Код документа: RU2403079C2
Изобретение относится к устройству и способу получения силанов общей формулы HnSiCl4-n, где n=1, 2, 3 или 4 посредством дисмутации более высокохлорированных силанов в присутствии катализатора, с помощью устройства, используемого для процесса, основанного на комбинации по меньшей мере одной дистилляционной колонны и по меньшей мере одного бокового реактора, то есть внешнего реактора.
Реакцию дисмутации используют, например, для получения дихлорсилана (ДХС, H2SiCl2) из трихлорсилана (ТХС, HSiCl3) с образованием тетрахлорида кремния (ТХК, SiCl4) как побочного продукта. Другой пример представляет собой получение моносилана (SiH4) из ТХС, который аналогично приводит к образованию ТХК как побочного продукта.
Такие каталитические процессы получения силанов, имеющих низкую степень хлорирования, например моносилана или ДХС, из более высокохлорированных силанов, обычно ТХС, широко используют в промышленности. В них обмен атомов водорода и хлора между двумя молекулами силанов обычно происходит согласно общему уравнению реакции
по реакции дисмутации или диспропорционирования. Здесь х может быть от 0 до 3, а у может быть от 1 до 4. Пример этой реакции по уравнению (I) представляет собой получение ДХС из ТХС (уравнение I с х=у=1) (ЕР 0474265).
Если объединено множество последовательных реакций, можно получать силан путем дисмутации в три стадии, начиная с трихлорсилана к дихлорсилану, к монохлорсилану и, наконец, к моносилану с образованием тетрахлорида кремния (ТХК)
Таким образом, моносилан в настоящее время, в общем, получают из трихлорсилана дисмутацией ТХС (например, в DE 2162537, DE 2507864, DE 3925357, DE 3311650, DE 10017168, патент США 3968199).
Другие способы получения моносилана представляют собой, например, восстановление SiF4с помощью комплексных гидридов металлов (ЕР 0337900) или пути реакций через гидроалкоксисиланы (US 6103942).
Катализаторы, используемые для дисмутации, представляют собой обычно ионообменники, например, в форме функционализированных аминогруппами полистиролов (DE 10057521), функционализированных аминогруппами неорганических носителей (ЕР 0474265, ЕР 0285937), или катализаторы из органополисилоксанов (DE 3925357). Они могут быть введены непосредственно в колонну, либо в качестве единственного слоя (DE 2507864), слоями (US 5338518, US 5776320) или в сетчатую структуру (WO 90/02603). В качестве альтернативы катализатор может быть размещен в одном или более внешних реакторах, с входными и выходными отверстиями, соединенными с различными точками в дистилляционной колонне (US 4676967, ЕР 0474265, ЕР 0285937, DE 3711444).
Вследствие физических свойств участвующих в реакции силанов, см. таблицу 1, и часто очень неблагоприятного положения химического равновесия в реакции дисмутации, реакцию и обработку дистилляцией обычно проводят как объединенный процесс.
Лучшим возможным объединением реакции и разделения материалов здесь является реакционная ректификация. Для этой цели было предложено использование структурированной насадки (DE 19860146), но предпочтителен более высокий объем катализатора из-за низкой скорости реакции. Это может быть обеспечено посредством одного или более боковых реакторов. Здесь боковой поток принимают из дистилляционной колонны, подают к боковому реактору и приводят там в контакт с гетерогенным, фиксированным катализатором. Смесь продуктов, покидающую боковой реактор, подают назад в дистилляционную колонну (например, DE 4037639, DE 10017168). Однако недостаток здесь состоит в том, что обычно используют насосы для перемещения реакционной смеси в установке, то есть между реактором и колонной. Вследствие самопроизвольной воспламеняемости моносилана и монохлорсиланов, в частности небольшая утечка, которая может легко возникать в случае движущихся частей, может иметь катастрофические последствия. Кроме того, движущиеся части устройства обычно имеют более высокие требования эксплуатации, чем не перемещающиеся части. Кроме того, техническое обслуживание и ремонт включают потенциальные опасности вследствие легкой горючести или самопроизвольной воспламеняемости продуктов реакции, которые должны быть сведены к минимуму.
Другой недостаток известных концепций бокового реактора состоит в том, что соответствующий поток обычно перекачивают через два теплообменника, один перед и один после реактора, возможно, с регенерацией тепла. Это позволяет управлять температурой реактора независимо от температуры дистилляции. Это предназначено, например, для того, чтобы гарантировать, что в реакторе присутствует одна фаза так, чтобы в реакторе преобладал определенный поток.
Реакция дисмутации представляет собой реакцию, конверсия которой ограничивается химическим равновесием. Это обстоятельство требует отделять продукты реакции от непрореагировавших исходных материалов, чтобы запускать конверсию всего процесса до ее завершения.
Если в качестве операции разделения выбирают дистилляцию, которая является возможной вследствие положения точек кипения, см. таблицу 1, энергетически идеальное устройство было бы бесконечно высокой дистилляционной колонной, в которой достижение химического равновесия обеспечивается на каждой тарелке или каждой теоретической тарелке посредством подходящего катализатора или соответственно длительного времени обработки. Это устройство имело бы самые низкие возможные энергетические потребности и, таким образом, имело бы самые низкие возможные эксплуатационные расходы [см. Фиг.6 и также Sundmacher и Kienie (редакторы), "Reactive Distillation" («Реакционная дистилляция»), издательство Wiley-VCH, Вайнхайм, 2003].
Другой недостаток известных процессов, устройств и боковых реакторов, таких, в которых зоны реакции интегрированы в колонну, состоит в трудности замены катализатора. При получении силанов, имеющих низкую степень хлорирования, катализатор неизбежно загрязняется этими веществами и должен быть полностью освобожден от них прежде, чем замена будет возможна. В известных устройствах это не может быть выполнено без проблем из-за затруднения в прохождении очищающего агента, например азота, определенным способом через слои катализатора. Кроме того, сама замена страдает от значительных затруднений.
Поэтому задача изобретения состоит в обеспечении дальнейшей возможности производства, в частности, силанов, имеющих низкую степень хлорирования, а также моносилана на базе реакторов и дистилляционных колонн. При достижении этой задачи, в особенности, должны быть устранены указанные выше недостатки.
Эта задача была достигнута в соответствии с изобретением, как оно изложено в приложенной формуле изобретения.
Таким образом, неожиданно было обнаружено, что силаны, имеющие низкую степень хлорирования, а также моносилан могут быть получены из более высокохлорированных силанов, более конкретно из трихлорсилана и/или дихлорсилана в присутствии катализатора простым и экономичным образом даже без насоса для перемещения потоков между колонной и реактором, когда для этой цели используют устройство, см., например, Фиг.1, которое основано на, по меньшей мере, одной дистилляционной колонне (1), имеющей нижнюю часть (1.1) колонны и верхнюю часть (1.2) колонны, по меньшей мере, один боковой реактор (2) со слоем (3) катализатора, по меньшей мере, одно входное отверстие (1.3) для подачи, отверстие (1.4) для отвода продукта и, по меньшей мере, одно дополнительное отверстие (1.5 или 1.8) для отвода продукта, где дистилляционная колонна (1) снабжена, по меньшей мере, одной тарелкой (4) с патрубком и, по меньшей мере, один боковой реактор (2) соединен с дистилляционной колонной (1) через, по меньшей мере, три трубы (5, 6, 7) так, что точка соединения линии (5) к дистилляционной колонне (1) для выгрузки конденсата из тарелки (4, 4.1) с патрубком расположена на более высоком уровне, чем верхний край слоя катализатора (3, 3.1 или 3.2), линия (6) для выгрузки жидкой фазы из бокового реактора (2) открывается (6.1) в дистилляционную колонну (1) ниже тарелки (4) с патрубком, и это отверстие (6, 6.1) расположено на более низком уровне, чем верхний край слоя катализатора (3, 3.1 или 3.2), и линия (7) для выгрузки газовой фазы из соединенного бокового реактора (2) открывается (7.1) в дистилляционную колонну (1) выше уровня (4.1) тарелки с патрубком (4).
Устройство по изобретению предпочтительно может быть оборудовано нагреваемой нижней частью (1.6, 1.1) колонны, а также низкотемпературным охлаждением (1.7) в верхней части (1.2) колонны. Кроме того, колонна (1) может предпочтительно быть снабжена, по меньшей мере, одной насадкой (8) колонны и иметь, по меньшей мере, одно дополнительное входное отверстие (1.3) для подачи или отверстие (1.5) для отвода продукта.
Как реакцию, так и разделение жидкости и присутствующих газовых фаз можно осуществить успешно и сравнительно легко в таком устройстве.
В настоящем устройстве также можно обходиться без теплообменников перед и после реактора.
Кроме того, такие устройства демонстрируют высокую надежность и являются сравнительно простыми для управления и обслуживания.
Кроме того, устройство настоящего типа позволяет простой запуск и работу процесса.
Кроме того, катализатор может быть заменен управляемым и сравнительно простым образом в настоящем устройстве.
Эта установка также может быть разгружена почти без проблем.
Настоящее изобретение соответственно обеспечивает устройство для получения силанов общей формулы HnSiCl4-n, где n=1, 2, 3 и/или 4 посредством дисмутации, по меньшей мере, одного относительно высокохлорированного силана в присутствии катализатора, которое основано на, по меньшей мере, одной дистилляционной колонне (1), имеющей нижнюю часть (1.1) колонны и верхнюю часть (1.2) колонны по меньшей мере один боковой реактор (2) со слоем (3) катализатора по меньшей мере, одно входное отверстие (1.3) для подачи, отверстие (1.4) для отвода продукта и, по меньшей мере, еще одно отверстие (1.5 или 1.8) для отвода продукта, где дистилляционная колонна (1) снабжена по меньшей мере одной тарелкой с патрубком (4), и, по меньшей мере, один боковой реактор (2) соединен с дистилляционной колонной (1) через, по меньшей мере, три трубы (5, 6, 7) таким способом, что точка присоединения линии (5) к дистилляционной колонне (1) для выгрузки конденсата из тарелки с патрубком (4, 4.1) расположена на более высоком уровне, чем верхний край слоя (3, 3.1 или 3.2) катализатора, линия (6) для выгрузки жидкой фазы из бокового реактора (2) открывается (6.1) в дистилляционную колонну (1) ниже тарелки с патрубком (4), и это отверстие (6, 6.1) расположено на более низком уровне, чем верхний край слоя (3, 3.1 или 3.2) катализатора и линия (7) для выгрузки газовой фазы из соединенного бокового реактора (2) открывается (7.1) в дистилляционную колонну (1) выше уровня (4.1) тарелки с патрубком (4).
Фиг.1, 2, 3, 4 и 5 показывают предпочтительные варианты выполнения устройств по изобретению. Инженерная конструкция компонентов, присутствующих здесь, например колонны, реакторов со слоем катализатора, линий, клапанов, охладителей, нагревателей, разделяющей насадки и т.д. известна сама по себе.
Устройства по изобретению предпочтительно основаны на более чем одном реакторном узле. Таким образом, в устройстве по изобретению, предпочтение отдают двум, трем, четырем или пяти реакторным узлам, причем один реакторный узел содержит по меньшей мере дополнительные узлы (2), (3), (4), (5), (6) и (7). Особенно предпочтительно устройство по изобретению на основе двух или трех таких реакторных узлов. Также возможно, чтобы два или три реактора (2, 3), соединенных параллельно, присутствовали в реакторном узле.
Полная конверсия при низком потреблении энергии может быть предпочтительно достигнута при конкретной высокой производительности в установках, разработанных по изобретению.
Чтобы гарантировать достаточное время пребывания над катализатором для относительно медленной реакции дисмутации, то есть гарантировать достаточно низкую объемную скорость над катализатором для достижения приблизительного химического равновесия, потребность в пространстве для реакции, в общем, больше, чем для дистилляции. По этой причине используемые реакторы (2) должны предпочтительно быть подобраны по размеру так, чтобы 80-98% от равновесной конверсии, то есть максимально достижимой конверсии, могли там быть достигнуты.
Устройства по изобретению также предпочтительны, поскольку существующие боковые реакторы могут быть относительно легко затем снабжены дистилляционной колонной по изобретению.
Устройства по изобретению обычно снабжают слоем (3) катализатора, расположенным в боковом реакторе (2). Возможно использовать известные катализаторы дисмутации, и они могут присутствовать в слое катализатора в свободной или упорядоченной форме. Предпочтение отдают катализатору, который присутствует в слое (3) катализатора в структурированной сетчатой насадке или в насадочных элементах, выполненных из сетки, или слое катализатора (3), содержащем насадочные элементы или заполнения, выполненные из каталитически активного материала. Кроме того, по меньшей мере, одна экранирующая трубка или подложка, огражденная экраном, могут присутствовать в слое катализатора (3), благодаря которым предпочтительно может быть обеспечено дополнительное поперечное сечение и, таким образом, по существу беспрепятственные газовые и жидкостные потоки.
Предпочтительные катализаторы дисмутации представляют собой, например, но не исключительно, макропористую ионообменную смолу, имеющую третичные аминогруппы, или пористую подложку, которая была модифицирована или импрегнирована, по меньшей мере, одним алкиламинотриалкоксисиланом.
Кроме того, устройства по изобретению предпочтительно могут быть снабжены дополнительными линиями и узлами управления для заполнения, работы, разгрузки и промывки соответствующих операционных узлов, см., в частности клапаны с а) до k) на Фиг.3, 4 и 5.
Это позволяет, например, на основе фиг.4, закрывать клапаны i) и затем h) и промывать, и сушить боковой реактор (2), включая катализатор (3), сухим азотом или аргоном. Клапан k) может затем быть закрыт, и катализатор может быть убран или заменен под защитным газом. Реактор может быть затем предпочтительно возвращен в работу путем закрытия клапана g) и открытия клапанов i), k) и h) фактически без заметного прерывания работы установки.
Запуск или заполнение установки относительно высокохлорированным силаном в качестве исходного материала и введение исходного материала в процессе работы установки могут, например, быть выполнены через клапаны g), f), e), с), d), a), b), (1.3) и/или нижнюю часть колонны (1.1), см. фиг.1, 3, 4 и 5.
Кроме того, продукт может быть выгружен через верхнюю часть колонны (1.8), отводящий канал (1.5) и/или нижнюю часть колонны (1.4) в ходе работы установки по изобретению.
Настоящее изобретение также обеспечивает способ получения силанов общей формулы HnSiCl4-n, где n=1, 2, 3 и/или 4, путем дисмутации высших хлорсиланов в присутствии катализатора при температуре в интервале от -120 до 180°С и давлении от 0,1 до 30 бар абс. в устройстве по изобретению, который включает наполнение устройства, по меньшей мере, до высоты слоя катализатора жидким гидрохлорсиланом так, что хлорсилан входит в контакт с катализатором, предпочтительно так, что катализатор полностью или частично увлажнен жидкостью, и введение исходного материала непрерывно через входное отверстие колонны в количестве, соответствующем количеству продукта, выгружаемого из системы. Исходный материал может быть подан непосредственно в колонну (1.3), более конкретно в среднюю секцию колонны, и/или в, по меньшей мере, один из боковых реакторов (2), либо через нижнюю часть (1.1), в особенности в ходе запуска. В общем, реакция начинается, когда катализатор и исходный материал входят в контакт друг с другом.
Слой катализатора бокового реактора предпочтительно работает при температуре от -80 до 120°С в способе по изобретению. Температура реактора или температура слоя катализатора предпочтительно может быть отрегулирована или ею можно управлять (2.1) посредством охлаждающей или нагревающей рубашки на реакторе.
Кроме того, поток в слой (3) катализатора может идти либо сверху, см. фиг.1, 2 и 3, либо снизу, см. фиг.4 и 5.
Если жидкую фазу подают сверху, см. фиг.1, 2 и 3, она обычно течет вниз от одной тарелки (4) с патрубком через линию (5) и распределяется по верхней части слоя катализатора (3).
Если впуск идет снизу, можно выбрать конфигурацию устройства, как можно предпочтительно понять из фиг.4 или 5, где боковой реактор (2), слой (3) катализатора, трубы (5), (6) и (7) расположены в отношении тарелки (4) с патрубком и колонны (1) так, что поток (5.1) к слою катализатора (3) идет снизу через линию (5). В этом случае жидкая фаза из тарелки (4) с патрубком также может вытекать и течь снизу в слой катализатора (3) через линию (5) вследствие гидростатического давления (см. разницу высот между уровнями 6.1, 3.1, 4.1 и 7.1). Хлорсилан из жидкой фазы таким образом контактируют с катализатором и реагирует в соответствии с уравнениями реакций (II), (III) и/или (IV). Газообразный продукт реакции может также подниматься через линию (7) в колонну (1) и там, если годится, проходить через узлы (8) и (4.2), частично конденсироваться или разделяться. Жидкая фаза обычно рециркулирует к колонне через линию (6). Кроме того, поток жидкой фазы к реактору или к колонне может дополнительно регулироваться через линию (5.2, сравни 5.3 на Фиг.3).
Конкретные требования, которым должен удовлетворять такой реактор из-за свойств реакции и участвующих веществ, описаны ниже.
Как сказано выше, к обработке и переработке силанов общей формулы SiHxCl4-xпредъявляют много требований с точки зрения безопасности, так как содержащие хлор силаны образуют токсичный хлористый водород при контакте с атмосферной влагой и также вызывают твердые отложения двуокиси кремния, которые могут блокировать компоненты установки. Кроме того, содержащие водород силаны являются горючими и становятся все более легко воспламеняемыми с уменьшением содержания хлора. Дихлорсилан, например, может самопроизвольно воспламеняться, а моносилан немедленно реагирует с атмосферным кислородом, причем в результате замедленного начала реакции могут формироваться взрывчатые смеси, несмотря на самопроизвольную воспламеняемость. По этой причине следует избегать контакта реакционной смеси с воздухом и водой. Это соответственно достигают путем предотвращения возможных мест утечки и сведения к минимуму потребности в техническом обслуживании и ремонте.
В соответствии с изобретением гидростатическую высоту выпускного отверстия или тарелки колонны (4) из колонны (1) предпочтительно используют вместо насоса, чтобы перемещать реакционную смесь через реакторы (2). Эта гидростатическая высота по изобретению может быть обеспечена либо внутри, либо снаружи колонны в форме переточных труб. Таким образом, реакционная смесь может свободно проходить под действием силы тяжести и нет больше необходимости в движущихся частях внутри области, имеющей контакт с продуктом, см. (3.1), (4.1), (6.1) и (7.1) на фиг.2, 3, 4 и 5. Однако поскольку гидростатическая высота способна создавать только сравнительно малый перепад давления, гидравлическое сопротивление в реакторах предпочтительно должно поддерживаться низким.
Другое предпочтительное свойство настоящей системы состоит в том, что кипящий при промежуточной температуре компонент, например ДХС, образует в реакции компонент, кипящий при более низкой температуре, в настоящем случае МХС, и компонент, кипящий при более высокой температуре, здесь ТХС. Более того, неожиданно было обнаружено, что по этой причине в реакторах образуется некоторое количество газа. Кроме того, этот газ имеет преимущественное свойство, что маленькие пузырьки присоединяются к частицам катализатора и, следовательно, снижают свободное поперечное сечение слоя катализатора, доступного жидкости.
В устройстве по изобретению дополнительное нагревание или охлаждение области дистилляции колонны на высоте реакторного узла или узлов, в общем, предпочтительно может быть исключено. В этом случае устройство предпочтительно работает со смесью жидкой и газовой фаз. Температура, приводящая к дистилляции или реакции, пригодна для проведения реакции при абсолютном давлении от 0,1 до 30 бар, предпочтительно от 1 до 8 бар. Таким образом, предпочтительно можно обойтись без использования теплообменников для входящих потоков и выходящих потоков продукта реакторов.
Проблемы газовых пузырьков, присоединяющихся к катализатору, решают, по изобретению, другим способом, как описано ниже.
Направление потока реакционной жидкости через реакторы может быть либо сверху вниз, см. фиг.1, 2 и 3, либо снизу вверх, см. фиг.4 и 5.
Преимущество первого варианта, см. фиг.2, состоит в том, что катализатор (3) входит в контакт с газовой и жидкой фазами. Известно, что реакция протекает более быстро в газовой фазе. Однако перебрасывание жидкости, текущей из колонны (1) в реактор (2), может происходить, если это перебрасывание не было устранено в соответствии с изобретением путем предпочтительного обеспечения достаточного свободного пространства, то есть свободного поперечного сечения для течения в установке газообразного и жидкого компонентов (2) и (3). Этого можно достичь, в частности, посредством специфической(-ого) конфигурации или расположения катализатора. Особенно предпочтительные типы насадки представляют собой, например, продукты Katapak(R) от Sulzer Chemtech или Katamax(TM) от Koch. Другой возможностью может быть насадка из частиц катализатора в элементах насадки, изготовленных из сетки, которая затем может быть введена как произвольный слой в реактор. Другая предпочтительная возможность состоит в установке сетчатых трубок в реакторе, который в ином случае заполнен полным слоем катализатора, который может аналогично помогать течению особенно предпочтительным способом.
Другой вариант избежать перебрасывания в реакторе состоит в том, чтобы поток в реактор шел снизу, см. фиг.4 и 5. Здесь газовые пузырьки предпочтительно переносятся вверх и из потока продукта и отдельно рециркулируют в дистилляционную колонну.
Независимо от выбранного варианта выполнения устройства по изобретению предпочтительно, чтобы газообразные продукты реакции возвращались в дистилляционную колонну отдельно от жидких продуктов реакции. Это может снижать нагрузку дистилляционной колонны, так как газовая фаза обычно возвращается в колонну в более высокой точке, чем жидкость.
Способ по изобретению и новые устройства, используемые для этой цели, предпочтительно могут также позволить выполнять простую и безопасную замену катализатора. Если в качестве катализатора используют основной ионообменник, загрязнение этого катализатора комплексами металлических или неметаллических ионов должно быть принято во внимание.
Кроме того, срок службы катализатора ограничен, помимо прочего, ограниченной термической стабильностью катализатора. Замена катализатора может быть даже более легкой, если катализатор используется в картридже, и только картридж удаляют из реактора и заменяют. Как альтернатива, катализатор может быть изъят из реактора в текучей форме в сыром или сухом состоянии и аналогично рециркулировать.
В способе по изобретению предпочтительно, чтобы количество и размеры реакторов были такими, что все устройство может продолжать работу при только слегка пониженной нагрузке, даже когда один реактор выведен из работы. Этого можно достичь, во-первых, дублированием реакторов в соответствующем положении. Во-вторых, когда установка имеет, по меньшей мере, 2, предпочтительно 3 реактора на реакторный узел, она может иметь такие размеры, чтобы ее можно было продолжать эксплуатировать при пониженной нагрузке и с повышенной подачей энергии.
Практическое преимущество этого способа по изобретению по сравнению с реактивной дистилляционной колонной, имеющей установленный внутри катализатор, состоит в том, что, когда катализатор заменяют, нет необходимости заменять всю насадку катализатора, но вместо этого только заменять слой катализатора, который стал дезактивированным. Вся установка может затем продолжать работу, возможно, при пониженной нагрузке.
Перед проведением замены свежий катализатор соответственно подготавливают для использования с чувствительной к воздуху и влаге реакционной смесью. Очистка свежего катализатора может быть проведена промывкой очищенной водой и последующей сушкой посредством, возможно, подогретого азота; использования посторонних веществ, таких как метанол, в этом случае можно избежать. Катализатор предпочтительно сушат в установленном состоянии, которое дает возможность избежать загрязнения после сушки.
Отработанный катализатор насыщается хлорсиланами и может быть освобожден от них перед его удалением из реактора. Для этой цели реактор (2) может быть изолирован от установки посредством наполнения, регулирования или освобождения линий, как описано выше, см. фиг.4 и 5, и быть освобожденным от жидкости, присутствующей в нем. Катализатор может быть затем аналогично высушен с использованием, возможно, предварительно нагретого азота или инертного газа, такого как аргон.
Кроме того, возможно и особенно предпочтительно (а) использовать трихлорсилан в качестве высшего хлорсилана в способе по изобретению, используя устройство по изобретению, и получать в качестве продуктов, по существу, моносилан, монохлорсилан, дихлорсилан и тетрахлорид кремния или смесь из, по меньшей мере, двух из этих соединений, или (ii) использовать дихлорсилан и получать моносилан, монохлорсилан, трихлорсилан и тетрахлорид кремния или смесь из по меньшей мере двух из этих соединений.
Изобретение может быть использовано для получения силанов общей формулы HnSiCl4-n, где n=1, 2, 3 и/или 4 посредством дисмутации по меньшей мере одного относительно высокохлорированного силана в присутствии катализатора. Устройство состоит из, по меньшей мере, одной дистилляционной колонны 1, снабженной одной тарелкой 4 с патрубком, и одного бокового реактора 2 со слоем 3 катализатора, соединенным с дистилляционной колонной 1 через три трубопровода 5, 6, 7. Точка присоединения трубопровода 5 к дистилляционной колонне 1 для выгрузки конденсата из тарелки 4, 4.1 с патрубком находится на более высоком уровне, чем верхний край слоя 3, 3.1 или 3.2 катализатора. Трубопровод 6 для выгрузки жидкой фазы из бокового реактора 2 входит в дистилляционную колонну 1 ниже тарелки 4 с патрубком. Отверстие 6, 6.1 находится на более низком уровне, чем верхний край слоя 3, 3.1 или 3.2 катализатора. Трубопровод 7 для выгрузки газовой фазы из соединенного бокового реактора 2 входит 7.1 в дистилляционную колонну 1 выше уровня 4.1 тарелки 4 с патрубком. Силаны получают при температуре от -120 до 180°С и абсолютном давлении от 0,1 до 30 бар. Изобретение позволяет получать силаны на базе реакторов и дистилляционных колонн. 2 н. и 17 з.п. ф-лы, 6 ил., 1 табл.