Код документа: RU2608573C1
Предлагаемое изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей).
Известна интегрированная система опознавания [Радиолокационные системы многофункциональных самолетов. Т1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / Под ред. А.И. Канащенкова и В.И. Меркулова. – М.: Радиотехника, 2006, с. 644-650], содержащая набор (блок) информационных каналов: канал координатно-связного опознавания; канал радиолокационного опознавания; канал на основе информации, получаемой по радиолокационным изображениям; каналы радиолокационного и оптико-электронного распознавания; канал радиотехнической разведки; канал тактического опознавания. Выход каждого из информационных каналов подключен к соответствующему входу процессора обработки данных, выход которого является выходом системы.
Система работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал выделяет и оценивает соответствующие признаки. Эти признаки поступают в процессор обработки данных, который в соответствии с реализованным в нем алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
К недостаткам данной системы можно отнести то, что не используются возможности информационных каналов по выработке частных решений в различных алфавитах.
Известна также интегрированная система опознавания [Жиронкин С.Б., Аврамов А.В., Быстраков С.Г. Построение интегрированных систем опознавания на основе координатно-связного метода - Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 1997, №5, с. 71-74], которая содержит пять информационных каналов (подсистем): прямого опознавания, координатно-связного опознавания, радиолокационного распознавания, оптико-электронного распознавания и радиотехнического распознавания, а также быстродействующую цифровую вычислительную систему (БЦВС).
Система работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал в соответствии с заложенными в нем принципами формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Частные решения информационных каналов поступают в БЦВС, которая в соответствии с реализованным в ней алгоритмом выносит окончательное решение о принадлежности цели к одному из двух классов - «свой» или «чужой».
Недостатками этой системы является ограниченное число информационных каналов, а также отсутствие учета достоверности вырабатываемых ими частных решений, что снижает достоверность принятого на их основе общего решения.
По техническому решению наиболее близким к предлагаемому изобретению является интегрированное устройство опознавания воздушных целей [Жиронкин С.Б., Макарычев А.В. Интегрированное устройство опознавания воздушных целей. Патент №2452975 от 10 июня 2012 г. Опубликован 10.06.2012 г. Бюллетень №16], которое и выбрано в качестве прототипа. Устройство содержит быстродействующую цифровую вычислительную систему (БЦВС), а также следующие N-канальные блоки: блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц.
Устройство работает следующим образом. На основе поступающей информации о цели, для которой необходимо определить ее принадлежность к «своим» или «чужим» объектам, каждый информационный канал по критерию идеального наблюдателя формирует частное решение о принадлежности цели к определенному типу (классу) в своем собственном алфавите. Информационные каналы выдают не только частные решения
где
m - номер класса объектов в алфавите общих решений (m=
qt - номер типа (класса) объекта в алфавите частных решений t-го информационного канала (qt=
P(qt/m) - априорная вероятность отнесения объекта t-м информационным каналом к типу (классу) с номером qt при условии, что объект принадлежит классу с номером m в алфавите общих решений;
Р(
М - количество классов объектов в алфавите общих решений (М=2 при опознавании «Свой», «Чужой»);
N - количество информационных каналов.
Повышение достоверности опознавания на основе мягких решений происходит за счет того, что вероятности
Оптимальное по критерию Неймана-Пирсона общее решение формируется в БЦВС на основе функции правдоподобия
и решающего правила
где отношение правдоподобия l определяется выражением
а порог h выбирается по заданной вероятности неправильного опознавания «чужого» объекта (m=2) как «своего» (m*=1).
В качестве примера рассмотрим процесс формирования общего решения прототипом в составе пяти (N=5) информационных каналов при следующих исходных данных:
1) количество классов объектов в основном алфавите Μ=2;
2) алфавиты частных решений первых двух информационных каналов совпадают с алфавитом общих решений, то есть Q1=Q2=Μ=2;
3) алфавиты остальных каналов не совпадают между собой, но имеют одинаковый объем, то есть Q3=Q4=Q5=5.
Рассмотрим первый информационный канал (t=l; Q1=M=2). Пусть в этом канале сформирована следующая совокупность апостериорных вероятностей отнесения наблюдаемого объекта к типам с номерами q1=
{P(q1)}={P(q1=1); P(q1=2)}={0,7; 0,3}.
Тогда в соответствии с критерием идеального наблюдателя
и в первом канале будет принято частное решение
Матрица - столбец условных вероятностей (2) принимает вид
Допустим, что на основе информации целеуказания, полученной от внешних источников, сформирована матрица априорных вероятностей
Тогда в соответствии с (1) по правилу перемножения матриц получим
Аналогично формируются матрицы
Подставив значения
Тогда в соответствии с решающим правилом (4) при h=1 будет принято общее решение m*=2, то есть наблюдаемый объект «Чужой».
В прототипе все информационные каналы считаются симметричными, то есть вероятности Р(
Отсутствие учета указанных характеристик таких информационных каналов снижает достоверность принятого на их основе общего решения, что является серьезным недостатком прототипа.
Целью изобретения является повышение достоверности опознавания объектов (целей) путем устранения указанного недостатка.
Покажем, что учет несимметричности каналов возможен путем расчета вероятностей Р(
В соответствии с формулой (9.4.4) [Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем: Учеб. пособие для вузов. – М.: Радио и связь, 2004, с. 442] для симметричного канала справедливы формулы (2). Проверим справедливость формул (6), применив их к симметричному каналу, для которого
Тогда при i=qt; j=
Подставив (8) в (6), получим (2), что и является подтверждением справедливости соотношений (6).
Цель изобретения достигается тем, что в известное устройство (систему), содержащее N- канальный блок информационных каналов и быстродействующую цифровую вычислительную систему (БЦВС), выход которой является выходом устройства, а выход решения каждого информационного канала подключен к ее соответствующему входу, а также следующие N-канальные блоки: блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ и блок умножения матриц, выходы которого соединены с дополнительными входами БЦВС, первые входы являются входами внешних источников, а вторые входы подключены к выходам блока схем ИЛИ, первые и вторые входы которого соединены соответственно с выходами первого и второго блоков ключей, управляющие входы которых подключены соответственно к первым и вторым выходам блока сравнения, первые и вторые входы которого соединены соответственно с выходами решения и первыми дополнительными выходами блока информационных каналов, вторые дополнительные выходы которого подключены к информационным входам первого блока ключей и входам вычитаемого первого блока вычитания, входы уменьшаемого которого являются входами внешнего сигнала единичного уровня, а выходы первого и второго блоков вычитания подключены соответственно ко входам делимого и делителя блока деления, дополнительно введены четвертые дополнительные выходы блока информационных каналов, а также блок умножения, входы множителя которого соединены с выходами блока деления, входы множимого подключены к четвертым дополнительным выходам блока информационных каналов, третьи дополнительные выходы которого подключены ко входам вычитаемого второго блока вычитания, входы уменьшаемого которого объединены с аналогичными входами первого блока вычитания, а выходы блока умножения соединены с информационными входами второго блока ключей.
Сопоставительный анализ с прототипом показывает, что заявляемая система отличается тем, что содержит дополнительно введенные выходы блока информационных каналов, а также блок умножения и его дополнительные связи с другими блоками системы.
Таким образом, заявляемая система соответствует критерию изобретения «новизна».
Сравнение заявляемого решения с другими техническими решениями показывает, что вновь введенный блок известен.
Однако при его введении в указанной связи с другими блоками в заявляемую систему она проявляет новые свойства, что приводит к повышению достоверности принятого решения о государственной принадлежности объекта. Это позволяет сделать вывод о соответствии технического решения критерию «существенные отличия».
Блок-схема системы представлена на фиг.
Система содержит:
1 - блок информационных каналов (в составе N каналов), выходы решений которого подключены к соответствующим входам БЦВС 9 и первым входам блока сравнения 2. Первые, вторые и третьи дополнительные выходы блока 1 соединены соответственно со вторыми входами блока сравнения 2, со входами вычитаемого первого и второго блоков вычитания 3. Кроме того, вторые дополнительные выходы блока 1 подключены к информационным входам первого блока ключей 4, а четвертые дополнительные выходы соединены со входами множимого блока умножения 6.
2 - блок сравнения (в составе N схем сравнения на два входа и два выхода каждая), первые и вторые входы которого подключены соответственно к выходам решений и первым дополнительным выходам блока информационных каналов 1. Первые и вторые выходы блока сравнения 2 соединены соответственно с управляющими входами первого и второго блоков ключей 4.
3 - первый блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены ко вторым дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого второго блока вычитания 3. Выходы первого блока вычитания 3 подключены ко входам делимого блока деления 5.
3 - второй блок вычитания (в составе N схем вычитания на два входа каждая), входы вычитаемого которого подключены к третьим дополнительным выходам блока информационных каналов 1, а входы уменьшаемого являются входом сигнала единичного уровня устройства и объединены со входами уменьшаемого первого блока вычитания 3. Выходы второго блока вычитания 3 подключены ко входам делителя блока деления 5.
4 - первый блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены к первым выходам блока сравнения 2, информационные входы - ко вторым дополнительным выходам блока информационных каналов 1, а выходы подключены к первым входам блока схем ИЛИ 7.
4 - второй блок ключей (в составе N ключей на два входа каждый), управляющие входы которого подключены ко вторым выходам блока сравнения 2, информационные входы - к выходам блока умножения 6, а выходы подключены ко вторым входам блока схем ИЛИ 7.
5 - блок деления (в составе N схем деления на 2 входа каждая), входы делимого и делителя которого подключены соответственно к выходам первого и второго блоков вычитания 3, а выходы - ко входам множителя блока умножения 6.
6 - блок умножения (в составе N схем умножения на 2 входа каждая), входы множителя которого подключены к выходам блока деления 5, входы множимого - к четвертым дополнительным выходам блока информационных каналов 1, а выходы - к информационным входам второго блока ключей 4.
7 - блок схем ИЛИ (в составе N схем ИЛИ на два входа каждая), первые и вторые входы которого подключены соответственно к выходам первого и второго блоков ключей 4, а выходы - ко вторым входам (входам множителя) блока умножения матриц 8.
8 - блок умножения матриц (в составе N схем умножения матриц на два входа каждая), первые входы которого (входы множимого) являются входами внешних источников, вторые входы (входы множителя) подключены к выходам блока схем ИЛИ 7, а выходы - к дополнительным входам БЦВС 9.
9 - быстродействующую цифровую вычислительную систему (БЦВС), входы которой подключены к выходам решений блока информационных каналов 1, дополнительные входы - к выходам блока умножения матриц 8, а выход является выходом системы.
Система работает следующим образом. Каждый из информационных каналов блока 1 (дальше рассматривается работа только одного t-гo канала и его связи с другими блоками) в рамках своего алфавита вырабатывает частное решение о принадлежности объекта к определенному типу (классу) в виде его номера
На вход уменьшаемого схемы вычитания первого и второго блоков вычитания 3 поступает сигнал единичного уровня. На вход вычитаемого схемы вычитания второго блока вычитания 3 поступает информация о вероятности правильного опознавания объекта соответствующего типа (класса)
Значения
В результате на выходе схемы ИЛИ блока схем ИЛИ 7 в соответствии с выражениями (6) формируются значения условных вероятностей в виде матрицы
Для сравнительной оценки с прототипом рассмотрим работу предлагаемой системы в приведенных в таблице 1 условиях с учетом дополнительных характеристик информационных каналов, задаваемых матрицами
Подставив значения
Тогда в соответствии с решающим правилом (4) при h=1 будет принято общее решение m*=1, то есть наблюдаемый объект «Свой».
Таким образом, учет несимметричности информационных каналов привел к принятию системой противоположного решения, что позволяет сделать вывод о его большей достоверности по сравнению с прототипом.
Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей). Достигаемый технический результат – повышение достоверности опознавания объектов. Указанный результат достигается за счет того, что интегрированная система опознавания содержит блок информационных каналов, блок сравнения, два блока вычитания, два блока ключей, блок деления, блок схем ИЛИ, блок умножения матриц, быстродействующую цифровую вычислительную систему, блок умножения, а также введены дополнительные выходы блока информационных каналов. Все перечисленные средства определенным образом соединены между собой. 1 ил., 2 табл.