Код документа: RU208796U1
Полезная модель относится к восстановительной медицине, а именно к травматологии и ортопедии, и может использоваться для оперативного хирургического лечения локтевого сустава при его различных заболеваниях и травматических повреждениях.
Замена локтевых суставов на эндопротезы является ортопедической операцией с имплантацией определенных конструкций в организм. Процент осложнений и неудовлетворительных результатов имплантации остается по-прежнему на высоком уровне и составляет 3,3-13,2%. Увеличить эффективность таких операций возможно путем повышения уровня биосовместимости эндопротезов при использовании новых материалов и покрытий, а также путем разработки новых, высокотехнологичных конструкций эндопротезов.
Биосовместимые покрытия, наносимые на внутрикостные части эндопротезов, должны обладать высокой суммарной открытой пористостью, что необходимо для эффективного прорастания клеток костной ткани и прочного остеоинтеграционного закрепления имплантируемых конструкций в организме. Однако высокая открытая пористость покрытий характеризуется пониженной механической прочностью, что является сильным ограничением в разработке высокопористых имплантационных систем.
При действии агрессивной биологической среды в виду отсутствия физико-механических условий, обеспечивающих эффективное интеграционное (на микро- и наноуровне) взаимодействие поверхности эндопротеза с прилегающими костными структурами, происходят процессы воспаления прилегающих тканей и отторжения установленных конструкций. Поэтому проблема повышения эффективности использования эндопротезов для остеосинтеза является весьма актуальной и может быть решена за счет придания поверхности, имеющей биосовместимое покрытие, комплекса антимикробных и антитромбоцитарных свойств.
Известна конструкция эндопротеза локтевого сустава [Патент RU №2082358, МПК A61F 2/38, заявка опубл. 27.10.1993], содержащий локтевую и плечевую части. Локтевая часть включает ножку с продольными канавками и суставной компонент, соединенный с ножкой. Плечевая часть включает ножку, переходную вилку и полиэтиленовую головку.
Недостатком данного эндопротеза является отсутствие биосовместимого гетерогенного покрытия, обладающего комплексом антимикробных и антитромбоцитарных свойств, на поверхности внутрикостных частей эндопротеза для обеспечения их высокой остеоинтеграционной способности.
Известна конструкция эндопротеза локтевого сустава [Патент RU №2171657, МПК A61F 2/38, опубл. 10.08.2001], содержащий проксимальный и дистальный стержни. Проксимальный стержень содержит треугольный стабилизатор с пазом и проушину со сквозным пазом, а дистальный стержень треугольного сечения имеет шайбовидную часть, сопрягаемую с пазом проушины проксимального стержня.
Недостатком данного эндопротеза является отсутствие биосовместимого гетерогенного покрытия, обладающего комплексом антимикробных и антитромбоцитарных свойств, на поверхности внутрикостных частей эндопротеза для обеспечения их высокой остеоинтеграционной способности.
Известна конструкция эндопротеза локтевого сустава фирмы «Вольдемар Линк» модели Святой Георгий 2-ой генерации, выпускаемый с 1974 г. (Каталог WALDEWAR LINK GmbH & Со b ELBOW-PROSTHESIS-SYSTEM изд. 1999 г.). Эндопротез включает плечевую ножку с шайбовидной проушиной и закрепленным в ней вкладышем и осью, снабженной проточкой, локтевую ножку с пазом, в шайбовидном шипе контактирующим с вкладышем и осью, закрепленную фиксирующим штифтом.
Недостатком данного эндопротеза является отсутствие биосовместимого гетерогенного покрытия, обладающего комплексом антимикробных и антитромбоцитарных свойств, на поверхности внутрикостных частей эндопротеза для обеспечения их высокой остеоинтеграционной способности.
Наиболее близким к технической сущности предлагаемой полезной модели является конструкция эндопротеза локтевого сустава [Патент РФ №2290143, МПК A61F 2/38 (2006.01), опубл. 27.12.2006], которая содержит плечевую и локтевую ножки, вкладыш со втулкой и запорным кольцом, ось и фиксирующий штифт для закрепления оси. Плечевая ножка выполнена с шайбовидной проушиной, в последней установлен вкладыш и вдвинута ось, которая закреплена втулкой с запорным кольцом. Локтевая ножка в проксимальной части выполнена в виде шайбовидного шипа с пазом для контакта с вкладышем и осью. В шайбовидном шипе выполнены соосные цилиндрические отверстия под фиксирующий штифт. Ось выполнена со стороны штифта с приливом, на котором выполнена коническая проточка. Фиксирующий штифт выполнен с поверхностями: конической - для контакта с проточкой и цилиндрической соосной - для контакта с локтевой ножкой. Конические поверхности фиксирующего штифта и проточки выполнены с углом конуса от 4 до 6 градусов. Плечевая ножка снабжена антиротационными пластинами, шайбовидная проушина - приливами с латеральной стороны ножки. Локтевая ножка в области шайбовидного шипа снабжена пластиной, контактирующей с приливом проушины.
Недостатком данной конструкции является отсутствие биосовместимого гетерогенного покрытия, обладающего комплексом антимикробных и антитромбоцитарных свойств, на поверхности внутрикостных частей эндопротеза, а именно локтевой и плечевой ножек для обеспечения их высокой остеоинтеграционной способности.
Задачей полезной модели является создание эндопротеза локтевого сустава с биосовместимым гетерогенным покрытием, обладающим комплексом антимикробных и антитромбоцитарных свойств, на поверхности внутрикостных частей конструкции - локтевой и плечевой ножек.
Технический результат полезной модели заключается в создании упрочненной гетерогенной остеоинтегрируемой поверхности внутрикостных частей эндопротеза локтевого сустава в результате ее лазерного импульсного оксидирования на воздухе с получением биосовместимого оксидного покрытия, последующего синтеза на сформированном биосовместимом оксидном покрытии углеродной алмазоподобной беспористой пленки и придания комплекса антимикробных и антитромбоцитарных свойств поверхности за счет ионно-лучевого модифицирования ионами серебра и ионами лантана.
Поставленная задача решается за счет того, что в предлагаемом эндопротезе локтевого сустава с биосовместимым покрытием, содержащем плечевую и локтевую ножки, вкладыш со втулкой и запорным кольцом, ось и фиксирующий штифт для закрепления оси, плечевая ножка выполнена с шайбовидной проушиной, в последней установлен вкладыш и вдвинута ось, которая закреплена втулкой с запорным кольцом, локтевая ножка в проксимальной части выполнена в виде шайбовидного шипа с пазом для контакта с вкладышем и осью, в шайбовидном шипе выполнены соосные цилиндрические отверстия под фиксирующий штифт, ось выполнена со стороны штифта с приливом, на котором выполнена коническая проточка, фиксирующий штифт выполнен с поверхностями: конической - для контакта с проточкой и цилиндрической соосной - для контакта с локтевой ножкой, конические поверхности фиксирующего штифта и проточки выполнены с углом конуса от 4 до 6 градусов, плечевая ножка снабжена антиротационными пластинами, шайбовидная проушина - приливами с латеральной стороны ножки, локтевая ножка в области шайбовидного шипа снабжена пластиной, контактирующей с приливом проушины, согласно новому техническому решению, на поверхности внутрикостных частей эндопротеза, а именно плечевой и локтевой ножек, имеется биосовместимое гетерогенное оксидное покрытие, полученное в результате лазерного импульсного оксидирования на воздухе с последующим синтезом на его поверхности углеродной алмазоподобной беспористой пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа (СО2) пучком ионов аргона (Ar+), модифицированной ионами серебра (Ag+) и ионами лантана (La+) в процессе ионно-лучевой обработки.
Изготовление предлагаемого эндопротеза локтевого сустава с биосовместимым покрытием может осуществляться путем литья, обработки давлением, механического формообразования (токарного, фрезерного), лазерное импульсное оксидирование на воздухе (получение биосовместимого гетерогенного оксидного покрытия), ионно-лучевой обработки (синтез на сформированной поверхности оксидного покрытия углеродной алмазоподобной беспористой пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона, модифицированной ионами серебра и ионами лантана в процессе ионно-лучевой обработки). Материалами для изготовления эндопротеза локтевого сустава с биосовместимым покрытием могут служить титан, тантал, цирконий и сплавы на их основе.
Полезная модель поясняется чертежами и 3D-моделью. На фиг. 1 изображена фронтальная проекция эндопротеза локтевого сустава с биосовместимым покрытием, на фиг. 2 - вид сверху, на фиг. 3 - сечение А-А, на фиг. 4 - разрез по Б-Б, на фиг. 5 - 3D-модель.
На фиг. 1 приведена предлагаемая конструкция эндопротеза локетевого сустава с биосовместимым покрытием, включающая плечевую ножку 1, локтевую ножку 2 (фиг. 1), вкладыш 3 с втулкой 4 и запорным кольцом 5, ось 6 (фиг. 4) и фиксирующий штифт 7 (фиг. 3). Плечевая ножка 7 (фиг. 1) в проксимальной части выполнена в виде шайбовидной проушины 8 (фиг. 1, фиг. 2) и снабжена антиротационными пластинами 9 (фиг. 1), а с латеральной стороны приливом 10 (фиг. 2, фиг. 3). Проксимальная часть локтевой ножки 2 (фиг. 1) выполнена в виде шайбовидного шипа 11 (фиг. 3) и снабжена пластиной 12 (фиг. 1), контактирующей торцевой поверхностью с приливом 10 (фиг. 2, фиг. 3) плечевой ножки 1 (фиг. 1). С медиальной стороны в шайбовидном шипе 11 (фиг. 3) выполнен паз 13 (фиг. 3), контактирующий с осью 6 (фиг. 4), и соосные цилиндрические отверстия 14 и 15 (фиг. 3) соответственно под фиксирующий штифт 7 (фиг. 3). Ось 6 (фиг. 4) снабжена приливом 16 (фиг. 4), на котором выполнена коническая проточка 17 (фиг. 3), контактирующая с фиксирующим штифтом 7 (фиг. 3). Фиксирующий штифт 7 (фиг. 3) снабжен с одной стороны резьбой 18 (фиг. 3), а с другой прорезью 19 (фиг. 3) под отвертку. На плечевой 7 и локтевой 2 ножках имеется биосовместимое гетерогенное оксидное покрытие 20 (фиг. 5), полученное в результате лазерного импульсного оксидирования на воздухе и сформированная на поверхности оксидного покрытия 20 (фиг. 5) углеродная алмазоподобная беспористая пленка 21 (фиг. 5), полученная процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона, модифицированная ионами серебра 22 и ионами лантана 23 (фиг. 5).
Углеродная алмазоподобная беспористая пленка 21 имеет повышенные показатели механической прочности и толщину 10-25 нм, которая обусловлена технологическими режимами синтеза в процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона. При этом, углеродная алмазоподобная беспористая пленка 21 воспроизводит рельеф поверхности биосовместимого гетерогенного оксидного покрытия 20, не снижая его общую суммарную открытую микропористость и остеоинтеграционную способность.
Исследования показали, что оптимальными значениями параметров проведения процесса лазерного импульсного оксидирования на воздухе для получения биосовместимого гетерогенного оксидного покрытия являются следующие: энергия лазерных импульсов E=0,75-1,12 Дж; диаметр сфокусированного лазерного пятна d=0,7 мм; длительность импульсов t=0,6 мс; число сканирующих проходов 3-5. При уменьшении значений указанных параметров формирование гетерогенной структуры оксидированной поверхности не наблюдается, а при их превышении не происходит формирование гетерогенной структуры оксидного покрытия в результате сильного оплавления модифицированной поверхности. Плотность микровыступов составляет D=146-193 1/см, что подтверждает развитую структуру поверхности и повышенную гетерогенность оксидного покрытия. Бестоковый коррозионный потенциал покрытия в физиологическом растворе Eкор=0,3-0,4 B, что подтверждает высокую коррозионную устойчивость полученного оксидного покрытия в условиях воздействия на него биологических жидкостей (кровь, лимфа, тканевая жидкость). Для упрочнения биосовместимого гетерогенного оксидного покрытия на его поверхности имеется углеродная алмазоподобная беспористая пленка с повышенными показателями твердости.
Исследования показали, что оптимальными дозами ионов аргона, необходимыми для процесса формирования углеродной алмазоподобной беспористой пленки при ионно-лучевой обработки, являются: доза ионов аргона Ф=6⋅1016-2,4⋅1017 ион/см2; энергия Е=75 кэВ, так как при дозах ионов аргона менее 1,6⋅1016 ион/см2 и более 2,4⋅1017 ион/см2 не происходит формирование углеродной алмазоподобной беспористой пленки.
Углеродная алмазоподобная беспористая пленка 21 обладает антимикробными свойствами за счет модифицирования ее ионами серебра 22 в процессе ионно-лучевой обработки, что подтверждается экспериментально полученными результатами исследования, которые показали, что оптимальными дозами ионов серебра, необходимыми для придания покрытию антимикробных свойств, являются 1,2⋅1016-1,8⋅1016 ион/см2 с ускоряющим напряжением 50 кВ. При дозах ионов серебра менее 1,2⋅1016 ион/см2 и более 1,8⋅1016 ион/см2 не проявляются антимикробные свойства. Антимикробные свойства обусловлены комплексом терапевтических свойств, присущих серебросодержащим покрытиям и препаратам серебра: широким антибактериальным спектром в отношении патогенной флоры, в том числе устойчивой к антибиотикам; сложностью вырабатывания у патогенных микроорганизмов защитных механизмов к действию ионов серебра; хорошо выраженным ранозаживляющим действием.
Углеродная алмазоподобная беспористая пленка 21 обладает антитромбоцитарными свойствами за счет ее ионно-лучевого модифицирования ионами лантана 23 в процессе ионно-лучевой обработки, что подтверждается экспериментально полученными результатами исследования, которые показали, что оптимальными дозами ионов лантана, необходимыми для придания покрытию антитромбоцитарных свойств, являются 1,2⋅1016-1,8⋅1016 ион/см2 с ускоряющим напряжением 50 кВ. При дозах ионов лантана менее 1,2⋅1016 ион/см2 и более 1,8⋅1016 ион/см2 не проявляются высокие антитромбоцитарные свойства. Антитромбоцитарные свойства обусловлены комплексом терапевтических свойств, присущих лантансодержащим покрытиям и лантансодержащим препаратам и способствуют снижению процессов отторжения имплантатов, за счет уменьшения риска образования тромбов капилляров и мелких кровеносных сосудов, прилегающих к раневой поверхности.
Для установки предлагаемого эндопротеза локтевого сустава с биосовместимым покрытием используются общепринятые доступы к локтевому суставу с сохранением сгибательного и разгибательного аппарата предплечья. Если этот аппарат нарушен, то на завершающем этапе проводят его восстановление. После обнажения локтевого сустава осуществляется мобилизация суставных поверхностей плечевой и локтевой костей. Костномозговой канал плечевой кости последовательно обрабатывается рашпилями. В подготовленный канал имплантируется плечевая ножка 1 на цементной или бесцементной основе в зависимости от состояния костной ткани. Костномозговой канал локтевой кости также последовательно обрабатывается соответствующими рашпилями, и в него имплантируется локтевая ножка 2 на цементной или бесцементной основе в зависимости от состояния костной ткани. После чего эндопротез собирается следующим образом. В шайбовидную проушину 8 плечевой ножки 1 устанавливают вкладыш 3, затем вдвигают ось 6 и закрепляют ее втулкой 4 с запорным кольцом 5. Локтевую ножку разворачивают в сторону плечевой на угол около 180 градусов. Ось 6 ориентируют таким образом, чтобы прилив 16 был направлен в сторону паза, и вставляют ее в паз, далее в отверстие 14 вдвигают фиксирующий штифт 7 и заворачивают его отверткой путем передачи крутящего момента через прорезь 19, он, контактируя с конической проточкой 17 на оси 6, угол конуса которой составляет от 4 до 6 градусов, обеспечивает самоторможение и надежно фиксирует локтевую ножку на оси. Затем проводится проверка объема движения и восстановление целостности кожных покровов. В процессе приживления эндопротеза локтевого сустава клетки окружающих его биоструктур проникают в гетерогенную поверхность 20. За счет этого происходит углубленное прорастание прилегающих клеточных структур в поверхность плечевой 1 и локтевой 2 ножек эндопротеза локтевого сустава с биосовместимым покрытием, повышается остеоинтеграционная способность поверхности и прочность биомеханической связи эндопротеза с костью. Микропористый слой 20, обеспечивающий интеграционное взаимодействие с костной тканью, имеет углеродную алмазоподобную беспористую пленку 21, которая обеспечивает повышенную механическую прочность, в частности твердость, остеоинтеграционную способность поверхности внутрикостных частей плечевой 1 и локтевой 2 ножек и создает необходимые биотехнические условия для эффективной работы эндопротеза при действии функциональных нагрузок. Углеродная алмазоподобная беспористая пленка 21 последовательно модифицирована ионами серебра 22 и ионами лантана 23, которые придают ей комплекс антимикробных и антитромбоцитарных свойств, что способствует быстрой и надежной остеоинтеграции имплантата с биологическими тканями за счет наименьшего процента их отторжения.
Гетерогенная поверхность внутрикостных частей предлагаемой конструкции эндопротеза локтевого сустава имеет биосовместимое покрытие, которое обладает повышенными показателями твердости и остеоинтеграционной способности за счет сформированной на ее поверхности углеродной алмазоподобной беспористой пленки, что подтверждается полученными экспериментальными результатами измерения твердости поверхности изготовленных эндопротезов, значения которой составляют 0,48-0,53 ГПа, что значительно приближено к твердости костной ткани (0,5-0,6 ГПа).
Таким образом, предложенная конструкция эндопротеза локтевого сустава с биосовместимым покрытием создает наилучшие условия для эффективного интеграционного взаимодействия поверхности внутрикостных частей плечевой и локтевой ножек с костной тканью и надежного функционирования эндопротеза в организме при длительном действии механических нагрузок благодаря синтезу на гетерогенной поверхности оксидного покрытия углеродной алмазоподобной беспористой пленки. Данная углеродная алмазоподобная беспористая пленка обладает повышенной биосовместимостью и обеспечивает повышенную механическую прочность поверхности внутрикостных частей конструкции эндопротеза. Кроме того, за счет последовательного модифицирования углеродной алмазоподобной беспористой пленки ионами серебра и ионами лантана поверхность внутрикостных частей эндопротеза обладает комплексом антимикробных и антитромбоцитарных свойств.
Полезная модель относится к медицине, а именно к травматологии, ортопедии и имплантологии, и может быть использована для оперативного лечения локтевого сустава при его различных заболеваниях и травматических повреждениях. Технический результат полезной модели заключается в создании упрочненной гетерогенной остеоинтегрируемой поверхности внутрикостных частей эндопротеза локтевого сустава в результате ее лазерного импульсного оксидирования на воздухе с получением биосовместимого оксидного покрытия, последующего синтеза на сформированном биосовместимом оксидном покрытии углеродной алмазоподобной беспористой пленки и придания комплекса антимикробных и антитромбоцитарных свойств поверхности за счет ионно-лучевого модифицирования ионами серебра и ионами лантана. Эндопротез локтевого сустава с биосовместимым покрытием содержит плечевую и локтевую ножки, вкладыш со втулкой и запорным кольцом, ось и фиксирующий штифт для закрепления оси, плечевая ножка выполнена с шайбовидной проушиной, в последней установлен вкладыш и вдвинута ось, которая закреплена втулкой с запорным кольцом, локтевая ножка в проксимальной части выполнена в виде шайбовидного шипа с пазом для контакта с вкладышем и осью, в шайбовидном шипе выполнены соосные цилиндрические отверстия под фиксирующий штифт, ось выполнена со стороны штифта с приливом, на котором выполнена коническая проточка, фиксирующий штифт выполнен с поверхностями: конической - для контакта с проточкой и цилиндрической соосной - для контакта с локтевой ножкой, конические поверхности фиксирующего штифта и проточки выполнены с углом конуса от 4 до 6 градусов, плечевая ножка снабжена антиротационными пластинами, шайбовидная проушина - приливами с латеральной стороны ножки, локтевая ножка в области шайбовидного шипа снабжена пластиной, контактирующей с приливом проушины, на поверхности внутрикостных частей эндопротеза, а именно плечевой и локтевой ножек, выполнено механически высокопрочное биосовместимое гетерогенное оксидное покрытие, полученное в результате лазерного импульсного оксидирования на воздухе с последующим синтезом на его поверхности углеродной алмазоподобной беспористой пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа (CO2) пучком ионов аргона (Ar+), модифицированной ионами серебра (Ag+) и ионами лантана (La+) в процессе ионно-лучевой обработки. 5 фиг.
Эндопротез коленного сустава с биосовместимым покрытием