, обеспечивающей заданную точность измерений (патент на полезную модель №97542 от 10.09.2010 г.);
5) повышение экономической эффективности выполнения работ на основе использования аппаратурно-программного комплекса АМС-ЗОНД.
Предлагаемый способ площадного мониторинга иллюстрируется схемой измерений и примером практического его применения.
На Фиг. 1 приведена схема выполнения площадного мониторингового контроля физического состояния геологической среды методом группового зондирования;
На Фиг. 2. приведена схема выполнения измерений по заданному профилю методом группового зондирования, где А, В∞ - питающие электроды; М, N - приемные электроды (А - один из спаренных электродов, а В∞ - электрод, удаленный от приемной линии на расстояние в 3-4 раза превышающее расстояние до электрода А в перпендикулярном относительно оси установки направлении).
На Фиг. 3 приведены результаты интерпретации площадных мониторинговых наблюдений в виде карт значений электрического сопротивления для эффективных глубин 50 м, 100 м и 180 м. с интервалом времени 1 мес;
На Фиг. 4 показаны результаты интерпретации площадных мониторинговых наблюдений в виде динамических параметров - карт скорости изменения электрического сопротивления для эффективных глубин 100 м (а, б, в), 130 м (г, д, е) и 180 м (ж, з) (б) в разные периоды времени.
На Фиг. 5 приведены пространственно-временные отображения динамики изменения значений электрического сопротивления в интервале глубин 100-130 м в определенный период времени.
Общие условия проведения процесса.
Общая схема предлагаемого способа площадного мониторингового контроля физического состояния геологической среды с использованием групповых зондирований многоканальной измерительной установки показана на Фиг. 1, где 1 - генератор электрического тока, подаваемого в землю с помощью электродов А и В∞; 2 - измеритель разности потенциалов в приемной линии MN; 3 - коммутатор автоматического переключения приемной и питающей линий; 4 - блок компьютерного управления процессом съемки, обработки и интерпретации результатов наблюдений, передачи получаемой информации через Интернет.
Способ предусматривает:
а) использование системы парных электродов, расположенных с постоянным шагом вдоль профиля наблюдений, выполняющих в процессе съемки трехэлектродной установкой (MN-АВ∞) функцию как приемной MN так и питающей АВ∞ линий, при независимости размера приемной линии MN от шага между пикетами (Фиг. 2) [4]; б) повышение детальности и плотности наблюдений за счет возможности использования для разноса установки каждого из двух спаренных электродов А (вместо одного на каждом пикете в методе СЭЗ) при фиксированном электроде В∞, а также получения дополнительного зондирования, вследствие того, что число спаренных электродов, определяющее число групповых зондирований, на единицу превышает количество интервалов между пикетами, равное числу зондирований в методе СЭЗ; в) обеспечение одинаковой максимальной глубины зондирования Zmax (Zmax определяемое максимальным разносом установки) на всем интервале измерительной косы за счет методики встречных установок (MN-A и A'-MN), позволяющей использовать одинаковый по размерам и количеству набор разносов для каждого зондирования (Фиг. 2); г) проведение площадных наблюдений при заданном количестве пикетов N на каждом из профилей не меньшем величины N=4Zmax/Δx, где Δx - расстояние между пикетами; д) обеспечение долговременного пространственно-временного мониторингового контроля физического состояния геологической среды при заданной периодичности съемки (от первых десятков минут до нескольких лет) с возможностью измерений при удаленном доступе к обследуемому объекту и передачей информации через Интернет, с последующей оценкой динамики изменения наблюденных параметров поля и истинных значений удельного электрического сопротивления исследуемой толщи пород, получаемых в результате интерпретации результатов площадной съемки с помощью системы программ ЗОНД.
Процедура мониторинга включает три основных этапа:
1) подготовка протокола измерений с заданием параметров измерительной установки, позволяющих реализовать необходимую методику наблюдений, осуществляемая с помощью специально созданной компьютерной программы;
2) перекачка протокола на измеритель;
3) запуск процедуры мониторинга нажатием клавиши "ON" на табло измерителя.
Блок измерителя в соответствии с выбранным протоколом наблюдений в автоматическом режиме проводит весь процесс наблюдений, подключая через коммутатор нужные электроды, управляя генератором и регистрируя измеренный сигнал. Регистрация сигнала осуществляется при заданной величине соотношения «шум/сигнал» с сохранением результатов в блоке памяти измерителя в формате исходных данных для программного комплекса ЗОНД-2 с возможным визуальным контролем получаемых в процессе наблюдений кривых зондирования и разреза кажущихся сопротивлений.
В итоге групповой съемки с использованием трехэлектродной установки получается 2n1 (при четном числе спаренных электродов n1) либо 2n1+1 (при нечетном числе спаренных электродов) зондирований.
В качестве действующих разносов, в зависимости от требуемой детальности съемки, выбирается набор питающих электродов А, включающий либо один из спаренных электродов, либо каждый из них (задается в управляющей программе коммутатора). В рассматриваемом примере, для упрощения раскрытия сути съемки, приведен вариант использования одного (первого по ходу) из спаренных электродов. Расстояние между спаренными электродами MN, соответствующее длине приемной линии MN, выбирается в соответствии с условием MN<2Δx. Максимальный разнос зондирующей установки равный n1⋅Δr, обеспечивает эффективную глубину зондирования Z≈0.5 n1⋅Δr, одинаковую на всех пикетах исследуемого разреза. Количество разносов установки n1 выбирается исходя из требуемой максимальной эффективной глубины зондирования геологической среды и шага между пикетами согласно соотношению
Периодичность съемки мониторингового контроля задается пользователем в блоке измерителя в соответствии с поставленной задачей обследования конкретного объекта и может составлять от первых десятков минут до нескольких лет.
На основе полученных многократных наблюдений вычисляются параметры, характеризующие динамику изменения как наблюденных параметров поля, так и истинных значений удельного электрического сопротивления различных толщ пород, залегающих в интервалах глубин, которые определяются параметрами измерительной установки, с последующей обработкой и интерпретацией результатов площадной съемки с использованием системы программ ЗОНД (свидетельство РФ №2005610058), с возможностью удаленного (ограниченного) доступа к обследуемому объекту и передачей информации через Интернет.
Способ апробирован при решении задач мониторингового контроля подработанной территории на одном из участков Пермского края (Фиг. 3, 4, 5).
ЛИТЕРАТУРА
1. Колесников В.П. Основы интерпретации электрических зондирований. - М: Научный мир, 2007. - 248 с.
2. Богданов М.И., Макаров Д.В., Модин И.Н. Низкочастотный мониторинг и влияние метеофакторов на его результаты. Тезисы X международной научно-практической конференции и выставки «Инженерная геофизика - 2014», Геленджик, Россия, 21-25 апреля 2014 (прототип).
3. Макаров Д.В. Высокоразрешающие режимные наблюдения в методе сопротивлений. Автореферат диссертации на соискание ученой степени к.т.н. - М., 2015.
4. Патент на изобретение. Способ геоэлектроразведки. Автор: Колесников В.П. №2545309 от 24.02.2015 г.
5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. - М.: Наука, 1977. - 736 с.
6. Электроразведка: Справочник геофизика. В 2-х кн. / Под ред. В.К. Хмелевского и В.М. Бондаренко. Кн. I, М.: Недра, 1989, с. 95-110, 174-177.
Изобретение относится к использованию методов электрометрии для исследования земных недр. Сущность изобретения заключается в создании способа площадных многоканальных наблюдений с использованием метода групповых зондирований инверсионной установкой с фиксированным положением измерительных линий, позволяющего осуществлять долговременный пространственно-временной мониторинговый контроль физического состояния геологической среды с заданной периодичностью съемки (от первых десятков минут до нескольких лет) с оценкой динамики изменения как наблюденных параметров поля, так и истинных значений удельного электрического сопротивления различных толщ пород, залегающих в интервалах глубин, определяемых параметрами измерительной установки, с возможностью удаленного (ограниченного) доступа к обследуемому объекту и передачи информации через Интернет. Для обработки и интерпретации результатов площадной съемки предполагается использование системы программ ЗОНД. Изобретение предназначено для обследования различных объектов в целях выявления потенциально опасных зон и прогнозной оценки динамики развития возможных негативных процессов. Наиболее актуальными являются задачи обследования гидротехнических сооружений (плотин, дамб), а также контроля наземных и подземных объектов в районе подрабатываемых территорий. 6 ил.