Код документа: RU2696022C1
Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач обнаружения спектральных компонент сигналов источников радиоизлучения.
Известен способ обнаружения и определения двумерного пеленга и частоты источников радиоизлучения [Шевченко В.Н., Емельянов Г.С., Вертоградов Г.Г. Способ обнаружения и определения двумерного пеленга и частоты источников радиоизлучения. Патент РФ № 2190236, G 01 S 5/04], предполагающий когерентный прием сигналов, одновременно попадающих в текущую полосу приема, когерентный перенос на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму и синхронную регистрацию принятых одночастотных и многочастотных сигналов для всех баз, образованных опорной и всеми входящими в N-элементную решетку антеннами, в полосе приема, во много раз превышающей ширину спектра одиночного сигнала передатчика, восстановление с использованием быстрого преобразования Фурье комплексных временных спектров синхронно зарегистрированных сигналов опорной и каждой n-й антенны, где n=1…N, предполагающий формирование из восстановленных комплексных временных спектров сигналов опорной и каждой n-й антенны взаимных спектральных плотностей и комплексных коэффициентов взаимной корреляции спектральной плотности на каждой частоте f принятых сигналов со спектральными плотностями на всех остальных частотах полосы приема, после чего выполнение сравнения модулей с порогом корреляции. Сигналы с частотами, на которых превышен порог, объединяют в i-й сигнал и идентифицируют его как обнаруженный сигнал, принадлежащий одному передатчику с полосой частот δfi.
Однако в данном способе используется понятие «опорной антенны», вследствие чего (как справедливо отмечено в [Радзиевский В.Г., Уфаев В.А. Первичная обработка сигналов в цифровых панорамных обнаружителях-пеленгаторах. – Радиотехника, 2003, № 7, с. 26-31]) не учитывается, что взаимный спектр сигнала в каналах приема необходимо определять для всех возможных комбинаций пар антенн. В случае приема сигналов с помощью многоканального моноимпульсного обнаружителя-пеленгатора (ОП) указанное обстоятельство является существенным недостатком данного способа, неоправданно не использующим имеющиеся технические возможности радиоэлектронной аппаратуры ОП и снижающим показатели эффективности как решения задачи обнаружения спектральных компонент сигналов, так и всей последующей цифровой обработки сигналов.
Известен способ обнаружения спектральных компонент сигналов (представленный в статье [Уфаев В.А., Разиньков С.Н., Чикин М.Г. Обнаружение и идентификация сигналов в панорамных фазометрических радиопеленгаторах //Антенны. 2008. № 3. С. 64-68.]), заключающийся в приеме сигналов двухканальным приемником, который поочередно подключается к парам выходов антенной системы (АС), выполнение быстрого преобразования Фурье (БПФ) в каналах приема, формировании решающей статистики – оценке квадрата модуля коэффициента пространственной корреляции напряжений на выходах пары каналов, не зависящей от значений коэффициентов передачи каналов, что позволяет вычислить порог обнаружения, обеспечивающий постоянную ложность тревоги, проверке выполнения решающего правила – сравнении решающей статистики с пороговым уровнем обнаружения, вычисляемым в соответствии с критерием Неймана-Пирсона, обеспечивающим постоянную вероятность ложной тревоги.
Недостатки данного способа заключаются в следующем. Реализация способа предполагает, что наблюдение сигналов осуществляется двухканальным приемником, который поочередно подключается к парам выходов АС. Однако, применительно к многоканальным моноимпульсным обнаружителям-пеленгаторам, имеющим радиоприемное устройство с числом каналов, равным числу антенн, использование указанного алгоритма коммутации каналов не является целесообразным с точки зрения быстродействия, так как приемник осуществляет синхронное чтение реализации всеми каналами. Кроме того, переход к не моноимпульсному приему с последовательной во времени коммутацией радиоприемных каналов ОП к элементам АС приводит не только к снижению точности и достоверности пеленгования ИРИ, но и к принципиальному ухудшению возможности ОП по пеленгованию ИРИ, работающих в режиме программной перестройки рабочей частоты (за счет конечного времени коммутации приемных трактов, соизмеримого со временем перестройки частоты). Указанные недостатки существенным образом ограничивают область применимости указанного способа, а их наличие не позволяет использовать способ в современных (перспективных) многоканальных системах радиомониторинга.
Наиболее близким аналогом к предлагаемому является способ обнаружения [Радзиевский В.Г., Уфаев В.А. Первичная обработка сигналов в цифровых панорамных обнаружителях-пеленгаторах. – Радиотехника, 2003, № 7, с. 26-31], принятый за прототип.
Способ-прототип включает следующие процедуры.
1. Синхронный (когерентный) прием временных реализаций с выходов всех N (N>2) антенн АС в пространственных каналах обнаружителя-пеленгатора, одновременно попадающих в текущую полосу приема (анализа), когерентный перенос (гетеродинирование) на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму, вычисление отсчетов преобразования Фурье оцифрованной реализации в каждом пространственном канале обнаружителя-пеленгатора.
2. По каждому nb-му спектральному отчету, nb =0…Nb-1, быстрое преобразования Фурье временных реализаций вычисление канальных (i=1…N) амплитуд (модулей ) и энергий (квадратов модулей ).
3. Формирование решающей статистики обнаружения для каждого nb-го спектрального отчета ([Радзиевский В.Г., Уфаев В.А. Первичная обработка сигналов в цифровых панорамных обнаружителях-пеленгаторах. – Радиотехника, 2003, № 7, с. 26-31], формула 9):
. (1)
4. По каждому спектральному отсчету сравнение решающей статистики с пороговым уровнем обнаружения, вычисляемым в соответствии с критерием Неймана-Пирсона и обеспечивающим требуемую постоянную вероятность ложной тревоги. В случае превышения порога – принятие решения о том, что данный спектральный отсчет является сигнальным.
В соответствии с приведенным описанием, способ-прототип имеет следующие недостатки:
1. В современных системах радиомониторинга и с целью обеспечения возможности эффективного обнаружения сигналов ИРИ, работающих в режиме псевдослучайной программной перестройки рабочей частоты, в общем случае реализуется последовательный во времени прием нескольких временных реализаций (при фиксированной частотной настройке радиоприемного тракта обнаружителя-пеленгатора). Решающая статистика (1) способа-прототипа получена в предположении приема одной временной реализации. Выполнение независимого обнаружения по спектральным отсчетам каждой принимаемой реализации обеспечивает снижение показателей эффективности обнаружения по сравнению со случаем, когда в целях повышения отношения сигнал/шум выполняется накопление энергий по каждому спектральному отсчету.
2. Решающая статистика (1) способа-прототипа справедлива в предположении, когда антенны обнаружителя-пеленгатора являются идентичными и ненаправленными, а их диаграммы направленности имеют единичную амплитуду, независящую от направления прихода радиоволны ИРИ и описываются функциями
, (2)
где – радиус антенной системы;
– длина волны излучения;
– фазирующая функция, зависящая от конфигурации антенной системы;
– азимут направления на источник.
В общем случае при наличии взаимных влияний в АС обнаружителя-пеленгатора, а также в случае использования антенных элементов другого типа, решающая статистика (1) становится не справедливой, что приводит к ухудшению показателей эффективности способа-прототипа.
3. Выражение (1) для решающей статистики обнаружения не учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех.
4. Обнаружение в способе-прототипе осуществляется только по результатам измерения амплитуд спектральных компонент временных реализаций и не учитывает межканального соотношения фаз этих компонент, что не позволяет использовать всю информацию о сигнале, содержащуюся как в амплитуде, так и в фазе спектральных отсчетов. Данное обстоятельство не позволяет использовать в полной мере имеющиеся возможности пространственно-многоканального когерентного приема сигналов, что приводит к преднамеренному ухудшению потенциально достижимых показателей эффективности обнаружения.
Задачей, на решение которой направлено данное изобретение, является повышение показателей эффективности пространственно многоканального обнаружения спектральных компонент сигналов источников радиоизлучения с помощью многоканальных моноимпульсных обнаружителей-пеленгаторов.
Для решения поставленной задачи в способе адаптивного пространственно-многоканального обнаружения спектральных компонент сигналов, включающем синхронный (когерентный) прием временных реализаций с выходов всех антенн АС в пространственных каналах обнаружителя-пеленгатора, одновременно попадающих в текущую полосу приема (анализа), когерентный перенос (гетеродинирование) на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму, вычисление отсчетов преобразования Фурье каждой оцифрованной реализации в каждом пространственном канале обнаружителя-пеленгатора; вычисление по каждому спектральному отчету канальных и взаимных (межканальных) энергий преобразования Фурье; формирование решающей статистики обнаружения; сравнение полученной решающей статистики с пороговым уровнем обнаружения, вычисляемым в соответствии с критерием Неймана-Пирсона и обеспечивающим требуемую постоянную вероятность ложной тревоги; принятие решения об обнаружении сигнала в случае превышения решающей статистикой порогового уровня, согласно изобретению, прием временных реализаций с выходов всех антенн АС в пространственных каналах обнаружителя-пеленгатора осуществляют многократно последовательно во времени; по каждому спектральному отчету дополнительно выполняют вычисление взаимных межканальных энергий быстрого преобразования Фурье каждой из принятых временных реализаций с последующим накоплением энергий путем суммирования их значений, вычисленных по каждой из принятых временных реализаций, и формирование нормированной матрицы взаимных энергий, равной произведению накопленной матрицы взаимных энергий и матрицы, обратной к матрице корреляции аддитивного шума; в качестве решающей статистики используют отношение следа квадрата нормированной матрицы взаимных энергий к квадрату следа данной матрицы.
Поставленная задача обнаружения решается следующим образом. Каждый отчет быстрого преобразования Фурье временных реализаций представляет собой комплексную амплитуду в элементарном частотном канале (ЭЧК), ширина полосы которого обратно пропорциональна длительности временной реализации. Совокупность спектральных отсчетов во всех N пространственных каналах обнаружителя-пеленгатора, принадлежащих одному и тому же ЭЧК, характеризует распределение падающей на АС радиоволны на частоте данного ЭЧК.
Среди совокупности спектральных отсчетов определяются «сигнальные» отсчеты, в амплитуде и фазе которых содержится информация об излучаемой ИРИ радиоволне. Спектральное представление временных реализаций обеспечивает возможность определения спектрального состава радиосигналов (т.е. совокупности отсчетов БПФ, принадлежащим радиосигналу данного ИРИ) в отсутствии информации о законе их модуляции и способе кодирования информации. Процедура быстрого преобразования Фурье позволяет «снять» модуляцию сигнала, раскладывая его в базисе ортогональных нормированных функций и выполнять обработку в условиях имеющейся в реальных условиях параметрической и непараметрической априорной неопределенности относительно формы принимаемого радиосигнала. При этом непараметрическая неопределенность относительно формы сигнала преобразуется к параметрической неопределенности для каждого ЭЧК относительно комплексной амплитуды напряженности поля радиоволны от ИРИ и направления ее прихода.
В основе любого обнаружителя сигналов лежит свойство различия в «природе» сигнальных и помеховых (стохастических) составляющих. Несмотря на отсутствие априорной информации о форме (законах амплитудной и фазовой модуляции) сигнала ИРИ, возможность пространственно разнесенного приема сигналов позволяет учесть дополнительное различие сигналов и помех. Данное различие состоит в том, что сигнальная составляющая характеризует распределение амплитуды и фазы поля радиоволны ИРИ по раскрыву антенны ОП. Помеховая составляющая не имеет данного представления, а ее компоненты в пространственно разнесенных пунктах приема имеют случайные амплитуды и фазы, не обусловленные падением некоторой радиоволны с плоским волновым фронтом.
Таким образом, важной особенностью задачи адаптивного пространственно многоканального обнаружения спектральных сигналов ИРИ является обнаружение не произвольной сигнальной составляющей в наблюдаемых данных (НД), а составляющей, обусловленной плоским волновым фронтом радиоволны от удаленного ИРИ. Данная задача представляет собой бинарную задачу проверки статистических гипотез: гипотеза о том, что в НД присутствуют сигнальные составляющие от ИРИ; гипотеза о том, что в НД отсутствуют сигнальные составляющие от ИРИ.
В результате решения поставленной задачи предлагаемый способ адаптивного пространственно-многоканального обнаружения спектральных компонент сигналов ИРИ предполагает выполнение следующих процедур:
1. Многократный последовательный во времени синхронный (когерентный) прием временных реализаций с выходов всех антенн АС в пространственных каналах обнаружителя-пеленгатора, одновременно попадающих в текущую полосу приема (анализа), когерентный перенос (гетеродинирование) на более низкую частоту, синхронное преобразование временных реализаций в цифровую форму, вычисление отсчетов быстрого преобразования Фурье каждой оцифрованной реализации в каждом пространственном канале обнаружителя-пеленгатора.
2. По каждому спектральному отчету вычисление канальных и взаимных (межканальных) энергий быстрого преобразования Фурье каждой из принятых временных реализаций и накопление энергий путем суммирования их значений, вычисленных по каждой из принятых временных реализаций, и формирование нормированной матрицы взаимных энергий, равной произведению накопленной матрицы взаимных энергий и матрицы , обратной к матрице корреляции аддитивного шума.
3. Формирование решающей статистики обнаружения (3), представляющей собой отношение следа (суммы диагональных элементов) квадрата нормированной матрицы взаимных энергий к квадрату следа данной матрицы:
, (3)
где ;
– матрица взаимных энергий сигналов, «накопленная» по серии из K>1 измерений, с элементами
, (4)
– комплексный отсчет (с порядковым номером nb =0…Nb-1) быстрого преобразования Фурье k-й временной реализации, принятой в -м пространственном канале обнаружителя-пеленгатора (совпадающий с номером антенны АС, подключенной ко входу канала);
1…N – порядковые номера пространственных каналов обнаружителя-пеленгатора;
k=1…К – порядковый номер принятой временной реализации;
– матрица коэффициентов межканальной корреляции аддитивного шума (при отсутствии корреляции шума матрица является диагональной единичной); – оператор эрмитова сопряжения,
– обратная матрица,
– оператор следа матрицы.
4. Сравнение решающей статистики (3) с пороговым уровнем обнаружения, вычисляемым в соответствии с критерием Неймана-Пирсона и обеспечивающим требуемую постоянную вероятность ложной тревоги; принятие решения об обнаружении сигнала в случае превышения статистикой порогового уровня.
Элементы матрицы (3), находящиеся вне ее главной диагонали, характеризуют амплитудно-фазовое пространственное распределение электрического поля падающей радиоволны с плоским волновым фронтом, возмущенное аддитивным внутренним шумом радиоприемного устройства обнаружителя-пеленгатора и внешними эфирными помехами. Элементы главной диагонали данной матрицы характеризуют распределение энергии сигнальной, шумовой и помехой составляющих по пространственным каналам обнаружителя-пеленгатора.
Решающая статистика предлагаемого способа инвариантна к структуре и характеристикам направленности антенных элементов АС и не предполагает нахождения оценки направления прихода радиоволны до принятия решения о справедливой гипотезе.
Предлагаемый способ адаптивного пространственно многоканального обнаружения спектральных компонент сигналов ИРИ лишен перечисленных выше недостатков способа-прототипа, а именно:
1 Решающая статистика (3) предлагаемого способа, в отличие от способа-прототипа, получена в предположении приема нескольких временных реализаций и предполагает накопление по каждому спектральному отсчету канальных и взаимных спектральных энергий, что позволяет в случае моноимпульсного приема временных реализаций обеспечить повышение показателей эффективности обнаружения за счет повышения выходного отношения сигнал/шум.
2 Решающая статистика (3) предлагаемого способа, в отличие от способа-прототипа, справедлива в случае АС с произвольной структурой и характеристиками направленности антенных элементов, и в частности, в используемом в способе-прототипе предположении, когда антенны обнаружителя-пеленгатора являются идентичными и ненаправленными. Это позволяет использовать предлагаемый способ в реальных условиях функционирования обнаружителей-пеленгаторов, когда имеют место взаимные влияния антенн друг на друга.
3 Выражение (3) для решающей статистики обнаружения предлагаемого способа, в отличие от способа-прототипа, учитывает наличие межканальной корреляции спектральных отсчетов временных реализаций, обусловленных наличием в реальных условиях внешних помех, что позволяет при разработке обнаружителей-пеленгаторов проводить анализ достижимых показателей эффективности обнаружения сигналов ИРИ в условиях насыщенной электромагнитной обстановки, а также учитывать наличие корреляции помех при обнаружении спектральных компонент сигналов ИРИ в реальных условиях функционирования обнаружителей-пеленгаторов.
4 Предлагаемый способ обнаружения осуществляется по результатам измерения и накопления как канальных так и взаимных спектральных энергий, что в отличие от способа-прототипа, позволяет использовать всю информацию о сигнале, содержащуюся как в амплитуде, так и в фазе спектральных отсчетов. Это позволяет использовать в полной мере имеющиеся возможности пространственно-многоканального когерентного приема сигналов, и повышению (относительно способа-прототипа) потенциально достижимых показателей эффективности обнаружения.
Технический результат способа обеспечивается тем, что при формировании решающей статистики (3) используются соотношения амплитуд и фаз сигналов, принятых пространственно многоканальной радиоприёмной системой обнаружителя-пеленгатора, реализуется накопление канальных и взаимных энергий спектральных компонент по нескольким реализациям, а также учитывается наличие межканальной корреляции эфирных помех. Работоспособность и эффективность предлагаемого способа обнаружения при замираниях сигнала в каналах ОП обусловлена тем, что при выводе решающей статистики (3) не накладывались ограничения на амплитудную зависимость характеристик направленности антенных элементов АС.
Блок-схема для реализации предлагаемого способа представлена на фиг.1, где обозначено:
1 - блок многократного многоканального приема временных реализаций и переноса на более низкую частоту;
2 - блок оцифровки временных реализаций;
3 - блок вычисления преобразования Фурье временных реализаций;
4 - блок вычисления канальных спектров;
5 - блок вычисления взаимных спектров;
6 - блок накопления матриц взаимных энергий;
7 - блок формирования нормированной матрицы взаимных энергий;
8 - блок вычисления суммы диагональных элементов квадрата нормированной матрицы;
9 - блок вычисления квадрата суммы диагональных элементов нормированной матрицы;
10 - блок вычисления решающей статистики;
11 - блок сравнения решающей статистики с порогом.
Устройство содержит последовательно соединенные блок приема временных реализаций и переноса на более низкую частоту 1, блок оцифровки временных реализаций 2 и блок вычисления преобразования Фурье временных реализаций 3, выходы которого соединены с входами - блока вычисления канальных спектров 4 и блока вычисления взаимных спектров 5 соответственно. Выходы блоков вычисления канальных спектров 4 и вычисления взаимных спектров 5 подключены к соответствующим входам блока накопления матриц взаимных энергий 6, выход которого соединен с входом блока формирования нормированной матрицы взаимных энергий 7, выходы которого соединены с входами блока вычисления суммы диагональных элементов квадрата нормированной матрицы 8 и блока вычисления квадрата суммы диагональных элементов нормированной матрицы 9, выходы которых подсоединены к соответствующим входам блока вычисления решающей статистики 10, выход которого соединен с входом блока сравнения решающей статистики с порогом 11, выход которого является выходом устройства.
Устройство для реализации заявленного способа работает следующим образом.
Блок 1 осуществляет многократный последовательный во времени синхронный (когерентный) прием временных реализаций с выходов всех антенн АС в пространственных каналах обнаружителя-пеленгатора и когерентный перенос на более низкую частоту. Затем блок 2 синхронно преобразует принятые временные реализации в цифровую форму. В блоке 3 для каждой оцифрованной реализации в каждом пространственном канале обнаружителя-пеленгатора происходит вычисление отсчетов преобразования Фурье
,
где nb порядковый номер спектрального отсчета,
k – порядковый номер временной реализации, принятой в -м пространственном канале обнаружителя-пеленгатора (совпадающий с номером антенны АС, подключенной ко входу канала).
По результатам вычисления блоков 4 и 5 в блоке 6 происходит накопление по каждому спектральному отчету по каждой из принятых временных реализаций канальных и взаимных энергий спектральных компонент путем суммирования их значений, вычисленных по каждой из принятых временных реализаций
.
В блоке 7 формируется нормированная матрица взаимных энергий:
,
где - накопленная матрица взаимных энергий
матрица, обратной к матрице корреляции аддитивного шума.
По результатам работы блока 7 параллельно в блоках 8 и 9 для каждого спектрального отчета nb происходит вычисления суммы диагональных элементов квадрата нормированной матрицы взаимных энергий отождествляемых спектральных компонент
и произведения суммы диагональных элементов данных матриц
соответственно.
В блоке 10 выполняется вычисление решающей статистики по каждому спектральному отсчету nb идентификации
.
В блоке 11 по каждому спектральному отчету происходит сравнение решающей статистики с пороговым уровнем обнаружения.
В случае превышения порога – принятие решения об обнаружении сигнала.
Сравнение показателей эффективности предлагаемого способа пространственно многоканального обнаружения спектральных компонент сигналов и способа-прототипа.
Анализ статистических характеристик распределения обеих решающих статистик (ф.(1) и ф.(3)) был проведен в пакете моделирования Matlab R-2012a. При статистическом моделировании характеристик обнаружения число статистических испытаний выбиралось равным 108. Моделировалось падение плоской радиоволны с различных направлений на многоэлементные антенные решетки. В каждом статистическом эксперименте по одинаковым исходным данным вычислялись величины, соответствующие решающим статистикам (1) и (3). Аддитивные канальные шумы полагались гауссовскими с одинаковыми интенсивностями, нулевыми средними значениями и диагональной матрицей корреляции. Под отношением сигнал/шум понималось отношение модуля амплитуды сигнала к среднеквадратическому значению шума. Вероятность пропуска (в диапазоне от 10-2 до 10-6) вычислялась как относительная частота превышения (при наличии сигнала ИРИ) указанными статистиками пороговых уровней, обеспечивающих заданные (одинаковые для обоих) вероятности ложной тревоги.
Для обеспечения большего соответствия результатов моделирования с реальными условиями функционирования ОП при моделировании предполагалось, что в каждом статистическом эксперименте уровни амплитуды сигнала в каналах ОП различны, отличаются на величину от 0 дБ до 6 дБ (изменение амплитуды проводилось по равномерному закону). В частности, различные уровни сигнала в каналах ОП в большинстве случаев обусловлены наличием взаимных влияний в АС ОП. Результаты моделирования представлены на фигурах 2 и 3.
На фиг. 2 представлена зависимость вероятности ложной тревоги от порогового уровня обнаружения для семиканального ОП. На фиг. 3 представлена зависимость вероятности пропуска сигнала от энергетического отношения сигнал-шум , измеренного в дБ, для семиканального ОП при пороге обнаружения, обеспечивающим вероятность ложной тревоги ; количество накоплений матрицы взаимных энергий полагалось равным 3. Сплошная кривая соответствует предлагаемому способу обнаружения с решающей статистикой (3), пунктирная – способу с решающей статистикой (1).
Из представленных зависимостей видно, что в сравнении со способом-прототипом, предлагаемый способ пространственно многоканального обнаружения при одинаковой величине ложной тревоги и фиксированном отношении сигнал/шум обеспечивает меньшую вероятность пропуска сигнала. Выигрыш в показателях эффективности предлагаемого способа увеличивается с ростом количества радиоприемных каналов ОП и степени отличия уровней принимаемого сигнала в каналах ОП.
Предлагаемый способ справедлив для АС с произвольной структурой и характеристиками направленности антенных элементов, в результате чего обеспечивается инвариантность решающей статистики способа к изменению соотношений уровней сигналов в каналах, в том числе обусловленных взаимными влияниями в антенной системе.
Изобретение относится к радиотехнике и может быть использовано в многоканальных моноимпульсных обнаружителях-пеленгаторах систем радиомониторинга для решения задач обнаружения спектральных компонент сигналов источников радиоизлучения. Достигаемый технический результат – повышение достоверности обнаружения спектральных компонент сигналов ИРИ, проявляется в увеличении вероятности правильного обнаружения при фиксированной вероятности ложной тревоги. Указанный результат достигается за счет того, что прием сигналов с выходов всех антенн антенной системы в пространственных каналах обнаружителя-пеленгатора осуществляют многократно последовательно во времени; по каждому спектральному отсчету дополнительно выполняют вычисление взаимных межканальных энергий быстрого преобразования Фурье каждого из принятых сигналов с последующим накоплением энергий путем суммирования их значений, вычисленных по каждому из принятых сигналов, и формирование нормированной матрицы взаимных энергий, равной произведению накопленной матрицы взаимных энергий и матрицы, обратной к матрице корреляции аддитивного шума; в качестве решающей статистики используют отношение следа квадрата нормированной матрицы взаимных энергий к квадрату следа данной матрицы. 3 ил.