Код документа: RU2617110C1
Изобретение относится к области радиолокации и может быть использовано в радиолокационной станции (РЛС) для сопровождения групповой воздушной цели (ГВЦ) из класса «самолеты с турбореактивными двигателями (ТРД)» при воздействии уводящих по скорости помех.
Известен способ сопровождения групповой воздушной цели, заключающийся в отслеживании ее центроида (среднего кинематического поведения группы) и боковых траекторий, распознавании на основе сравнения переменных состояния центральной и боковых траекторий отделяющихся целей от группы [1].
Недостатком данного способа сопровождения групповой воздушной цели является низкая достоверность оценок доплеровских частотах, обусловленных скоростью сближения носителя РЛС с каждым самолетом из состава группы при воздействии уводящих по скорости помех.
Известен способ сопровождения групповой воздушной цели из класса «самолеты с турбореактивными двигателями», заключающийся в том, что сигнал, отраженный от нее, на промежуточной частоте с выхода приемника РЛС подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планеров самолетов группы и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) их силовых установок, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который обусловлен его отражением от планера одного из самолетов из их группы, слева и справа в полосе частот ±ΔF, где ΔF - априорно заданная полоса доплеровских частот, занимаемая спектральными составляющими, обусловленными отражениями сигнала от планеров самолетов группы, относительно частоты спектральной составляющей спектра сигнала, имеющей максимальную амплитуду, определяются частоты локальных максимумов спектра сигнала и их количество, которые превысили установленный порог, по выявленным отсчетам доплеровских частот локальных максимумов, находящимся в полосе частот ±ΔF относительно спектральной составляющей, имеющей максимальную амплитуду, вычисляется отсчет доплеровской частоты центроида, как среднее значение отсчетов доплеровских частот локальных максимумов, который поступает на вход оптимального фильтра сопровождения центроида групповой воздушной цели, работающего в соответствии с процедурой оптимальной многомерной линейной дискретной калмановской фильтрации, описываемой выражениями
где
K - общее количество тактов работы фильтра;
Р-(k+1) и P(k+1) - ковариационные матрицы ошибок экстраполяции и фильтрации соответственно;
Ф(k) - переходная матрица состояния;
Q(k+1) и R(k+1) - ковариационные матрицы шумов возбуждения и наблюдения соответственно;
S(k+1) - матрица весовых коэффициентов;
I - единичная матрица;
Н(k) - матрица наблюдения;
Y(k) - вектор наблюдения отсчетов доплеровских частот;
Z(k+1) - матрица невязок измерения;
Ψ(k+1) - матрица априорных ошибок фильтрации;
"-1" - операция вычисления обратной матрицы;
"т" - операция транспонирования матрицы, определяются отсчеты доплеровских частот локальных максимумов, имеющих наибольшие амплитуды, количество которых равно количеству локальных максимумов, расположенных в полосе доплеровских частот ±ΔF относительно спектральной составляющей с максимальной амплитудой, соответствующей отражению сигнала от планера одного из самолетов группы, и находящихся справа на частотах, превышающих значение ΔF, относительно частоты спектральной составляющей, имеющей максимальную амплитуду, которые поступают на вход оптимального фильтра сопровождения первых компрессорных составляющих спектра сигнала, обусловленных его отражениями от лопаток рабочего колеса первой ступени КНД двигателя каждого j-го, где
где
FPi - максимальная частота вращения ротора КНД силовой установки i-го типа самолета;
n1 и n2 - соответственно минимальное и максимальное значение величины относительных оборотов вращения ротора силовой установки, одинаковые для всех типов самолетов группы;
Nлi - количество лопаток рабочего колеса первой ступени КНД, вычисляется за К тактов работы обоих оптимальных фильтров вероятности Pqj попадания величин
Недостатком данного способа сопровождения групповой воздушной цели является низкая достоверность оценок доплеровских частот, обусловленных скоростью сближения носителя РЛС с каждым j-м,
Цель изобретения - повышение достоверности оценок доплеровских частот, обусловленных скоростью сближения носителя РЛС с каждым самолетом группы при воздействии уводящих по скорости помех.
Указанная цель достигается тем, что в способе сопровождения в РЛС групповой воздушной цели из класса «самолеты с турбореактивными двигателями» заключающемся в том, что сигнал, отраженный от ГВЦ, на промежуточной частоте с выхода приемника РЛС подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планеров самолетов группы и вращающихся лопаток рабочего колеса КНД их силовых установок, определяется отсчет доплеровской частоты, соответствующей максимальной амплитуде спектральной составляющей спектра сигнала, который обусловлен его отражением от планера одного из самолетов группы, определяются слева и справа в полосе частот ±ΔF, где ΔF - априорно заданная полоса доплеровских частот, занимаемая спектральными составляющими, обусловленными отражениями сигнала от планеров самолетов группы, относительно частоты спектральной составляющей спектра сигнала, имеющей максимальную амплитуду, отсчеты доплеровских частот локальных максимумов спектра сигнала и их количество, которые превысили установленный порог, определяются отсчеты доплеровских частот локальных максимумов, имеющих наибольшие амплитуды, количество которых равно количеству локальных максимумов, расположенных в полосе доплеровских частот ±ΔF относительно спектральной составляющей с максимальной амплитудой, соответствующей отражению сигнала от планера одного из самолетов группы, и находящихся справа на частотах, превышающих значение ΔF, относительно частоты спектральной составляющей, имеющей максимальную амплитуду, которые обусловлены отражениями сигнала от лопаток рабочего колеса первых ступеней компрессора низкого давления двигателей самолетов группы, дополнительно вычисляется процедура оптимальной многомерной линейной дискретной калмановской фильтрации в соответствии с выражениями (1)-(6) при сопровождении по доплеровской частоте каждой j-й,
где
только на основе переходной матрицы состояния
Новыми признаками, обладающими существенными отличиями, являются.
1. Идентификация отсутствия или воздействия уводящих по скорости помех на основе анализа совокупности модулей производных оценок разностей величин
2. Формирование достоверных оценок доплеровских частот
Данные признаки обладают существенными отличиями, так как в известных способах не обнаружены.
Применение новых признаков позволит идентифицировать воздействие или отсутствие уводящих по скорости помех при сопровождении групповой воздушной цели в РЛС и, в зависимости от результата идентификации, сформировать достоверные оценки доплеровских частот, обусловленные скоростью сближения носителя РЛС с каждым самолетом группы при воздействии уводящих по скорости помех.
На рисунке 1 приведена блок-схема, поясняющая предлагаемый способ сопровождения в РЛС групповой воздушной цели из класса «самолеты с турбореактивными двигателями» при воздействии уводящих по скорости помех, на рисунке 2 (а, б, в, г, д) - эпюры, поясняющие предлагаемый способ на примере сопровождения групповой воздушной цели, состоящей их двух самолетов, и воздействии одной уводящей по скорости помехи.
Способ сопровождения в РЛС групповой воздушной цели из класса «самолеты с турбореактивными двигателями» при воздействии уводящих по скорости помех осуществляется следующим образом.
На вход блока 1 БПФ (рисунок 1) на промежуточной частоте с выхода приемника РЛС поступает сигнал S(t) (рисунок 2а), отраженный от ГВЦ, который подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр S(f) (рисунок 2б), составляющие которого обусловлены отражениями сигнала от планеров самолетов группы и вращающихся лопаток рабочего колеса КНД их силовых установок.
В формирователе 2 (рисунок 1) отсчетов доплеровских частот планерных составляющих спектра сигнала, во-первых, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который обусловлен его отражением от планера одного из самолетов из их группы (рисунок 2б, спектральная составляющая №2), во-вторых, слева и справа в полосе частот ±ΔF относительно частоты спектральной составляющей спектра сигнала, имеющей максимальную амплитуду, определяются частоты локальных максимумов спектра сигнала и их количество (рисунок 2б, Nлм=2), которые превысили установленный порог.
В формирователе 3 (рисунок 1) отсчета доплеровской частоты центроида первых компрессорных составляющих спектра сигнала, во-первых, определяются отсчеты доплеровских частот локальных максимумов, имеющие наибольшие амплитуды, количество которых равно количеству локальных максимумов, расположенных в полосе доплеровских частот ±ΔF относительно спектральной составляющей с максимальной амплитудой, соответствующей отражению сигнала от планера одного из самолетов группы, и находящихся справа на частотах, превышающих значение ΔF, относительно частоты спектральной составляющей, имеющей максимальную амплитуду, которые обусловлены отражениями сигнала от лопаток рабочих колеса первых ступеней КНД самолетов группы (рисунок 2б, локальные максимумы №1 и 2, находятся справа вне полосы частот ±ΔF), во-вторых, по выявленным отсчетам доплеровских частот локальных максимумов, находящихся справа на частотах, превышающих значение ΔF и соответствующих отражениями сигнала от лопаток рабочих колеса первых ступеней КНД двигателей самолетов группы, вычисляется отсчет доплеровской частоты центроида, как среднее значение отсчетов доплеровских частот локальных максимумов.
В результате на выходе формирователя 2 доплеровских отсчетов (рисунок 1) формируется вектор наблюдения Y(k) отсчетов доплеровских частот, обусловленных отражениями сигнала от планеров самолетов группы, которые поступают на вход оптимального фильтра 4 сопровождения групповой воздушной цели, работающего в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации (1)-(6), а на выходе формирователя 3 отсчета доплеровской частоты центроида первых компрессорных составляющих спектра сигнала - вектор наблюдения Yц(k) отсчета центроида доплеровской частоты, который поступает на вход оптимального фильтра 5 сопровождения центроида первых компрессорных составляющей спектра сигнала, работающего аналогично, как и оптимальный фильтр 4, в соответствии с процедурой (1)-(6). При этом, размерность матриц, входящих в процедуру (1)-(6) для оптимального фильтра 4, определяется количеством локальных максимумов Nлм спектральных составляющих сигнала, находящихся в полосе частот ±ΔF.
На каждом k-ом такте работы обоих оптимальных фильтров 4 и 5 сопровождения в блоке 6 вычитания, состоящим из отдельных устройств вычитания, вычисляются оценки разностей
В блоке 7 дифференцирования, состоящим их отдельных устройств дифференцирования, вычисляются модули производных оценок разностей
При выполнении условия
При не выполнении условия
В результате на вход ОЗУ 11 продолжают поступать оценки доплеровских частот
где
Δt - интервал дискретизации;
z=1, 2, ..., p.
mF - тренд (изменяющееся в дискретном времени математическое ожидание) оценки доплеровской частоты.
Вычисленная в соответствии с выражением 9 автокорреляционная функция для каждой оценки
где
σv, τv и fv - соответственно среднеквадратическое отклонение, время корреляции и собственная частота, которые являются параметрами АКФ.
Численные значения параметров АКФ (σv, τv, fv) каждой оценки
При этом, в вычислителе 13, во-первых, на первом шаге рекуррентной процедуры вычисления оценок принимаются конечные значения оценок
Во-вторых, матрицы
где
β=(2πfv)2 - квадрат частоты fv собственных колебаний АКФ, которые обусловлены скоростными флюктуациями полета каждого самолета группы и носителя РЛС;
n(t) - формирующий белый гауссовский шум с нулевыми средними значениями и единичными интенсивностями;
Vo - постоянная составляющая скорости полета каждого самолета группы;
Согласно модели (12), матрица оценок
Матрица наблюдения H(k+1), размерностью 1×3, будет иметь следующие, отличные от нуля, элементы: h11=h13=1.
В результате при воздействии уводящей по скорости помехи (рисунок 2в, временной участок [t1,t2]) на выходе вычислителя 13 будут формироваться оценки
Для оценки работоспособности предлагаемого способа было проведено его имитационное моделирование. При этом, были использованы радиолокационные сигналы, отраженные от группы из 4-х самолетов из класса «самолеты с турбореактивными двигателями», которые при проведении летно-экспериментальных исследований были зарегистрированы на промежуточной частоте с выхода линейной части приемника бортовой РЛС с фазированной антенной решеткой, построенной по импульсно-доплеровскому принципу обработки сигналов в сантиметровом диапазоне волн.
При узкополосном спектральном анализе зарегистрированных реальных радиолокационных сигналов в процедуре БПФ эквивалентная полоса пропускания его одного бина принималась равной 10 Гц.
Численные значения параметров динамических моделей, входящих в оптимальные фильтры 4 и 5, а также в вычислителе 13, принимались из примера, приведенного в [3].
В интервале времени (рисунок 2в) [t1;t2] имитировалась уводящая по доплеровской частоте помеха со скоростью 575 Гц/с.
Пороговое значение величины для всех пороговых устройств блока 8 порогов составляло ε=0,01.
В результате имитационного моделирования по реальным сигналам получены следующие обобщенные характеристики при отношениях сигнал/шум 14-24 дБ:
среднеквадратическая ошибка оценки доплеровской частоты:
без воздействия уводящей по скорости (доплеровской частоты)
помехи - 0,9-2,2 Гц;
при воздействии уводящей по скорости (доплеровской частоты)
помехи - 1,6-3,7 Гц,
что является приемлемым на практике.
Таким образом, применение предлагаемого изобретения позволит идентифицировать воздействие или отсутствие уводящих по скорости помех при сопровождении целей в РЛС и, в зависимости от результата идентификации, сформировать достоверные оценки доплеровских частот, обусловленных скоростью сближения каждого самолета группы с носителем РЛС.
Источники информации
1. Фарина А., Студер Ф. Цифровая обработка радиолокационной информации. Сопровождение целей. / Пер. с англ. - М.: Радио и связь, 1993, с. 246-248 (аналог).
2. Способ сопровождения групповой воздушной цели из класса «самолеты с турбореактивными двигателями». Патент на изобретение №2456633, 2011 (прототип).
3. Богданов А.В., Васильев О.В., Голубенко В.А., Маняшин С.М., Филонов А.А. Методика построения динамических моделей радиальных скоростей и ускорений пары воздушных целей, летящих в сомкнутом боевом порядке // Теория и системы управления, 2007 - №4 (страницы 139, 142, 145, 146 - формулы (2.1), (2.2), (3.2)-(3.5), (5.3), (5.4) и (5.11), пример п. 2, 3, 4, 7).
Изобретение относится к области радиолокации и может быть использовано в радиолокационной станции (РЛС) для сопровождения групповой воздушной цели из класса «самолеты с турбореактивными двигателями» при воздействии уводящих по скорости помех. Достигаемый технический результат - повышение достоверности оценок доплеровских частот (ДЧ), обусловленных скоростью сближения носителя РЛС с каждым самолетом группы при воздействии уводящих по скорости помех. Способ заключается в параллельном сопровождении на основе калмановской фильтрации отсчетов ДЧ, обусловленных отражениями сигнала от планеров самолетов группы и центроида отсчетов ДЧ, обусловленных отражениями сигнала от лопаток рабочего колеса компрессора низкого давления двигателей самолетов; идентификации воздействия или отсутствия уводящих по скорости помех на основе вычисления модулей производных оценок разностей между оценками ДЧ, обусловленными отражениями сигнала от планера каждого самолета группы и центроидом ДЧ, обусловленных отражениями сигнала от лопаток рабочего колеса первых ступеней компрессора низкого давления двигателей самолетов группы; сравнении модулей производных оценок разностей ДЧ с порогом; при их непревышении установленного порога, что соответствует отсутствию воздействия уводящих по скорости помех, на выходе формируются оценки ДЧ, вычисляемые в соответствии с процедурой калмановской фильтрации на основе наблюдения, в противном случае принимается решение о воздействии уводящих по скорости помех и на выходе наряду с оценками ДЧ, которые не идентифицированы как уводящие по скорости помехи, формируются оценки ДЧ, вычисляемые на основе модели взаимного перемещения носителя РЛС и того самолета группы, отраженный от которого сигнал изначально еще не был идентифицирован как уводящая по скорости помеха. 2 ил.