Способ определения потока быстрых нейтронов - RU2655014C1

Код документа: RU2655014C1

Чертежи

Описание

Изобретение относится к области технической физики, а точнее - к области регистрации нейтронного излучения. Наиболее эффективно изобретение может быть использовано при определении потока (плотности потока) быстрых нейтронов энергией выше 0,1 МэВ камерами деления в процессе испытания изделий, приборов и организмов на радиационную стойкость в реакторах, критических сборках и электроядерных установках.

Известен прибор для измерения потока нейтронов (см., например, Делящиеся комплекты нейтронные. Техническое описание и инструкция по использованию. Технические условия 50 ПИ 2.809.040 ТУ. 1977 г. ФГУП ВНИИФТРИ. Пос. Менделеево, Московская область).

Прибор содержит набор радиаторов, содержащих различные делящиеся под воздействием нейтронов нуклиды и регистраторы продуктов деления. В качестве регистраторов используют приложенные к прибору слюдяные пластины.

Работа прибора основана на визуальном счете треков, созданных продуктами деления в регистраторе.

Недостатком является отсутствие возможности измерения потока (плотности потока) нейтронов в процессе облучения.

Известен способ определения потока (плотности потока) быстрых нейтронов, заключающийся в том, что в зону облучения помещают камеру деления КНК-2-8М с нуклидом238U, измеряют скорость деления или количество деления ядер238U в камере за время облучения и определяют поток и плотность потока нейтронов энергией выше 1,5 МэВ (см. Кошелев А.С., Довбыш Л.Е., Овчинников М.А., Пикулина Г.Н., Дроздов Ю.М., Чукляев С.В., Пепёлышев Ю.Н. Высокочувствительный детектор быстрых нейтронов КНК-2-8М. Вопросы атомной науки и техники. Серия: Физика ядерных реакторов. 2016. Вып. 4. С. 104-115).

Способ основан на измерении скорости деления нуклида238U в камере КНК-2-8М и определении потока (плотности потока) нейтронов энергией выше 1,5 МэВ - пороговой энергии деления ядер238U нейтронами.

Недостатком является отсутствие возможности определять поток быстрых нейтронов энергией выше 0,1 МэВ, так как пороговая энергия деления ядер238U значительно выше наиболее вероятной энергий спектра нейтронов.

Наиболее близким к предлагаемому техническому решению является способ определения потока (плотности потока) быстрых нейтронов, заключающийся в том, что в зону облучения помещают камеру деления КНК-2-7М, измеряют скорость деления или количество деления ядер237Np в камере за время облучения и определяют плотность потока и поток нейтронов энергией выше 0,55 МэВ (см., например, Кошелев А.С., Довбыш Л.Е., Овчинников М.А., Пикулина Г.Н., Дроздов Ю.М., Чукляев С.В. Высокочувствительный детектор быстрых нейтронов КНК-2-7М. Вопросы атомной науки и техники. Серия: Физика ядерных реакторов. 2014. Вып. 3. С. 83-93).

Способ основан на измерении скорости деления нуклида237Np в камере КНК-2-7М и определении потока нейтронов энергией выше 0,55 МэВ.

Недостатком является отсутствие возможности производить надежную оценку потока нейтронов энергией выше 0,1 МэВ по показаниям камеры КНК-2-7М в процессе испытания изделий, приборов и организмов на радиационную стойкость.

Сущность предлагаемого технического решения заключается в том, что в способе определения потока быстрых нейтронов, заключающемся в том, что в зону облучения помещают детектор, нейтроночувствительный элемент в котором содержит ядра237Np, и измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер237Np, в зону облучения дополнительно помещают детектор, нейтроночувствительный элемент в котором содержит ядра238U, измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер238U, а поток быстрых нейтронов энергией ниже пороговой энергии деления ядер237Np определяют линейной комбинацией потока нейтронов энергией выше пороговой энергии деления ядер237Np и потока нейтронов энергией выше пороговой энергии деления ядер238U. При этом аппроксимацию потока нейтронов энергией выше пороговой энергии деления ядер237Np, потока нейтронов энергией выше пороговой энергии деления ядер238U и потока нейтронов энергией ниже пороговой энергии деления ядер237Np производят линейной функцией.

Предложенное техническое решение удовлетворяет критерию изобретения «новизна» и «изобретательский уровень», несмотря на известность некоторых использованных в нем признаков, так как совокупность изложенных признаков, взятая в новой последовательности, позволяет определять поток быстрых нейтронов энергией ниже пороговой энергии деления ядер237Np за счет установленной взаимосвязи между потоком нейтронов энергией выше пороговой энергии деления ядер237Np, потоком нейтронов энергией выше пороговой энергии деления ядер238U и потоком быстрых нейтронов энергией ниже пороговой энергии деления ядер237Np в реакторах, критических сборках и в источниках нейтронов на базе реакторов, критических сборок и электроядерных установок.

Ниже изложен пример конкретного исполнения способа со ссылками на прилагаемые чертежи (Фиг. 1) и таблицы (Табл. 1-8.

Фиг. 1 изображает зависимости Fм от Епор на множестве спектров: мгновенных нейтронов деления ядер 1, в реакторах и критической сборке с активной зоной из металлического урана 2, внутри и вблизи металлической активной зоны 3, в зале реакторов с металлической активной зоной 4, в растворных реакторах апериодического действия 5, в реакторе БИГР 6, в реакторах атомных электростанций 7, в водородсодержащих замедлителях и n-γ - конверторах 8.

Табл. 1 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U мгновенными нейтронами спектра деления.

Табл. 2 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в реакторах и критических сборках из металлического урана.

Табл. 3 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U внутри и вблизи металлической активной зоны.

Табл. 4 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в зале реакторов с металлической активной зоной (AЗ).

Табл. 5 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в растворных реакторах апериодического действия.

Табл. 6 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в реакторе БИГР.

Табл. 7 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в реакторах атомных электростанций.

Табл. 8 представляет результаты вычисления коэффициентов в линейной комбинации потоков нейтронов энергией выше 0,55 МэВ и 1,5 МэВ при определении потока нейтронов энергией выше 0,1 МэВ и погрешности определения потока нейтронов энергией выше 0,1 МэВ при облучении детекторов с нуклидом237Np и с нуклидом238U в водородсодержащих замедлителях и n-γ - конверторах.

Способ осуществляют следующим образом.

1. В зону облучения помещают детекторы, нейтроночувствительный элемент в одном из которых содержит ядра237Np, нейтроночувствительный элемент в другом содержит ядра238U.

2. Облучают потоком нейтронов.

3. Измеряют поток нейтронов энергией выше пороговой энергии деления ядер237Np по показаниям детектора с237Np.

4. Измеряют поток нейтронов энергией выше пороговой энергии деления ядер238U по показаниям детектора с238U.

5. Поток быстрых нейтронов энергией ниже пороговой энергии деления ядер237Np определяют линейной комбинацией потока быстрых нейтронов энергией выше пороговой энергии деления ядер237Np и потока быстрых нейтронов энергией выше пороговой энергии деления ядер238U.

6. При этом аппроксимацию потока нейтронов энергией выше пороговой энергии деления ядер237Np, потока нейтронов энергией выше пороговой энергии деления ядер238U и потока нейтронов энергией ниже пороговой энергии деления ядер237Np производят линейной функцией.

Если представить, что потоки нейтронов F0,1, F0,55 и F1,5 энергией выше 0,1 МэВ, 0,55 МэВ и 1,5 МэВ соответственно в реакторах, критических сборках и других источниках нейтронов на базе реакторов и критических сборок описываются линейной функцией

F(Eпор)=a⋅Eпор+b,

где Епор - пороговая энергия спектра нейтронов, то коэффициенты а и b, определенные методом наименьших квадратов, связаны со значениями F0,1, F0,55 и F1,5 по формулам

a=-0,612F0,1-0,165F0,55+0,778F1,5;

b=0,773F0,1+0,452F0,55-0,225F1,5.

Значения а и b, вычисленные на множестве спектров нейтронов (см., например, Севастьянов В.Д., Кошелев А.С., Маслов Г.Н. Характеристики полей нейтронов. Источники мгновенных нейтронов деления, генераторы 14 МэВ нейтронов, исследовательские и энергетические реакторы, устройства, конвентирующие нейтронное излучение. Справочник. Под ред. В.Д. Севастьянова. - Менделеево: «ВНИИФТРИ», 2007), представлены в табл. 1-8. В тех же таблицах приведены медианные значения ам=(aminmax)/2 и bм=(bmin+bmax)/2. Здесь amin, аmax, bmin, bmax обозначают минимальные и максимальные значения а и b на выделенном множестве спектров нейтронов соответственно.

Медианное значение потока нейтронов Fм описывается линейной функцией

Fмпор)=aм⋅Епор+bм.

Графики зависимости Fм от Епор для различных наборов спектров нейтронов показаны на Фиг. 1.

На линейном участке нагрузочной характеристики значение потока нейтронов

энергией выше Епор имеет вид

.

Значение коэффициента K определяют по результатам измерения потока нейтронов

энергией выше 0,55 МэВ и потока нейтронов энергией выше 1,5 МэВ
методом наименьших квадратов по формуле

,

где

,

.

Аппроксимированный по показаниям детекторов с нуклидами237Np и238U поток нейтронов

энергией выше 0,1 МэВ вычисляют по формуле

.

Погрешность κθ отклонения значения

от F01 определяют отношением

.

Медианное значение

вычисляют по формуле

,

где

и
- минимальное и максимальное значения κθ на выделенном множестве спектров нейтронов соответственно.

Поток нейтронов

энергией выше 0,1 МэВ связывают с
и
линейной комбинацией

,

где

.

Значения

,
и коэффициентов А и В представлены в табл. 1-8. В тех же таблицах представлены результаты вычисления относительной погрешности Δ0,1 определения значения
по результатам измерения потоков нейтронов
и
. Относительную погрешность Δ0,1 вычисляют для каждого спектра нейтронов по формуле

.

Максимальная погрешность определения значения

составляет:

9% - для спектров мгновенных нейтронов деления ядер,

8% - для спектров нейтронов в реактора и критической сборке с активной зоной (AЗ) из металлического урана,

10% - для спектров нейтронов внутри и вблизи металлической AЗ,

9% - для спектров нейтронов в зале реакторов с металлической AЗ,

17% - для спектров нейтронов в растворных реакторах апериодического действия,

15% - для спектров нейтронов в реакторе БИГР,

20% - для спектров нейтронов в реакторах атомных электростанций,

20% - для спектров нейтронов в водородсодержащих замедлителях и n-γ - конверторах.

Максимальная погрешность определения значения

может быть существенно уменьшена путем уточнения набора возможных в процессе испытаний спектров нейтронов.

Реферат

Изобретение относится к области технической физики, а точнее - к области регистрации нейтронов. Способ определения потока быстрых нейтронов содержит этапы, на которых в зону облучения помещают детектор, нейтроночувствительный элемент в котором содержит ядра237Np, и измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер237Np, при этом в зону облучения дополнительно помещают детектор, нейтроночувствительный элемент в котором содержит ядра238U, измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер238U, а поток быстрых нейтронов пороговой энергией ниже пороговой энергии деления ядер237Np определяют линейной комбинацией потока нейтронов энергией выше пороговой энергии деления ядер237Np и потока быстрых нейтронов энергией выше пороговой энергии деления ядер238U. Технический результат – повышение точности определения потока нейтронов энергией выше 0,1 МэВ. 1 з.п. ф-лы, 1 ил., 8 табл.

Формула

1. Способ определения потока быстрых нейтронов, заключающийся в том, что в зону облучения помещают детектор, нейтроночувствительный элемент в котором содержит ядра237Np, и измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер237Np, отличающийся тем, что в зону облучения дополнительно помещают детектор, нейтроночувствительный элемент в котором содержит ядра238U, измеряют поток быстрых нейтронов энергией выше пороговой энергии деления ядер238U, а поток быстрых нейтронов пороговой энергией ниже пороговой энергии деления ядер237Np определяют линейной комбинацией потока нейтронов энергией выше пороговой энергии деления ядер237Np и потока быстрых нейтронов энергией выше пороговой энергии деления ядер238U.
2. Способ по п. 1, отличающийся тем, что аппроксимацию потока нейтронов энергией выше пороговой энергии деления ядер237Np, потока нейтронов энергией выше пороговой энергии деления ядер238U и потока быстрых нейтронов пороговой энергией ниже пороговой энергии деления ядер237Np производят линейной функцией.

Документы, цитированные в отчёте о поиске

Устройство и способ измерения скорости счета

Авторы

Патентообладатели

СПК: G01T3/006

Публикация: 2018-05-23

Дата подачи заявки: 2017-09-06

0
0
0
0
Невозможно загрузить содержимое всплывающей подсказки.
Поиск по товарам