Формула
1. Система для обнаружения наступления сонливости у человека, содержащая:
один или более датчиков сердечного ритма (HR), которые захватывают HR-информацию человека;
одно или более вычислительных устройств, каковые вычислительные устройства находятся на связи друг с другом во всех случаях, когда имеется множество вычислительных устройств, и компьютерную программу средства обнаружения наступления сонливости, имеющую множество подпрограмм, исполняемых одним или более вычислительными устройствами, при этом одно или более вычислительных устройств инструктируются посредством подпрограмм компьютерной программы средства обнаружения наступления сонливости:
принимать HR-информацию от датчика или датчиков сердечного ритма,
извлекать набор признаков из HR-информации, каковые признаки, которые присутствуют среди множества признаков, которые могут быть извлечены из HR-информации, были определены как конкретно указывающие переход из состояния бодрствования человека в сонное состояние человека,
объединять извлеченные признаки для формирования входных данных обнаружения сонливости,
вводить входные данные обнаружения сонливости в классификатор искусственной нейронной сети (ANN), который был обучен различать между состоянием бодрствования человека и сонным состоянием человека на основе упомянутых извлеченных признаков,
идентифицировать из выходных данных ANN-классификатора, указывают ли входные данные обнаружения сонливости, что человек проявляет наступление сонливости, и
всякий раз, когда входные данные обнаружения сонливости указывают, что человек проявляет наступление сонливости, инициировать предупреждение о наступлении сонливости.
2. Система по п. 1, дополнительно содержащая подпрограмму сегментирования, которая исполняется перед исполнением подпрограммы для извлечения набора признаков из HR-информации, при этом подпрограмма сегментирования сегментирует HR-информацию, принятую от датчика или датчиков сердечного ритма, в последовательность сегментов предписанной длины всякий раз, когда принятая HR-информация находится в форме сигнала вариабельности сердечного ритма (HRV), и подпрограмма сегментирования вычисляет HRV-сигнал из принятой HR-информации всякий раз, когда принятая HR-информация не находится в форме сигнала вариабельности сердечного ритма (HRV), перед сегментированием HRV-сигнала в последовательность сегментов предписанной длины, и при этом подпрограммы для извлечения набора признаков из HR-информации, объединения извлеченных признаков, ввода входных данных обнаружения сонливости в ANN-классификатор, идентификации из выходных данных ANN-классификатора того, указывают ли входные данные обнаружения сонливости, что человек проявляет наступление сонливости, инициирования предупреждения о наступлении сонливости, исполняются по каждому из сегментов HRV-сигнала, по мере их создания.
3. Система по п. 2, при этом упомянутые сегменты предписанной длины HRV-сигнала имеют продолжительность две минуты, каждый, и представляют скользящее окно, так что существует предписанное время смещения между каждым сегментом.
4. Система по п. 3, при этом каждый сегмент HRV-сигнала двухминутной продолжительности представляет приблизительно 120 значений изменения сердечного ритма, причем подпрограмма сегментирования дополнительно содержит увеличение частоты выборки каждого сегмента HRV-сигнала до приблизительно 840 выборок значений изменения сердечного ритма с помощью методов аппроксимации кривых.
5. Система по п. 2, в которой подпрограмма для извлечения набора признаков из каждого сегмента HRV-сигнала содержит извлечение набора признаков с помощью дискретного быстрого преобразования Фурье (DFFT) и дискретного вейвлет-преобразования (DWT).
6. Система по п. 5, в которой DFFT используется, чтобы вычислять отношение мощности низкочастотных компонентов сегмента HRV-сигнала к мощности высокочастотных (HF) компонентов сегмента HRV-сигнала в качестве извлеченного признака, при этом DWT используется, чтобы вычислять из 8-уровневой декомпозиции HRV-сегмента коэффициенты энтропии D1-D8, коэффициент энтропии A8 и среднее значение коэффициентов энтропии A1-A8 в качестве извлеченных признаков.
7. Система по п. 1, при этом HR-информация содержит необработанный HR-сигнал, захваченный одним или более HR-датчиками, причем подпрограмма для извлечения набора признаков из HR-информации содержит первое вычисление сигнала вариабельности сердечного ритма (HRV) из необработанного HR-сигнала.
8. Система по п. 1, в которой один или более HR-датчиков содержат вычислительное устройство, которое вычисляет сигнал вариабельности сердечного ритма (HRV) из необработанного HR-сигнала, захваченного HR-датчиком или датчиками, причем HR-информация содержит HRV-сигнал.
9. Система по п. 1, в которой один или более датчиков сердечного ритма (HR) и одно или более вычислительных устройств находятся в едином устройстве обнаружения наступления сонливости.
10. Система по п. 9, в которой устройство обнаружения наступления сонливости является либо пригодным для ношения устройством, носимым на теле человека, либо мобильным устройством, переносимым человеком.
11. Система по п. 1, в которой один или более датчиков сердечного ритма (HR) находятся в пригодном для ношения устройстве, носимом на теле человека, и одно или более вычислительных устройств находятся в мобильном устройстве, переносимом человеком, причем пригодное для ношения устройство находится на беспроводной связи с мобильным устройством.
12. Система по п. 11, при этом HR-информация содержит необработанный HR-сигнал, захваченный одним или более HR-датчиками, который передается мобильному устройству, переносимому человеком.
13. Система по п. 11, при этом HR-информация содержит необработанный HR-сигнал, захваченный одним или более HR-датчиками, причем один или более HR-датчиков содержат вычислительное устройство, которое вычисляет сигнал вариабельности сердечного ритма (HRV) из необработанного HR-сигнала, каковой HRV-сигнал передается мобильному устройству, переносимому человеком.
14. Система по п. 1, в которой подпрограмма для инициирования предупреждения о наступлении сонливости содержит инициирование тревожного вызова человеку в форме сообщения, которое отображается на экране дисплея, который является видимым для человека.
15. Компьютерный программный продукт для обнаружения наступления сонливости у человека, содержащий:
компьютерную программу средства обнаружения наступления сонливости, имеющую множество подпрограмм, исполняемых одним или более вычислительными устройствами, каковые одно или более вычислительных устройств инструктируются посредством подпрограмм компьютерной программы средства обнаружения наступления сонливости:
принимать информацию о сердечном ритме (HR) человека, когда одно или более вычислительных устройств находятся на связи через сеть передачи данных с удаленным вычислительным устройством, ассоциированным с одним или более HR-датчиками, которые захватывают HR-информацию, при этом HR-информация принимается от удаленного вычислительного устройства через сеть передачи данных;
извлекать набор признаков из HR-информации, каковые признаки, которые присутствуют среди множества признаков, которые могут быть извлечены из HR-информации, были определены как конкретно указывающие переход из состояния бодрствования человека в сонное состояние человека,
объединять извлеченные признаки для формирования входных данных обнаружения сонливости,
вводить входные данные обнаружения сонливости в классификатор искусственной нейронной сети (ANN), который был обучен различать между состоянием бодрствования человека и сонным состоянием человека на основе упомянутых извлеченных признаков,
идентифицировать из выходных данных ANN-классификатора, указывают ли входные данные обнаружения сонливости, что человек проявляет наступление сонливости, и
всякий раз, когда входные данные обнаружения сонливости указывают, что человек проявляет наступление сонливости, передавать оповещение о наступлении сонливости.