Код документа: RU2666431C2
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к смешаннооксидным материалам, способам их получения, детекторам ионизирующего излучения и КТ-сканерам (для компьютерной томографии).
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Детекторы ионизирующего излучения и, в частности, твердотельные детекторы ионизирующего излучения, широко применяются, например, в КТ-сканерах. Такие твердотельные детекторы ионизирующего излучения содержат, в общих чертах, две основные сборочные единицы. Первая сборочная единица содержит флуоресцентный компонент, который обычно называют сцинтиллятором или люминофором, который поглощает излучение и в ответ излучает фотоны в УФ-, видимой или ИК-области спектра. Вторая сборочная единица содержит фотодетектор, который может регистрировать фотоны, излученные сцинтиллятором или люминофором, и выдает соответствующие электрические сигналы.
В отношении вышеуказанных выражений «сцинтиллятор» и «люминофор» необходимо отметить, что оба представляют собой взаимозаменяемые понятия, и должны пониматься в пределах области изобретения как обозначающие твердотельные люминесцентные материалы, которые, в ответ на возбуждение ионизирующим излучением, таким как рентгеновские лучи, β- или γ-излучение, излучают фотоны со значительно более низкой энергией.
Выражение «ионизирующее излучение» в пределах области изобретения относится к электромагнитному излучению, имеющему более высокую энергию, чем ультрафиолетовое излучение.
Детекторы ионизирующего излучения находят широкое применение в системах регистрации и формирования изображений на основе рентгеновского излучения. Одним из главных вариантов применения таких детекторов и сцинтилляторов в медицине являются КТ-сканеры.
В частности, для их применения в КТ-сканерах предпочтительно, если эти сцинтилляторы демонстрируют высокий световой выход, так что КТ-сканер может быть запущен при как можно меньшей дозе облучения для пациента. Кроме того, сцинтилляторы, используемые в современных КТ-сканерах, должны обладать как можно более низким послесвечением, поскольку в противном случае процесс сканирования нужно замедлять (например, снижением частоты вращения), чтобы снизить влияние послесвечения на последующее формирование изображения, что неблагоприятно действует на скорость исследования.
Наконец, также желательно, чтобы сцинтилляторы были как можно более прозрачными для видимого света, поскольку в противном случае происходит рассеяние фотонов, полученных при взаимодействии между ионизирующим излучением и сцинтиллятором, которое приводит к значительному фоновому шуму во время процесса формирования изображения вследствие оптического поглощения сцинтилляционного света в сцинтилляторе.
Два материала, которые в настоящее время обычно используют в качестве сцинтилляторов для КТ-сканеров, представляют собой сцинтилляционные материалы на основе Gd2O2S, легированного празеодимом (Pr) (GOS, оксисульфид гадолиния) и (Y,Gd)2O3, легированного европием (Eu). В то время как эти два материала уже дают приемлемые результаты, было показано, что GOS вследствие того обстоятельства, что он непрозрачен для видимого света, а лишь полупрозрачен, показывает довольно высокое рассеяние, приводящее к нежелательному существенному шуму, тогда как системы на основе (Y,Gd)2O3:Eu демонстрируют значительное послесвечение, что могло бы быть усовершенствовано в следующем поколении КТ-сканеров при замене этого сцинтиллятора.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Одна цель настоящего изобретения состоит в обеспечении смешаннооксидного материала, способа его получения, сцинтиллятора, детектора ионизирующего излучения и КТ-сканера, причем сцинтиллятор демонстрирует высокий световой выход, очень низкое послесвечение и высокую прозрачность.
В первом аспекте настоящего изобретения представлен смешаннооксидный материал, имеющий формулу (YwTbx)3Al5-yGayO12:Cez, в которой 0,01 ≤ w ≤ 0,99, 0,01 ≤ x ≤ 0,99, 0 ≤ y ≤ 3,5 и 0,001 ≤ z ≤ 0,10 и в которой w + x + 3×z = 1, причем смешаннооксидный материал легирован по меньшей мере 10 млн-1 ванадия (V), предпочтительно по меньшей мере 25 млн-1 V.
В дополнительном аспекте настоящего изобретения представлен способ получения оксидного материала, который описан выше, содержащий следующие этапы: а) обеспечение Y2O3, CeO2, Tb4O7, Al2O3 и Ga2O3 в пропорциях, пригодных для получения требуемого смешанного оксида, b) пропитывание одного или нескольких из твердых веществ по этапу а) источником ванадия (V) в требуемом количестве, с) объединение и измельчение твердых веществ по этапу а) и этапу b) в присутствии подходящего диспергатора с получением суспензии, d) высушивание суспензии по этапу с) с получением смешанного порошка и е) спекание смешанного порошка по этапу d) при температуре по меньшей мере 1400°С в течение по меньшей мере 1 ч.
В дополнительном аспекте настоящего изобретения представлен сцинтиллятор, который содержит вышеупомянутый смешаннооксидный материал.
В дополнительном аспекте настоящего изобретения представлен детектор ионизирующего излучения, который содержит вышеупомянутый смешаннооксидный материал или вышеуказанный сцинтиллятор в сочетании с по меньшей мере одним фотодетектором.
В дополнительном аспекте настоящего изобретения представлен КТ-сканер, который содержит по меньшей мере один детектор, как описанный выше.
Материалы на основе (YWTbx)3Al5-yGayO12:Cez с некоторых пор были известны как способные взаимодействовать с ионизирующим излучением и, в результате, испускать фотоны, т.е. иметь сцинтилляционные свойства. Однако известные до настоящего времени материалы демонстрируют послесвечение, которое является настолько сильным, что они считались непригодными для современных КТ-сканеров. Теперь же было обнаружено, что при легировании вышеуказанных смешаннооксидных материалов мельчайшими количествами ванадия послесвечение может быть значительно снижено без слишком существенного ущерба величинам светового выхода, и поэтому обеспечено создание сцинтилляционного материала, который пригоден для применения в современных КТ-сканерах.
В варианте осуществления смешаннооксидный материал легирован ванадием (V) от 10 до 250 млн-1, предпочтительно от 25 до 200 млн-1 V.
Было показано, что добавление ванадия к смешаннооксидному материалу в вышеуказанных диапазонах количества приводит к хорошему балансу между улучшениями характеристик послесвечения без значительных потерь светового выхода.
В другом варианте осуществления смешаннооксидного материала 0,1 ≤ w ≤ 0,9, предпочтительно 0,2 ≤ w ≤ 0,8, более предпочтительно 0,3 ≤ w ≤ 0,6 и еще более предпочтительно 0,35 ≤ w ≤ 0,5.
В другом варианте осуществления смешаннооксидного материала 0,1 ≤ x ≤ 0,9, предпочтительно 0,2 ≤ x ≤ 0,8, более предпочтительно 0,4 ≤ x ≤ 0,7 и еще более предпочтительно 0,5 ≤ x ≤ 0,65.
В другом варианте осуществления смешаннооксидного материала 1 ≤ y ≤ 3,5, предпочтительно 2 ≤ y ≤ 3,5 и более предпочтительно 2,5 ≤ y ≤ 3,5.
В еще одном дополнительном варианте осуществления смешаннооксидного материала 0,005 ≤ z ≤ 0,05, предпочтительно 0,005 ≤ z ≤ 0,02 и более предпочтительно z = 0,01.
В дополнительном варианте осуществления смешаннооксидный материал имеет формулу (Y0,395Tb0,595)3Al5O12:Ce0,01 и легирован по меньшей мере 10 млн-1 V, предпочтительно от 10 до 250 млн-1 V и, в частности, от 25 до 200 млн-1 V.
Было показано, что смешаннооксидные материалы в вышеуказанных диапазонах состава приводят к особенно эффективным сцинтилляционным материалам, имеющим высокий световой выход и низкое послесвечение.
В дополнительном варианте осуществления смешаннооксидный материал представляет собой монокристаллический или поликристаллический материал.
В варианте осуществления вышеуказанного способа на этапе с) добавляют флюс при объединении твердых веществ по этапу b) из этапа a).
При добавлении флюса на этапе с) может быть улучшена диффузия различных ионов во время спекания по этапу d), приводя к материалу более высокого качества при более низких температурах спекания.
В дополнительном варианте осуществления детектор дополнительно содержит второй смешаннооксидный материал или сцинтиллятор, причем второй смешаннооксидный материал или второй сцинтиллятор имеет более высокую плотность, чем вышеописанный смешаннооксидный материал или сцинтиллятор.
Благодаря комбинации двух различных сцинтилляционных материалов, имеющих различную плотность, может быть зарегистрировано рентгеновское излучение с различными уровнями энергии, причем материал с более низкой плотностью, как правило, регистрирует рентгеновское излучение с более низкой энергией, а материал с более высокой плотностью, как правило, регистрирует рентгеновское излучение с более высокой энергией. При создании детекторов, которые содержат два различных сцинтиллятора или сцинтилляционных материала, может быть создан детектор, который регистрирует рентгеновское излучение двух различных видов, что, например, в КТ-сканерах дает больше информации об обследуемом организме или части тела.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты изобретения будут очевидны из и разъяснены со ссылкой на описанные здесь далее варианты осуществления и примеры. На нижеследующих чертежах:
Фиг.1 показывает схематическое изображение КТ-сканера согласно настоящему изобретению,
Фиг.2 показывает схематическое изображение первого варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению,
Фиг.3 показывает схематическое изображение второго варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению, и
Фиг.4 показывает схематическое изображение третьего варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
ПРИМЕРЫ
Примеры 1-4
Отвешивали стехиометрические количества Y2O3 (фирмы Rhodia), CeO2 (Neo Materials), Tb4O7 (Guangdong и Neo Materials), Al2O3 (Baikowski) в пропорциях для создания смешаннооксидных материалов, имеющих формулу (Y0,395Tb0,595)3Al5O12:Ce0,01. Чтобы легировать эти материалы ванадием (V) соответственно на уровне 25 млн-1, 50 млн-1, 100 млн-1 и 200 млн-1, растворяли в этаноле соответствующее количество NH4VO3, смешивали с Al2O3, осаждали и высушивали на роторном испарителе. Затем полученный этим путем модифицированный Al2O3 применяли в твердофазном синтезе требуемых смешанных оксидов. Твердые исходные материалы смешивали и измельчали в гептане в агатовых сосудах. После процесса смешивания образцы высушивали в трубчатой печи для удаления жидкости для смешивания, и образцы спекали в горизонтальной трубчатой печи (Entech серии 01820) при 1550°C в алюминиевом тигле в течение 4 часов в потоке H2/N2, чтобы восстановить Ce4+ до Ce3+, а Tb4+ до Tb3+.
Полученные образцы испытывали на фотолюминесценцию, при этом фотолюминесцентные эмиссионные спектры регистрировали при комнатной температуре с использованием ксеноновой лампы со спектрометром FLSP920 фирмы Edinburgh Instruments, оснащенным двойными монохроматорами для улучшения разрешения и снижения рассеянного света. Измерения послесвечения выполняли с использованием возбуждения рентгеновским излучением и фотодиода. Световой выход измеряли определением площади под кривой эмиссии и выражали в виде процентного выхода по сравнению со Сравнительным Примером 1 в каждой из таблиц.
Результаты измерений по сравнению с (Y0,395Tb0,595)3Al5O12:Ce0,01 без ванадия показаны ниже в Таблицах 1 и 2.
Сравнительные Примеры 1-4
В качестве сравнительных примеров приготавливали составы (Y0,395Tb0,595)3Al5O12:Ce0,01, легированные Ti, Cr и Mn, а также (Y0,395Tb0,595)3Al5O12:Ce0,01 без добавления какой-либо легирующей примеси.
Синтез по Сравнительным Примерам проводили аналогично синтезу по Примерам 1-4, причем NH4VO3 не применяли или заменяли н-бутоксидом титана, Cr(NO3)3∙9H2O и Μn(ΝO3)2∙4Η2O соответственно. Для всех Сравнительных Примеров, содержащих легирующую примесь, использовали уровень легирующей примеси 50 млн-1.
Анализ материалов, полученных согласно Сравнительным Примерам 1-4, проводили в соответствии с условиями, описанными выше для Примеров 1-4, и результаты показаны ниже в Таблицах 3 и 4.
Данные из Примеров и Сравнительных Примеров ясно показывают, что добавление ванадия к смешаннооксидному материалу (Y0,395Tb0,595)3Al5O12:Ce0,01 значительно снижает послесвечение без чрезмерного влияния на световой выход. Кроме того, Сравнительные Примеры показывают, что это представляется очень специфичным эффектом для ванадия, так как родственные металлы d-группы, такие как титан, хром или марганец, такого эффекта не проявляют.
На Фиг.1 КТ-сканер в целом обозначен ссылочной позицией 10. КТ-сканер 10 содержит вращающуюся гентри 12, на которой на противоположных сторонах размещены источник 14 рентгеновского излучения и детекторная матрица 16. Детекторная матрица 16 состоит из ряда отдельных детекторов рентгеновского излучения, один из которых с целью примера обозначен здесь ссылочной позицией 18. Вращающуюся гентри 12 размещают таким образом, что источник 14 рентгеновского излучения и детекторная матрица 16 находятся на противоположных сторонах зоны 20 исследования, в которую помещен пациент 22. При использовании источник рентгеновского излучения излучает клиновидный, конусообразный или иным образом сформированный рентгеновский пучок, направленный в зону 20 исследования, в данном случае в направлении пациента 22. Пациент 22 может линейно перемещаться в направлении «z» (перпендикулярно плоскости чертежа), тогда как источник 14 рентгеновского излучения и, соответственно, детекторная матрица 16 вращаются вокруг оси «z». Как правило, вращающаяся гентри 12 поворачивается одновременно с линейным продвижением пациента 22, приводя в целом к спиральной траектории источника 14 рентгеновского излучения и, соответственно, детекторной матрицы 16 вокруг зоны 20 исследования. Однако также могут быть применены иные режимы формирования изображений, такие как режим одно- или многослойного формирования изображений, в котором гентри вращается, по мере того как опора для объекта остается неподвижной, с получением перемещения источника 14 рентгеновского излучения и, соответственно, детекторной матрицы 16 в целом по круговому направлению, вокруг которого улавливается аксиальное изображение.
Как можно видеть на рисунке, детекторная матрица 16 размещена на гентри 12 на противоположной источнику 14 рентгеновского излучения стороне, так что при использовании рентгеновские лучи, излучаемые источником 14 рентгеновского излучения, проходят, например, через пациента 22 и затем регистрируются детекторной матрицей 16. Как правило, детекторная матрица 16 содержит большое число детекторов 18, посредством чего детекторная матрица 16 может представлять собой выстроенные в одну линию детекторы 18 или же двумерную матрицу из детекторов 18. Более подробное разъяснение функционирования детекторов 18 внутри детекторных матриц 16 приведено ниже в отношении разнообразных вариантов осуществления детекторов, показанных на Фигурах 2-4.
На Фиг.2 детектор ионизирующего излучения согласно первому варианту осуществления в целом обозначен ссылочной позицией 30. Детектор 30 содержит две сборочные единицы, а именно, сцинтиллятор 32 и фотодетектор 34. Фотодетектор 34 содержит фотодиод 36, который размещен так, что активная область фотодиода 36 обращена к сцинтиллятору 32.
При использовании детектор размещают таким образом, что сцинтиллятор 32 ориентирован в сторону источника потенциального источника регистрируемого излучения. При этом сцинтиллятор 32 состоит, например, из материала, описанного выше в Примере 1. Если теперь на сцинтиллятор 32 падает ионизирующее излучение, например, рентгеновские лучи, сцинтиллятор 32 взаимодействует с этими рентгеновскими лучами и в ответ испускает один или многочисленные фотоны, которые излучаются из сцинтиллятора 32 и могут быть зарегистрированы фотодиодом 34, генерирующим электрический сигнал, указывающий на наличие рентгеновского излучения. Чтобы повысить выход фотонов, регистрируемых диодом 34, сцинтиллятор 32 может быть покрыт с одной или нескольких не обращенных к фотодетектору сторон материалом, отражающим излучаемые фотоны.
На Фиг.3 детектор ионизирующего излучения согласно второму варианту осуществления в целом обозначен ссылочной позицией 40. И в этом случае этот детектор 40 содержит два конструкционных элемента, а именно, сцинтиллятор 42 и фотодетектор 44. В отличие от варианта осуществления по Фиг.1, в этом случае сцинтиллятор 42 состоит из двух различных сцинтилляционных материалов, первого сцинтилляционного материала 46 и второго сцинтилляционного материала 48. Первый сцинтилляционный материал 46 в данном случае представляет собой материал из вышеупомянутого Примера 2, а второй сцинтилляционный материал 48 представляет собой при этом сцинтилляционный материал, имеющий более высокую плотность, чем первый сцинтилляционный материал 46. В данном случае второй сцинтилляционный материал 48 представляет собой Gd2O2S, легированный празеодимом (Pr).
Соответственно первому сцинтилляционному материалу 46 и второму сцинтилляционному материалу 48, фотодетектор 42 содержит два фотодиода, первый фотодиод 50 и второй фотодиод 52. При использовании рентгеновские лучи с различными энергиями падают на детектор 40 сверху, то есть в направлении первого сцинтилляционного материала 46. Вследствие своей более низкой плотности первый сцинтилляционный материал 46 поглощает рентгеновское излучение более низкой энергии и в ответ на него излучает фотоны с первой частотой. После прохождения через первый сцинтилляционный материал 46 рентгеновские лучи попадают на второй сцинтилляционный материал 48, в результате чего при взаимодействии со вторым сцинтилляционным материалом 48 излучаются фотоны со второй длиной волны.
Первый фотодиод 50 теперь снабжен первым фильтром 54, который отфильтровывает фотоны со второй длиной волны, обеспечивая то, что только фотоны с первой длиной волны, то есть фотоны, сгенерированные первым сцинтилляционным материалом 46, регистрируются первым фотодиодом 50.
Соответственно, второй фотодиод 52 снабжен вторым фильтром 56, который задерживает фотоны с первой длиной волны, обеспечивая то, что только фотоны со второй длиной волны, то есть фотоны, сгенерированные вторым сцинтилляционным материалом 48, достигают второго фотодиода 52 и регистрируются им.
В результате вышеуказанной схемы можно с помощью детектора 40 регистрировать и дифференцировать рентгеновское излучение с двумя различными уровнями энергии и формировать соответствующие сигналы, увеличивая количество информации, доступной при КТ-сканировании.
На Фиг.4 детектор ионизирующего излучения согласно третьему варианту осуществления в целом обозначен ссылочной позицией 60. Детектор 60 ионизирующего излучения по функционированию подобен детектору 40 по Фиг.3, но имеет иную конструкцию.
И в этом случае детектор 60 состоит из сцинтиллятора 62 и фотодетектора 64. В этом случае сцинтиллятор 62 опять состоит из первого сцинтилляционного материала 66 и второго сцинтилляционного материала 68. При этом первый сцинтилляционный материал 66 представляет собой, например, материал по Примеру 3, тогда как второй сцинтилляционный материал 68 опять представляет собой Gd2O2S, легированный празеодимом (Pr), то есть материал более высокой плотности, чем первый сцинтилляционный материал 66. В отличие от варианта осуществления по Фиг.3, на Фиг.4 фотодетектор 64 размещен не под сцинтиллятором 62, а сбоку от него, тем самым первый фотодиод 70 расположен на стороне первого сцинтилляционного материала 66, а второй фотодиод 72 размещен на стороне второго сцинтилляционного материала 68, если смотреть в направлении поступления регистрируемого ионизирующего излучения, как указано стрелкой 74.
На тех сторонах, которые не обращены к первому фотодиоду 70 и второму фотодиоду 72 соответственно оба сцинтилляционных материала 66 и 68 обеспечены покрытием, которое является отражающим для фотонов в диапазоне длин волн, излучаемых первым и вторым сцинтилляционным материалом 66 и 68 соответственно, будучи тем не менее прозрачным для ионизирующего излучения.
При использовании, ионизирующее излучение проходит в направлении, обозначенном стрелкой 74, в сторону первого сцинтилляционного материала 66, причем вследствие его более низкой плотности часть ионизирующего излучения с более низкой энергией взаимодействует с первым сцинтилляционным материалом 66 и возбуждает излучение одного или нескольких фотонов. Благодаря отражающему покрытию с наружной стороны первого сцинтилляционного материала 66, фотоны могут выходить из первого сцинтилляционного материала 66 только в сторону первого фотодиода 70 и регистрируются им. После прохождения через первый сцинтилляционный материал 66 ионизирующее излучение поступает во второй сцинтилляционный материал 68, вследствие чего, благодаря тому обстоятельству, что плотность второго сцинтилляционного материала 68 выше, чем первого сцинтилляционного материала 66, поглощается излучение с более высокой энергией, и в результате этого генерируется второй набор фотонов. И в этом случае, благодаря тому обстоятельству, что второй сцинтилляционный материал 68 покрыт отражающим материалом на тех сторонах, которые не обращены ко второму фотодиоду, фотоны могут выходить из второго сцинтилляционного материала 68 только в сторону второго фотодиода 72 и регистрируются им.
Опять, ввиду того обстоятельства, что каждый сцинтилляционный материал взаимодействует с излучением конкретного уровня энергии и в ответ излучает фотоны, которые направлены к конкретным фотодиодам и регистрируются ими, детектором ионизирующего излучения могут быть зарегистрированы различные рентгеновские лучи, создавая больше информации, например, об обследуемом теле в КТ-сканере.
Хотя изобретение было проиллюстрировано и подробно описано на чертежах и вышеизложенном описании, такие иллюстрация и описание должны рассматриваться как иллюстративные или примерные, но не ограничивающие; изобретение не ограничивается раскрытыми вариантами осуществления. Другие вариации раскрытых вариантов осуществления могут быть поняты и реализованы специалистами в этой области техники при практической реализации заявленного изобретения, из изучения чертежей, раскрытия и приложенной формулы изобретения.
В формуле изобретения слово «содержащий» не исключает других элементов или этапов, а единственное число не исключает множества. Единственный элемент или другой блок могут выполнять функции нескольких элементов, перечисленных в формуле изобретения. Тот факт, что определенные меры перечислены во взаимно различных зависимых пунктах формулы изобретения, не означает, что комбинация этих мер не может быть использована с выгодой.
Любые ссылочные обозначения в формуле изобретения не должны истолковываться как ограничивающие объем.
Изобретение может быть использовано в детекторах ионизирующего излучения и КТ-сканерах. Сначала смешивают YO, CeO, TbO, AlOи GaO, пропитывают один из них или несколько источником V. Затем диспергируют с получением суспензии, которую высушивают с получением смешанного порошка. Полученный порошок спекают при температуре не менее 1400 °С в течение не менее 1 ч. Сцинтиллятор содержит монокристаллический или поликристаллический смешаннооксидный материал с формулой (YTb)AlGaO:Ce, где 0,01 ≤ w ≤ 0,99, 0,01 ≤ x ≤ 0,99, 0 ≤ y ≤ 3,5 и 0,001 ≤ z ≤ 0,10; w + x + 3×z = 1, причем смешаннооксидный материал легирован по меньшей мере 10 млнV. Полученный материал характеризуется повышенным световым выходом и прозрачностью для видимого света, а также сниженным послесвечением. 4 н. и 8 з.п. ф-лы, 4 ил., 4 табл., 4 пр.