Код документа: RU2294034C1
Область техники
Изобретение относится к области приборостроения, точнее к газоразрядным приборам для очистки и стерилизации материалов и оборудования ультрафиолетовым излучением газового разряда. Оно предназначено для использования в медицине, биотехнологии, пищевой и фармацевтической промышленности, а также может применяться для очистки питьевой или сточных вод, для стерилизации производственных и иных помещений и расположенного в них оборудования в промышленности или в бытовых условиях.
Предшествующий уровень техники.
Известны расходные электродуговые генераторы плазмы постоянного тока, содержащие средства возбуждения газового разряда в виде электродов, источника электропитания и системы подачи газа в межэлектродное пространство (SU 667032, кл. Н 05 Н 1/06, 1977). Такие устройства позволяют генерировать плазменную струю, которую используют, в частности, в качестве источника ультрафиолетового излучения, способного очищать и стерилизовать жидкости. Недостатки подобных устройств состоят в сложности и дороговизне вакуумной техники, необходимой для обеспечения пониженного давления, при котором возможно получение необходимой интенсивности ультрафиолетовой составляющей излучения плазмы, в высоком уровне загрязнений плазмы продуктами эрозии электродов, в малом ресурсе дуговых плазмотронов (до нескольких десятков часов).
Существенное снижение стоимости оборудования и повышение его ресурса обеспечивают источники ультрафиолетового излучения (Рохлин Г.Н. "Разрядные источники света", М.: Энергоатомиздат, 1991, с.327-328), содержащие наполненную газом при пониженном давлении отпаянную диэлектрическую колбу со средствами возбуждения в ее полости тлеющего разряда. Указанные средства возбуждения газового разряда представляют собой холодные электроды, подключенные к источнику электропитания, и имеют либо отдельный тракт жидкостного охлаждения, либо погружены непосредственно в жидкость.
Подобные приборы не требуют применения громоздкой и дорогостоящей вакуумной техники и обеспечивают технический ресурс до величин порядка тысячи часов. Однако их эффективность в очистке жидкости невысока в силу относительно низкой интенсивности ультрафиолетовой компоненты испускаемого излучения.
Указанный недостаток ликвидируют газоразрядные источники ультрафиолетового излучения, содержащие наполненную инертным газом высокого давления и ртутью (в виде капли в исходном состоянии) диэлектрическую колбу, обычно выполняемую из кварца, со средствами возбуждения в ее полости газового разряда повышенного давления и трактом жидкостного охлаждения, причем указанные средства представляют собой введенные в полость колбы тугоплавкие электроды (Рохлин Г.Н. "Разрядные источники света", М.: Энергоатомиздат, 1991, с.487-489).
Технический ресурс указанных источников достигает 1000-2700 ч для ламп разных марок. Однако интенсивность излучения этих источников непрерывно убывает в процессе их эксплуатации в связи с непрерывным разрушением (эрозией) их электродов в процессе горения разряда и из-за поглощения света в пленке материала электродов, осаждающейся на внутренней поверхности стенки колбы в процессе эрозии электродов.
Наиболее эффективными из электродных систем являются ртутные лампы (аргон+пары ртути) низкого давления, генерирующие УФ-излучение в основном на длине волны λ=254 нм (например, лампы Philips TUV с мощностью УФ-излучения до 100 Вт). Однако соответствующие установки, созданные на их основе мощностью энергопотребления N=1 кВт, слишком громоздки.
Известен газоразрядный источник ультрафиолетового излучения, состоящий из СВЧ-генератора, соединенного с газонаполненной разрядной емкостью линией передачи СВЧ, содержащей подсоединенный к СВЧ-генератору волновод, емкости для обрабатываемой среды, смежной с газоразрядной емкостью, причем общие стенки этих емкостей выполнены из диэлектрика, прозрачного для УФ-излучения (Bergmann Н, et al. "New UV irradion and direct electrolysis-promising methods for water disinfection", Chem. Eng. J., 2002, v.85, pp.111-117). Однако это устройство недостаточно эффективно, т.к. более половины энергии УФ-излучения уходит в окружающее пространство, а некоторая часть энергии СВЧ расходуется на прямой нагрев обрабатываемой жидкостной среды.
Наиболее близким техническим решением к заявляемому изобретению является разработанный ранее авторами газоразрядный источник УФ-излучения (RU 2236060, 2002, Кл. Н 01 J 61/02), состоящий из СВЧ-генератора, волновода, газоразрядной емкости (ГЕ) и емкости для обрабатываемой среды (ЕОС), снабженной патрубками для ввода и дренажа обрабатываемой среды (воды, соков и т.п.). Внешний коаксиальный электрод волновода СВЧ-генератора соединен со стенкой ГЕ, а центральный электрод волновода введен в специальную полость, выполненную по оси ГЕ. ГЕ находится внутри ЕОС, причем ГЕ и ЕОС выполнены соосными и имеют форму круговых цилиндров.
Недостатками устройства являются невозможность регулирования температуры стенок ГЕ, что не позволяет осуществлять работу лампы в оптимальном температурном режиме (при 40°С), когда достигается пик интенсивности потока излучения при длине волны 254 нм, обеспечивая максимальное бактерицидное воздействие. Кроме того, в ходе эксплуатации необходимо периодически очищать стенки ГЕ от образующегося осадка, а также существует опасность выхода из строя СВЧ-генератора за счет отраженного излучения.
Технической задачей, решаемой в ходе создания данного изобретения, было создание источника достаточно простого и надежного в эксплуатации, в котором обеспечивалась бы оптимальная температура стенок ГЕ, отпала бы необходимость периодической очистки поверхности ламп и была бы обеспечена защита магнетрона от отраженного излучения.
Технический результат достигался путем включения в состав газоразрядного источника ультрафиолетового излучения (ИУИ), состоящего из СВЧ-генератора, связанного с разрядной емкостью, выполненного из диэлектрика волноводом, а также емкости для обрабатываемой среды (ЕОС), имеющей форму круговой цилиндрической камеры, причем ИУИ
- дополнительно содержит кварцевую трубку, установленную внутри ЕОС коаксиально без зазора между ними;
- содержит антенну, расположенную по центральной оси устройства,
- в качестве разрядной емкости содержит по крайней мере одну безэлектродную ультрафиолетовую лампу (БЭУФЛ), размещенную в пространстве между антенной и внутренней стенкой кварцевой трубки.
Для уменьшения воздействия электромагнитного излучения на окружающую среду и лучшей транспортировки излучения в объеме, занимаемом УФ-лампами, между внутренней стенкой кварцевой трубки и ультрафиолетовой лампой может быть размещена экранирующая металлическая сетка, которая прозрачна для УФ-излучения и практически не прозрачна для СВЧ-излучения.
При использовании одной БЭУФЛ она, как правило, имеет форму тороида, расположенного внутри кварцевой трубки соосно с ней, при использовании двух и более безэлектродных ультрафиолетовых ламп их размещают симметрично в пространстве между антенной и внутренней стенкой кварцевой трубки.
Для лучшего регулирования температуры стенок внутреннее пространство емкости для обрабатываемой среды может быть связано с вентилятором, включаемым, как правило, на всасывание.
Для защиты магнетрона от излучения он может быть размещен сбоку от центральной оси источника, при этом его связь с волноводом осуществляется через отрезок прямоугольного волновода.
Краткое описание чертежей.
ЕОС либо выполняется хотя бы частично (например, внутренняя стенка) из прозрачного для УФ-излучения материала и может располагаться с зазором в отношении кварцевой трубки, либо выполняться, например, из нержавеющей стали, в виде камеры, надеваемой на кварцевую трубку без зазора (в этом случае вода подается в пространство камеры, ограниченное наружной поверхностью кварцевой трубки).
На фиг.1 показано предлагаемое устройство с несколькими (четырьмя) БЭУФЛ (вид сверху и вид сбоку); на фиг.2 - это же устройство с одной центральной БЭУФЛ. Устройство на фиг.1 дополнительно снабжено вентилятором.
На чертежах приняты следующие обозначения: 1 - антенна, 2 - СВЧ-генератор (магнетрон), 3 - емкость для обрабатываемой среды (ЕОС), 4 - кварцевая трубка, 5 - безэлектродная УФ-лампа (БЭУФЛ), 6 - экранирующая металлическая сетка, 7 - фланец, 8 - патрубок для подачи (дренажа) обрабатываемой среды, 9 - вентилятор, 10 - отрезок прямоугольного волновода.
Лучший вариант осуществления изобретения.
Представленный на чертеже 1 газоразрядный источник ультрафиолетового излучения содержит магнетрон 2, который связан с БЭУФЛ 5 через антенну 1 и отрезок прямоугольного волновода 10, являющийся линией передачи СВЧ. Отрезок прямоугольного волновода 10 защищает магнетрон от отраженного СВЧ-излучения.
Емкость для обрабатываемой среды 3 выполнена в виде цилиндра и снабжена патрубками 8 для ввода и дренажа обрабатываемой среды, преимущественно жидкости, например питьевой или иной воды, соков и пр. В полости ЕОС 3 по центральной оси расположена антенна 1, вокруг которой размещены соосно экранирующая сетка 6 и кварцевая трубка 4. В зоне между антенной 1 и сеткой 6 размещены симметрично БЭУФЛ 5 (в данном случае 4 лампы). Над верхним концом лампы установлен вентилятор 9.
Работает заявленное устройство следующим образом. Заполняют ЕОС 3 жидкостью и запускают генератор 2 подачей на него напряжения электропитания. После включения генератора включают прокачивание охлаждающей (обрабатываемой) жидкости через ЕОС.
Напряжение передается через антенну 1 на БЭУФЛ 5, в которых возбуждается СВЧ-разряд и начинается генерация УФ-излучения, которое после прохождения через стенки лампы 5 сетку 6 и кварцевую трубку 4 воздействует на прокачиваемую через ЕОС 3 жидкость, обеспечивая ее стерилизацию. В ходе работы ламп температура стенок лампы 5, трубки 4 и емкости 3 при необходимости регулируется с помощью вентилятора 9 таким образом, чтобы она была в диапазоне 40°С, обеспечивая тем самым максимум излучения при длине волны 254 нм, характеризующейся максимальным бактерицидным воздействием на микроорганизмы.
Заявленное устройство было изготовлено и испытано в Институте общей физики РАН. В качестве генератора СВЧ-колебаний был применен магнетрон бытовых микроволновых печей типа Samsung JV75P(31), работающий на частоте 2,45 ГГц при средней мощности ˜1 кВт. В качестве БЭУФЛ использовали 5 ламп, изготовленных в мастерских института.
ЕОС 3 была выполнена из стали. Расход обрабатываемой жидкости достигал 3 л/мин. В качестве таковой использовались водопроводная вода и различные физиологические растворы (солей, бактерий и пр.). В результате проведенных испытаний была определена мощность ультрафиолетового излучения, поступающего в воду: N=80 Вт. Обработка физиологического раствора, зараженного бактериями Е.coli на уровне 106-107 клеток/см3, привела к полной их гибели. В итоге производительность процесса стерилизации оказалась равной 30 м3/ч.
Промышленная применимость
В качестве базового объекта для сравнения технико-экономической эффективности изобретения был выбран прототип изобретения. Заявленное техническое решение позволило повысить КПД источника с 6 до 10-15% за счет оптимизации спектра УФ-излучения. Одинаковые результаты по обеззараживанию воды удается получить при снижения времени нахождения жидкости в зоне облучения на 40-50%. Предлагаемое устройство более безопасно и просто в эксплуатации по сравнению с прототипом, позволяет легко заменять детали, вышедшие из строя в ходе его эксплуатации.
Назначение данного изобретения - производство оборудования, необходимого для улучшения экологической обстановки как в бытовых условиях, так и в промышленности и торговле. Основанное на использовании преимущественно недорогих бытовых комплектующих изделий, оно позволит эффективно решать проблемы экологии и жизнеобеспечения человека.
Изобретение относится к области приборостроения. Техническим результатом является повышение надежности. Устройство, состоящее из СВЧ-генератора, связанного волноводом с разрядной емкостью, выполненной из диэлектрика, а также емкости для обрабатываемой среды (ЕОС), имеющей форму круговой цилиндрической камеры, снабжено кварцевой трубкой, установленной внутри ЕОС коаксиально без зазора между ними, и антенной, расположенной по центральной оси устройства. В качестве разрядной емкости используется, по крайней мере, одна безэлектродная ультрафиолетовая лампа (БЭУФЛ), размещенная в пространстве между антенной и внутренней стенкой кварцевой трубки. При использовании одной БЭУФЛ она имеет форму тороида, расположенного внутри кварцевой трубки соосно с ней, при использовании двух и более безэлектродных ультрафиолетовых ламп, их размещают симметрично в пространстве между антенной и внутренней стенкой кварцевой трубки. Между внутренней стенкой кварцевой трубки и ультрафиолетовой лампой может быть размещена экранирующая металлическая сетка. Для регулирования температуры стенок может быть использован вентилятор, включаемый на всасывание. 4 з.п. ф-лы, 2 ил.
Газоразрядный источник ультрафиолетового излучения