Код документа: RU2511405C2
УРОВЕНЬ ТЕХНИКИ
Настоящая заявка относится в целом к неинвазивному измерению различных веществ в организме, например, измерению концентрации глюкозы в организме человека, более конкретно к системам детектирования дальней инфракрасной области для анализа и определения неинвазивным способом концентрации вещества в организме.
Спектроскопические методы, использующие инфракрасное (ИК) излучение, известны в предшествующем уровне техники и широко используются для неинвазивного измерения концентрации в организме веществ, представляющих интерес. Одной областью особого интереса является использование этих методов для неинвазивного измерения концентрации глюкозы и других компонентов кровеносной системы человека.
Инфракрасный спектр включает в себя ближнюю инфракрасную (приблизительно 1-3 микрон), среднюю инфракрасную (приблизительно 3-6 микрон), дальнюю инфракрасную (приблизительно 6-15 микрон) и предельную инфракрасную (приблизительно 15-100 микрон) области. Типичные измерительные устройства для измерения уровня глюкозы и другие устройства для неинвазивного измерения компонентов крови предшествующего уровня техники работают в ближних инфракрасных областях, в которых поглощение инфракрасной энергии глюкозой и другими компонентами крови является относительно низким. Однако известно, что глюкоза и другие компоненты крови имеют выраженные и различимые спектры поглощения и в средних и в дальних инфракрасных областях.
Было обнаружено, что в системе детектирования дальнего инфракрасного спектра разрешающая способность, для обеспечения достаточной точности измерения, должна быть эквивалентна 0,01°C. При такой высокой точности излучение черного тела любого компонента системы (например, зеркал, фильтров, ограничителей поля, детектора) может вызывать помехи в измерении. Традиционное решение такой проблемы состоит в охлаждении системы до криогенной температуры (например, -180°C), и изоляции системы и ее заполнение осушенным азотом во избежание скопления влаги. Однако для потребительского продукта такое решение является непрактичным и дорогим.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение раскрывает систему дальней инфракрасной области для анализа и определения концентрации вещества в организме неинвазивным способом. Согласно одному варианту осуществления устройство для неинвазивного измерения вещества в организме включает в себя детектор для регистрации излучения, излучаемого или переизлучаемого организмом, например организмом человека. Обеспечивается и юстируется оптическая система для фокусировки ИК-излучения, излучаемого организмом, на чувствительную область детектора.
Каждый элемент системы внутри поля обзора детектора и сам детектор имеет устройство измерения температуры, такое как терморезистор, прикрепленный к нему для измерения его температуры. Для точного измерения детектором энергии, излученной организмом, система калибруется для компенсации влияния температуры каждого элемента в поле обзора детектора. При использовании нагревательного блока или блока нагревания/охлаждения отдельно для каждого элемента температура каждого элемента может изменяться для калибровки, в то время как температуры других элементов системы остаются постоянными. Этот процесс повторяется многократно при различной температуре окружающей среды и различной температуре организма для калибровки влияния каждого элемента на измерение при всевозможных условиях, соответствующих измерению.
Эта процедура повторяется для каждого элемента в поле обзора детектора, создавая справочную таблицу (LUT), представляющую вклад каждого элемента в измерение, производимое детектором. Погрешности, связанные с температурой каждого из элементов системы, учитываются в каждом измерении, таким образом, позволяя получить высокий уровень точности системы.
При создании и построении LUT было установлено, что влияние температуры перегородки, используемой для ограничения поля обзора детектора, составляет 10:1 относительно показания, даваемого организмом. Сама по себе калибровка не может компенсировать такое значительное влияние.
Решение в дальней инфракрасной области заключается в том, чтобы уменьшить излучающую способность перегородки путем увеличения ее коэффициента отражения. Однако увеличение коэффициента отражения перегородки создает дополнительную проблему отражения рассеянной энергии на детектор. Была разработана сферическая перегородка с внутренней поверхностью, то есть поверхностью перегородки напротив детектора, которая является отполированной и позолоченной для более низкой излучающей способности. Конструкция перегородки исключает попадание излучения на чувствительную область детектора в результате отражения или многократного отражения.
Опорная пластинка, на которую устанавливаются детектор и перегородка, и сама перегородка имеют по существу ту же температуру, что и детектор. Опорная пластинка и наружная поверхность перегородки выполнены в виде радиационной ловушки, имеющей матовую черную поверхность, обеспечивающую коэффициент излучения около 97%.
Конструкция оптической системы создает образ чувствительной области детектора на поверхности тела для сбора ИК-излучения, излучаемого или переизлучаемого организмом. Область на поверхности тела, соответствующая образу чувствительной области детектора, является существенной, поскольку детектор усредняет ИК-излучение, излучаемое или переизлучаемое этой областью.
Согласно другому варианту осуществления настоящее оптическое устройство содержит два заменяемых оптических фильтра, первое зеркало, расположенное на первой стороне оптического фильтра, и второе зеркал, расположенное на второй стороне оптического фильтра напротив первого зеркала. Детектор расположен на второй стороне оптического фильтра. Перегородка частично окружает чувствительную поверхность детектора. Устройства измерения температуры выполнены с возможностью измерения температуры перегородки, зеркал и фильтров. Первое зеркало выполнено с возможностью принимать ИК-излучение от измеряемой поверхности тела, коллимировать ИК-излучение в пучок и отражать коллимированный ИК-пучок в направлении оптического фильтра и через него. Один из оптических фильтров выполнен с возможностью отфильтровывать часть коллимированного ИК-пучка, имеющую длины волн, выходящие за пределы выбранного диапазона, и второй оптический фильтр выполнен с возможностью отфильтровывать часть коллимированного ИК-пучка, имеющую длины волн, которые выходят за пределы выбранного диапазона. Фильтры заменяются с помощью моторизованного механизма, и каждое измерение ИК-излучения состоит из по меньшей мере одного измерения с использованием одного фильтра и второго измерения с использованием второго фильтра. Второе зеркало выполнено с возможностью приема коллимированного и отфильтрованного ИК-пучка и отражения его в направлении детектора. Перегородка выполнена с возможностью блокировать рассеянное ИК-излучение, чтобы оно не достигло чувствительной области детектора.
Затем каждое из двух измерений излучения корректируется для устранения влияния излучения элементов системы на измерение. Отношение двух измерений излучения после коррекции и нормирования для показания абсолютно черного тела коррелируется с концентрацией требуемого вещества в организме, например концентрацией глюкозы в крови человека.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Следующие чертежи, на которых подобные номера ссылочных позиций обозначают подобные элементы, образуют часть настоящего описания и включены для дополнительной демонстрации некоторых аспектов настоящего изобретения. Изобретение может быть понято лучше с помощью ссылок на один или более этих чертежей в сочетании с подробным описанием конкретных вариантов осуществления, представленных в настоящем документе.
Фиг.1 - структурная схема системы для неинвазивного измерения концентрации вещества в организме;
Фиг.2 - вид в перспективе оптического и детекторного устройств, изображенных на фиг.1, иллюстрирующий траекторию электромагнитных лучей между организмом и детектором;
Фиг.3 - вид в перспективе детектора, изображенного на фиг.1 и 2;
Фиг.4 - вид в перспективе оптического и детекторного устройств, изображенных на фиг.2, показывающий расположение различных элементов оптического и детекторного устройств устройства для измерения температуры; и
Фиг.5 и 6 - виды в разрезе детектора и перегородки оптического и детекторного устройств, представленных на фиг.2.
Эти и другие варианты осуществления настоящего изобретения будут более подробно представлены в описании. Признаки, функции и преимущества могут достигаться независимо в различных вариантах осуществления заявленного изобретения, или могут сочетаться в других вариантах осуществления.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Ниже описываются один или более иллюстративных вариантов осуществления. С целью ясности не все признаки представленного варианта обязательно описаны или показаны.
На фиг.1 представлена структурная схема системы 10 для неинвазивного измерения концентрации вещества в организме. Инфракрасное (ИК) излучение, излучаемое или отраженное от поверхности организма 11, улавливается и коллимируется оптической подсистемой и фокусируется на блоке 15 ИК-детектора. Организм 11 является источником ИК-излучения, измеряемого системой 10. Организм 11 обычно представляет собой подвергаемый исследованию участок поверхности организма, например организма человека. Оптическая подсистема 13 включает в себя по меньшей мере два заменяемых фильтра 33, 35, как представлено на фиг.2, что обеспечивает два сигнала с различным диапазоном длины волны, при этом первый включает в себя характеристическую длину волны в требуемом веществе, подвергаемом измерению, например, глюкозе, а второй представляет собой участок испускаемого излучения, не включающий в себя характеристическую длину волны в этом веществе, который используется в качестве эталонного сигнала.
Блок 15 детектора регистрирует оба сигнала и выдает выходное напряжение, пропорциональное интенсивности каждого из двух сигналов, на микропроцессор 17. Термодатчики, как представлено на фиг.4, выдают температуру различных компонентов оптической подсистемы и блока детектора и температуру окружающего воздуха на микропроцессор 17 по линиям 2, 6 и 8 и при помощи справочной таблицы (LUT) 21. В процессе калибровки температура каждого из компонентов оптической подсистемы и блока детектора изменяется, при этом температура остальных компонентов системы поддерживается постоянной для обеспечения набора параметров калибровки, которые хранятся в LUT 21.
Микропроцессор 17 использует набор заданных параметров калибровки для коррекции каждого из двух измерений излучения для устранения влияния излучения элементов системы на измерение. Отношение двух измерений излучения после коррекции и нормирования на показание абсолютно черного тела сопоставляется с концентрацией исследуемого вещества в организме, например концентрацией глюкозы в крови человека. Затем результат выводится на выходное устройство 19, например жидкокристаллический или светодиодный видеомонитор.
На фиг.2 представлен схематический вид в перспективе конфигурации оптических и детекторных компонентов системы 10, представленной на фиг.1, иллюстрирующий траекторию ИК-лучей между организмом 11 и детектором 15. Детектор 15 включает в себя детекторный элемент 23, основание 25 детектора и перегородку 27. Конфигурация оптических и детекторных компонентов выполнена таким образом, что изображение 12 чувствительной или активной области 47 детектора 15 (как представлено на фиг.3) создается в организме 11 в фокальной плоскости зеркала 31.
Область изображения 12 предпочтительно имеет диаметр приблизительно 6 мм, ИК-излучение, излучаемое от или отраженное организмом 11 на изображение 12 в пучке 41 собирается и коллимируется зеркалом 31. ИК-излучение отражается зеркалом 31 и проходит на зеркало 29 в коллимированном пучке 43 параллельных лучей через фильтр 33 или фильтр 35. Фокальная плоскость зеркала 29 расположена на поверхности чувствительной области 47 блока 15 детектора. Пучок 43, достигая зеркала 29, отражается и проходит дальше в виде пучка 45, и фокусируется в фокальной плоскости зеркала 29, падая на чувствительную область 47 блока 15 детектора.
Блок 15 детектора частично окружен перегородкой 27 на стороне, обращенной к зеркалу 29. Перегородка 27 гарантирует, что по существу только пучок 45 падает только на чувствительную область 47. Перегородка 27 также блокирует достижение чувствительной области 47 блока 15 детектора любым рассеянным излучением. Таким образом, оптическая подсистема 13 юстирована таким образом, что изображение 12 располагается на поверхности организма 11 и пучок 41 ИК-излучения падает на чувствительную область 47 блока 15 детектора посредством зеркала 31, фильтра 33 или фильтра 35 и зеркала 29.
В одном варианте осуществления зеркала 29 и 31 представляют собой неосевые параболические зеркала, предпочтительно отражающие под 90°, покрытые золотом или другим подходящим отражающим материалом. Предпочтительно зеркало 29 имеет фокусное расстояние около одного (1) дюйма, а зеркало 31 имеет фокусное расстояние около трех (3) дюймов. Для оптической подсистемы 13 могут использоваться другие надлежаще выполненные отражающие зеркала, такие как, например, эллипсоидные зеркала или сочетание эллипсоидных и гиперболических зеркал.
Фильтр 33 и фильтр 35 установлены в рамку 37, рамка 37 расположена между зеркалом 29 и зеркалом 31. Фильтры 33, 35 переключаются между положениями, улавливающими пучок 43, посредством использования подходящего приводного устройства, например электродвигателя или пневматического механизма, например, прикрепленного к рамке 37. В одном варианте осуществления двигатель 39 прикреплен к рамке 37 и помещает рамку 37 между зеркалом 29 и зеркалом 31 таким образом, что нужный фильтр 33, 35 перехватывает пучок 43. Один из фильтров, например фильтр 33, предпочтительно представляет собой узкополосный фильтр, пропускающий длины волн спектральной характеристики вещества, подлежащего измерению. Другой фильтр, например фильтр 35, предпочтительно представляет собой узкополосный фильтр, пропускающий те длины волн спектральной характеристики, которые не чувствительны к измеряемому веществу. Например, в некоторых вариантах осуществления фильтр 33 ограничивает диапазон такой областью спектра, в которой не происходит излучения измеряемого вещества (для глюкозы, например, этот диапазон будет составлять 10,5 мкм-15 мкм), а фильтр 35 имеет диапазон, характерный для излучения измеряемого вещества (для глюкозы диапазон составляет 8,5 мкм-10,5 мкм).
На фиг.3 проиллюстрирован вид в перспективе детекторного элемента 23, представленного на фиг.1 и 2. Может использоваться любой подходящий ИК-детектор, чувствительный к требуемой длине волны, представляющей интерес. Детекторный элемент 23 включает в себя микросхему, обеспечивающую ИК-чувствительный материал, образующий чувствительную область 47 детектора. Микросхема, или чувствительная область 47, помещена в футляр 51 и установлена на основу 53. Футляр 51 имеет проем соответствующего размера, образующий окошко 49 в его верхней поверхности, для обеспечения возможности достижения ИК-излучением чувствительной области 47. Окошко 49 покрыто материалом, проницаемым для представляющего интерес излучения, например кремниевым или другим подходящим материалом. Проводники 55 соединяют детекторный элемент 23 с микропроцессором 17 и другими элементами схемы. В одном варианте осуществления используется пассивный ИК-датчик, известный как термоэлектрический детектор. Термоэлектрические детекторы реагируют на ИК-мощность, излучаемую объектом в его поле обзора, посредством формирования напряжения, которое пропорционально падающей мощности. Один подходящий термоэлектрический детектор производится кампанией Dexter Research Corporation (шифр компонента ST 150). Термоэлектрический детектор, использованный в одном варианте осуществления, имеет чувствительную область 47 с размерами 1,5 мм × 1,5 мм и окошко 49 из кремния.
На фиг.4 представлен вид в перспективе оптической подсистемы 13 и блока 15 детектора, изображенного на фиг.2, иллюстрирующий подходящие положения на различных элементах оптической подсистемы и блока детектора, где могут быть размещены устройства для измерения температуры. Каждый элемент оптической подсистемы и блока детектора испускает электромагнитное излучение, включающее в себя ИК-излучение, как функцию от температуры. Для достижения разрешения, необходимого для выполнения точного измерения требуемого вещества, излучение каждого элемента в системе предпочтительно учитывается.
Каждый элемент оптической подсистемы 13 в пределах поля обзора блока 15 детектора, а также блок 15 детектора включают в себя один или более подходящих термодатчиков, установленных на подходящих участках на элементе для точного измерения температуры элемента. В одном варианте осуществления в качестве устройств измерения температуры используются терморезисторы. Терморезистор представляет собой температурно-зависимое сопротивление, обычно состоящее из полупроводникового материала. Сопротивление терморезистора обратно пропорционально температуре, то есть при повышении температуры его сопротивление снижается. Однако могут использоваться другие подходящие термодатчики, термопары, например, обычно терморезистор обеспечивает более высокое выходное напряжение.
В варианте осуществления, представленном на фиг.4, терморезистор 61 расположен с внутренней стороны блока 15 детектора для измерения температуры холодного спая, где используется термоэлектрический детектор. Терморезистор 63 измеряет температуру перегородки 27. Терморезисторы 65 и 67 измеряют температуру зеркала 29, а терморезисторы 71 и 73 измеряют температуру зеркала 31. Из-за размеров и массы зеркал для каждого зеркала используется два терморезистора. Терморезистор 69 измеряет температуру фильтров 33, 35 и блока рамки 37. Терморезистор 75 измеряет окружающую комнатную температуру. Температура каждого элемента сопоставляется с набором заданных калибровочных параметров, хранящихся в LUT 21 вместе c температурой детектора 15, температурой окружающего воздуха и температурой организма 11 для компенсации любых искажений в измерении концентрации вещества из-за температур различных элементов оптической подсистемы и блока детектора.
На фиг.5 представлен вид в разрезе блока 15 детектора и перегородки 27 оптического и детекторного устройства, изображенного на фиг.2. В одном проиллюстрированном варианте осуществления детекторный элемент 23 удерживается посредством удерживающего кольца 81 в тепловом контакте с основанием 25 детектора. Перегородка 27 прикреплена к основанию 25 детектора при помощи фиксаторов 26, обеспечивающих хороший тепловой контакт между детекторным элементом 23, кольцом 81, основанием 25 детектора и перегородкой 27. Внутренняя поверхность 83 перегородки 27 предпочтительно покрыта золотом и отполирована для создания зеркала. Внутренняя поверхность 83 перегородки 27 выполнена имеющей очень низкую излучательную способность и высокую отражающую способность. Форма внутренней поверхности 83 перегородки 27 выполнена таким образом, чтобы минимизировать или не допускать никакого отражения или многократного отражения излучения при падении на чувствительную область 47 детекторного элемента 23.
В одном варианте осуществления внутренняя поверхность 83 перегородки 27 образует сферическую поверхность, при этом центр сферы совпадает с центром чувствительной области 47 детектора, вмещающей в себя детекторный элемент 23. В участке сферы над и напротив чувствительной области 47 образован проем 95. Размеры проема 95 достаточны для обеспечения попадания пучка 45 (как представлено на фиг.2) на чувствительную область 47 и минимизирования или недопущения достижения любым рассеянным излучением чувствительной области 47 детектора. Передняя поверхность 89 детекторного элемента 23, наружная поверхность 87 удерживающего кольца 81 и открытый участок 85 основания 25 детектора внутри сферы покрыты подходящим материалом, таким как подходящее черное покрытие, например, для создания радиационной ловушки для любого рассеянного излучения. Терморезистор 63 измеряет температуру перегородки 27 для обеспечения компенсации ее излучающих влияний на измерения концентрации вещества.
На фиг.6 представлен вид в разрезе блока 15 детектора и перегородки 27 оптического и детекторного устройства, изображенного на фиг.2 согласно другому варианту осуществления. В этом варианте осуществления, как описано выше со ссылкой на фиг.2, зеркала 29 и 31 предпочтительно представляют собой отражающие под 90° неосевые параболические зеркала, покрытые золотом или другим подходящим отражающим материалом. Внутренняя поверхность 83 перегородки 27 предпочтительно образует сферическую поверхность с центром 99 сферы, смещенным относительно центра 97 чувствительной области 47 детектора. В участке сферы над и напротив чувствительной области 47 образован проем 95. Поскольку максимум распределения ИК-энергии неосевого зеркала смещен от центра, положение центра 99 проема 95 перегородки также смещено от центра 97 чувствительной области 27 детектора для обеспечения максимального сбора ИК-энергии. Размеры проема 95 достаточны для обеспечения падения пучка 45 (как представлено на фиг.2) на чувствительную область 47 детектора и минимизации или недопущения достижения чувствительной области 47 детектора любым побочным излучением.
Хотя изобретение было описано терминами некоторых вариантов осуществления, специалистам в данной области техники будут очевидны другие варианты осуществления, включая варианты осуществления, не обеспечивающие все признаки и преимущества, изложенные в настоящем документе, которые также находятся в пределах объема настоящего изобретения. Таким образом, объем изобретения определяется следующей формулой.
Раскрыт способ и устройство для неинвазивного определения концентрации вещества в организме, например глюкозы в крови человека. Устройство измеряет концентрацию вещества посредством регистрации излучения в дальней инфракрасной области, излучаемого организмом, посредством использования инфракрасного излучения регистрируемого в сочетании с набором соответствующих фильтров. Для достижения требуемой точности значение излучения, определенное детектором, корректируется с учетом излучения компонентов системы. Температура каждого компонента системы, включая температуру детектора и температуру окружающей среды, определяется с помощью температурных датчиков, прикрепленных к различным компонентам системы. Эти температуры соответствуют набору заданных калибровочных параметров для коррекции показаний детектора. 3 н. и 18 з.п. ф-лы, 6 ил.