Код документа: RU2142947C1
Предпосылки изобретения.
а) Область изобретения
Настоящее изобретение относится к противогрибковому агенту. В частности, настоящее
изобретение относится к противогрибковому агенту, используемому для лечения дерматомикоза, висцеромикоза и тому подобное. Более конкретно, настоящее изобретение относится к производному, содержащему
5-членное гетероциклическое кольцо или его конденсированное кольцо, и к его соли прибавления кислоты, которые используются в качестве противогрибковых агентов. Далее, настоящее изобретение относится к
способу получения такого производного и соли прибавления кислоты и к фармацевтической композиции, содержащей производное и его фармацевтически приемлемую соль.
Кроме того, настоящее изобретение относится к промежуточным продуктам синтеза соединения азола, используемого в качестве противогрибкового агента, и к способу его получения. В частности, настоящее изобретение относится к промежуточному продукту синтеза противогрибкового агента, эффективного при лечении дерматомикоза, грибковой инфекции внутренних органов и тому подобное, и к способу его получения.
b)
Описание уровня техники
В области противогрибковых агентов амфотерин В или тому подобные используются, например, при лечении mycosis profundus. Однако недавно были открыты синтетические
противогрибковые агенты азольного типа. Даже в этих агентах азольного типа, однако, имеется настоятельная потребность для развития более эффективного противогрибкового агента с точки зрения их
действия на пациентов с подавленной иммунной функцией.
Например, японская открытая патентная публикация (KOKAI) N 70885/1982 описывает триазольное соединение в качестве противогрибкового агента азольного типа. Кроме того, японская открытая патентная публикация (KOKAI) N 224689/1985 описывает производное (1,2,4-триазол-1-ил)метилкарбинола.
Настоящее изобретение предлагает противогрибковый агент, более эффективный, чем известные противогрибковые агенты, и его промежуточные продукты.
Сущность изобретения.
Авторы
настоящего изобретения провели глубокие исследования. Результатом являются следующие изобретения:
I. Соединение, представленное общей формулой:
II. Способ получения оптически активного (2S,3R)-3-(2, 4- дифторфенил)-3-гидрокси-2-метил-4-(1H-1,2,4-триазол-1- ил)бутиронитрила, который включает взаимодействие оптически активного (2R,3S)-2-(2,4-дифторфенил)-3-метил-2-(1H-1,2, 4-триазол- 1-ил)метилоксирана с цианидом диэтилалюминия.
III. Способ получения оптически активного (2S,3R)-3-(2,4- дифторфенил)-3-гидрокси-2-метил-4-(1H-1,2, 4-триазол-1- ил)бутиронитрила, который включает взаимодействие оптически активного (2R,3S)-3-(2,4-дифторфенил)-3-метил-2-(1H-1,2,4-триазол- 1-ил)метилоксирана с цианидом иттербия.
IV. Способ стереоселективного получения оптически активного (2S,3R)-3-(2,4-дифторфенил)-3-гидрокси-2-метил-4-(1H-1,2,4- триазол-1-ил)бутиронитрила, который включает взаимодействие оптически активного (2R, 3S)-3-(2,4-дифторфенил)-3-метил-2- (1H-1,2,4-триазол-1-ил)метилоксирана с ацетонцианогидрином.
V. Способ получения соединения, представленного формулой
VI. Способ получения соединения, представленного формулой:
VII. Способ получения соединения,
представленного формулой:
VIII. Способ
получения соединения, представленного формулой:
IX. Фармацевтическая композиция, содержащая соединение, представленное общей формулой:
X. Способ получения производного, представленного общей формулой:
XI. Способ получения производного, представленного общей формулой:
XII. Способ получения производного, представленного общей формулой:
XIII. Способ получения производного, представленного общей формулой:
XIV. Способ получения производного, представленного общей формулой:
XV. Способ получения соединения, представленного общей формулой:
XVI. Способ получения соединения,
представленного общей формулой:
XVII. Способ получения соединения, представленного общей формулой:
XVIII. Способ
получения соединения, представленного общей формулой:
XIX. Способ получения соединения, представленного общей формулой:
XX. Способ
получения соединения, представленного общей формулой:
XXI. Способ получения соединения, представленного общей формулой:
XXII. Способ получения соединения, представленного общей формулой:
XXIII. Способ получения соединения, представленного общей формулой:
XXIV. Способ получения соединения, представленного общей формулой:
XXV. Способ получения соединения, представленного общей формулой:
XXVI. Способ получения соединения, представленного общей формулой:
XXVII. Способ получения соединения, представленного общей формулой:
XXVIII. Способ получения
соединения, представленного общей формулой:
XXIX. Фармацевтическая композиция, содержащая соединение, представленное общей формулой:
Подробное описание изобретения и предпочтительные варианты осуществления.
Настоящее изобретение относится к производному, представленному общей формулой (I)
Производные согласно настоящему изобретению могут быть получены различными путями синтеза. Некоторые из них показаны в примерах далее.
Процесс A:
2-Хлор-2',4'-дифторацетофенон прибавляют к 4-(2,4-дифторфенил)триазолу в присутствии н-бутиллития. После обработки продукта реакции добавляют 1,2,4-триазол и гидрид натрия и
получают 1-(2,4-дифторфенил)-1-(4-(2,4-дифторфенил)тиазол-2-ил)- 2-(1H-1,2,4-триазол-1-ил)этанол.
Процесс B:
(1) 2-Хлор-2', 4'-дифторацетофенон прибавляют к
6-цианобензотиазолу в присутствии н-бутиллития с получением 1-(2,4-дифторфенил)-1- (6-цианобензотиазол-2-ил)-2-хлорэтанола.
(2) 1,2,4-Триазол прибавляют к суспензии гидрида натрия в диметилформамиде. К этой суспензии прибавляют 1-(2,4-дифторфенил)- 1-(6-цианобензотиазол-2-ил)-2-хлорэтанол, полученный на стадии (1), с получением 1-(2, 4-дифторфенил)-1-(6-цианобензотиазол-2-ил)-2- (1H-1,2,4,триазол-1-ил)этанола.
Процесс C:
1-(2,4-Дифторфенил)-1-(4-(4-цианофенил)тиазол-2-ил)-2- (1H-1,2,4-триазол-1-ил)этанол
взаимодействует с азидом натрия и гидрохлоридом триэтиламина с получением 1-(2,4-дифторфенил)-1- [4-[(4-(5-тетразол)фенил)тиазол]-2-ил] -2-(1H-1,2,4-триазол-1- ил)этанола.
Процесс
D:
Метилиодид взаимодействует с 1-(2,4-дифторфенил)-1-[4-[(4- (5-тетразол)фенил)тиазол] -2-ил] -2-(1H-1,2,4-триазол-1- ил)этанолом, полученным по вышеописанному процессу C, с получением двух
изомеров, в которых метильная группа замещена в 3- и 4-положениях тетразольного кольца.
Процесс E:
1-(2,4-Дифторфенил)-1-(2-(4-фторфенил)тиазол-5-ил)-2- (1H-1,2,
4-триазол-1-ил)этанол взаимодействует с 1,2,4-триазолом и гидридом натрия с получением 1-(2,4-дифторфенил)-1-[2-[(4-(1-1H- 1,2,4-триазол)фенил)тиазол]-5-ил)-2-(1H-1,2,4-триазол-1- ил)этанола.
Процесс F:
1-(2,4-Дифторфенил)-1-(6-тиокарбамоилбензотиазол-2-ил)-2- (2-(1H-1,2,4-триазол-1-ил)этанол взаимодействует с гидрокарбонатом натрия и бромацетоном с получением 1-(2,
4- дифторфенил)-1-(6-(3-метилтиазол-1-ил)бензотиазол-2-ил)-2-(2-(1H-1,2,4- триазол-1-ил)этанола.
Процесс G:
1-(2,4-Дифторфенил)-1-(6-цианобензотиазол-2-ил)-2-(2- (1H-1,2,
4-триазол-1-ил)этанол и триэтиламин растворяют в диметилформамиде. В полученный раствор пропускают сероводород для реакции с ним, получая таким образом 1-(2,
4-дифторфенил)-1-(6- тиокарбамоилбензотиазол-2-ил)-2-(2-(1H-1,2,4-триазол-1-ил)этанол.
Процесс H:
1-(2,4-Дифторфенил)-1-(6-тиокарбамоилбензотиазол-2-ил)-2- (1H-1,2,
4-триазол-1-ил)этанол подвергают взаимодействию с диметилацеталем бромацетальдегида с получением 1-(2,4- дифторфенил)-1-(6-тиазол-1-ил)бензотиазол-2-ил-2-(1H-1,2,4-триазол-1- ил)этанола.
Процесс I:
(1) 1-(2,4-Дифторфенил)-1-(4-тиокарбамоилтиофен-2-ил)-2- (1H-1,2,4-триазол-1-ил)этанол подвергают взаимодействию с α -бромэтилпировиноградной кислотой с получением
1-(2,4- дифторфенил)-1-(4-этоксикарбонилтиазол-2-ил)тиофен-2-ил)-2- (1H-1,2,4-триазол-1-ил)этанола (A).
(2) Полученное таким образом соединение (A) растворяют в насыщенном аммиаком метанольном растворе и полученный раствор оставляют стоять для прохождения взаимодействия между соединением (1) и аммиаком с получением 1-(2, 4-дифторфенил)-1-(4-(4- карбамоилтиазол-2-ил)тиофен-2-ил)-2-(1H-1,2,4-триазол-1-ил)этанола (В).
Процесс J:
Соединение (В), полученное на стадии (2) вышеописанного процесса 1,
растворяют в пиридине и подвергают взаимодействию с оксихлоридом фосфора с получением 1-(2,4-дифторфенил)-1-(4-(4- цианотиазол-2-ил)тиофен-2-ил)-2-(1H-1,2,4-триазол-1- ил)этанола.
В качестве примеров растворителей, используемых по настоящему изобретению, можно отметить низшие спирты, такие как метанол, этанол, пропанол и бутанол, полигидроспирты, такие как этиленгликоль; кетоны, такие как ацетон, метилэтилкетон, диэтилкетон и циклогексанон, простые эфиры, такие как диэтиловый эфир, изопропиловый эфир, тетрагидрофуран, диоксан, 2-метоксиэтанол и 1,2-диметоксиэтан; нитрилы, такие как ацетонитрил и пропионитрил; сложные эфиры, такие как метилацетат, этилацетат, бутилацетат и диэтилфталат; галогенированные углеводороды, такие как дихлорметан, хлороформ, четыреххлористый углерод, 1,2-дихлорэтан, трихлорэтилен и тетрахлорэтилен; ароматические соединения, такие как бензол, толуол, ксилол, монохлорбензол, нитробензол, индол, пиридин, хинолин, коллидин и фенол; углеводороды, такие как пентан, циклогексан, гексан, гептан, октан, изооктан, петролейный эфир и петролейный бензин; амины, такие как этаноламин, диэтиламин, триэтиламин, пирролидин, пиперидин, пиперазин, морфолин, анилин, диметиланилин, бензиламин и толуидин; амиды, такие как формамид, N-метилпирролидон, N,N-диметилимидазолон, N, N-диметилацетамид и N,N-диметилформамид; амиды фосфорной кислоты, такие как триамид гексаметилфосфорной кислоты и триамид гексаметилфосфорной кислоты; органические кислоты, такие как муравьиная кислота, уксусная кислота, дифторуксусная кислота, трифторуксусная кислота и хлоруксусная кислота; сульфоксиды, такие как диметилсульфоксид; сульфиды углерода, такие как дисульфид углерода; вода и другие обычно используемые растворители. Эти растворители могут быть простыми растворителями или смесями двух или трех растворителей. Нет особых ограничений, накладываемых на соотношение между смешиваемыми растворителями.
В качестве фармацевтически приемлемых солей производных солей прибавления кислоты согласно настоящему изобретению можно указать следующие соли.
A именно, в качестве примеров неорганических солей можно указать соли щелочных металлов, таких как соли натрия и соли калия; соли аммония, соли тетраэтиламмония, четвертичные аммониевые соли, такие как соли бетаина; соли щелочноземельных металлов, таких как соли кальция и соли магния; и соли неорганических кислот, такие как гидрохлориды, гидробромиды, сульфаты, карбонаты и гидрокарбонаты.
С другой стороны, в качестве примеров органических солей можно указать органические карбоксилаты, такие как ацетаты, малеаты, лактаты и тартраты; органические сульфонаты, такие как метансульфонаты, гидроксиметансульфонаты, гидроксиэтансульфонаты, соли тауриновых кислот, бензолсульфонаты и толуолсульфонаты; соли аминокислот, такие как соли аргинина, лизина, серина, аспартаты, глутаматы и глицинаты; соли амина, такие как соли триэтиламина, соли триметиламина, соли пиридина, соли прокаина, соли пиколина, соли дициклогексиламина, соли N,N-дибензилэтилендиамина, соли N-метилглюкамина, соли диэтаноламина, соли триэтаноламина, соли трис(гидроксиметиламино)метана и соли фенетилбензиламина.
Далее настоящее изобретение относится к соединению, представленному общей
формулой (I)
Соединения согласно настоящему изобретению могут быть получены различными путями синтеза. Некоторые из них показаны в примерах далее.
I путь:
Соединение формулы:
II путь:
Соединение формулы:
III путь:
Соединение
формулы:
IV путь:
Соединение формулы:
В качестве кислоты, образующей соль прибавления кислоты соединения в соответствии с настоящим изобретением, могут быть использованы обычные неорганические кислоты, такие как соляная кислота и серная кислота, органические кислоты, такие как уксусная кислота и лимонная кислота. Предпочтительными кислотами являются соляная и уксусная кислоты.
В качестве примеров растворителей, применяемых по настоящему изобретению, могут быть указаны низшие спирты, такие как метанол, этанол, пропанол и бутанол; полигидроспирты, такие как этиленгликоль; кетоны, такие как ацетон, метилэтилкетон, диэтилкетон и циклогексанон; простые эфиры, такие как диэтиловый эфир, изопропиловый эфир, тетрагидрофуран, диоксан, 2-метоксиэтанол и 1,2-диметоксиэтан; нитрилы, такие как ацетонитрил и пропионитрил; сложные эфиры, такие как метилацетат, этилацетат, изопропилацетат, бутилацетат и диэтилфталат; галогенированные углеводороды, такие как дихлорметан, хлороформ, четыреххлористый углерод, 1,2-дихлорэтан, трихлорэтилен и тетрахлорэтилен; ароматические соединения, такие как бензол, толуол, ксилол, монохлорбензол, нитробензол, индол, пиридин, хинолин, коллидин и фенол; углеводороды, такие как пентан, циклогексан, гексан, гептан, октан, изооктан, петролейный бензин и петролейный эфир; амины, такие как этаноламин, диэтиламин, триэтиламин, пирролидин, пиперидин, пиперазин, морфолин, анилин, диметиланилин, бензиламин и толуидин; амиды, такие как формамид, N-метилпирролидон, N, N-диметилимидазолон, N, N-диметилацетамид и N, N-диметилформамид; амиды фосфорной кислоты, такие как триамид гексаметилфосфорной кислоты и триамид гексаметилфосфористой кислоты; органические кислоты, такие как муравьиная кислота, уксусная кислота, дифторуксусная кислота, трифторуксусная кислота и хлоруксусная кислота; сульфоксиды, такие как диметилсульфоксид; сульфиды углерода, такие как дисульфид углерода; вода и другие обычно используемые растворители. Эти растворители могут быть простыми растворителями или смесями двух или трех растворителей. Нет особых ограничений, накладываемых на соотношение смешивания смешанных растворителей.
В качестве фармацевтически приемлемых солей производных солей прибавления кислоты согласно настоящему изобретению можно указать следующие соли.
А именно, в качестве примеров неорганических солей можно указать соли щелочных металлов, такие как соли натрия и соли калия; соли аммония; соли тетраэтиламмония; четвертичные аммониевые соли, такие как соли бетаина; соли щелочноземельных металлов, такие как соли кальция и соли магния; и соли неорганических кислот, такие как гидрохлориды, гидробромиды, сульфаты, карбонаты и гидрокарбонаты.
С другой стороны, в качестве примеров органических солей можно указать органические карбоксилаты, такие как ацетаты, малеаты, лактаты и тартраты; органические сульфонаты, такие как метансульфонаты, гидроксиметансульфонаты, гидроксиэтансульфонаты, соли тауриновых кислот, бензолсульфонаты и толуолсульфонаты; соли аминокислот, такие как соли аргинина, соли лизина, соли серина, аспартаты, глутаматы и глицинаты; соли амина, такие как соли триэтиламина, соли триметиламина, соли пиридина, соли прокаина, соли пиколина, соли дициклогексиламина, соли N,N-дибензилэтилендиамина, соли N-метилглюкамина, соли диэтаноламина, соли триэтаноламина, соли трис(гидроксиметиламино)метана и соли фенетилбензиламина.
Далее, настоящее изобретение относится к способу получения соединения,
представленного общей формулой:
или его реакционноспособным производным;
к способу получения соединения, представленного общей формулой:
Эти способы относятся в способам получения промежуточных продуктов синтеза для получения противогрибкового агента.
Данное изобретение далее касается следующих соединений или их солей,
которые используются в качестве промежуточных продуктов синтеза. Так, настоящее изобретение относится к соединениям, представленным общей формулой:
Далее дано подробное разъяснение данного изобретения и используемых терминов.
R означает низшую алкильную группу. Низшая алкильная группа представляет алкильную группу с прямой или разветвленной цепью, содержащую 1-6 атомов углерода, например метильную группу, этильную группу, н-пропильную группу, изопропильную группу, н-бутильную группу, изобутильную группу, втор-бутильную группу, трет-бутильную группу, н-пентильную группу, изопентильную группу, трет-пентильную группу, неопентильную группу, 1-метилбутильную группу, 2-метилбутильную группу, 1,1-диметилпропильную группу, 1,2-диметилпропильную группу, н-гексильную группу, изогексильную группу, 1-метилпентильную группу, 2-метилпентильную группу, 3-метилпентильную группу, 1,1-диметилбутильную группу, 1,2-диметилбутильную группу, 2,2-диметилбутильную группу, 1,3-диметилбутильную группу, 2, 3-диметилбутильную группу, 3,3-диметилбутильную группу, 1-этилбутильную группу, 2-этилбутильную группу, 1,1,2-триметилпропильную группу, 1,2,2-триметилпропильную группу, 1-этил-1-метилпропильную группу, 1-этил-2-метилпропильную группу и тому подобное. Предпочтительная группа включает метильную группу, этильную группу, пропильную группу и т.п.
R1 обозначает атом галогена или защитную группу для карбоксильной группы.
Используемая здесь защитная группа для карбоксильной группы может быть любой группой, обычно используемой в органическом синтезе в качестве защитной группы для карбоксильной группы, и особенно не ограничена. Примеры защитной группы для карбоксильной группы включают, например, низшие алкильные группы с прямой цепью или разветвленной цепью, содержащие 1-6 атомов углерода, такие как метильную группу, этильную группу, изопропильную группу и трет-бутильную группу; галогенированные низшие алкильные группы, такие как 2-иодэтильную группу и 2,2,2-трихлорэтильную группу; низшие алкоксиалкильные группы, такие как метоксиметильную группу, этоксиметильную группу и изобутоксиметильную группу; низшие алифатические ацилоксиалкильные группы, такие как ацетоксиметильную группу, пропионилоксиметильную группу, бутирилоксиметильную группу и пивалоилоксиметильную группу; низшие алкоксикарбонилоксиалкильные группы, такие как метоксикарбонилоксиметильная группа, 1-метоксикарбонилоксиэтильная группа, этоксикарбонилоксиметильная группа, 1-этоксикарбонилоксиэтильная группа и 2-метоксикарбонилоксиэтильная группа; аралкильные группы, такие как бензильная группа, п-метоксибензильная группа, о-нитробензильная группа и п-нитробензильная группа; бензгидрильная группа и фталидильная группа; (5-метил-2-оксо-1, 3-диоксо-4-ил)-метильная группа и тому подобное.
Снятие защитной группы у карбоксильной группы может осуществляться обычным способом, таким как гидролиз, восстановление и т.п., в зависимости от типа используемой защитной группы.
Pr обозначает защитную группу для гидроксильной группы.
Используемая здесь защитная группа для гидроксильной группы может быть любой группой, применяемой в органическом синтезе в качестве защитной группы для гидроксильной группы, и особо не ограничена. Примеры защитной группы для гидроксильной группы включают, например, низшие алкилсилильные группы, такие как триметилсилильная группа, трет-бутилдиметилсилильная группа и т.п.; низшие алкиларилсилильные группы, такие как трет-бутилдифенилсилильная группа и т. п.; низшие алкоксиметильные группы, такие как метоксиметильная группа, 2-метоксиэтоксиметильная группа и т.п., например тетрагидропиранильная группа; аралкильные группы, такие как бензильная группа, п-метоксибензильная группа, 2,4-диметоксибензильная группа, о-нитробензильная группа, п-нитробензильная группа, тритильная группа, метокситритильная группа, диметокситритильная группа и т.п.; ацильные группы, такие как формильная группа, ацетильная группа и т.п.; низшие алкоксикарбонильные группы, такие как трет-бутоксикарбонильная группа, 2-иодэтоксикарбонильная группа, 2,2, 2-трихлорэтоксикарбонильная группа и т.п.; алкенилоксикарбонильные группы, такие как 2-пропенилоксикарбонильная группа, 2-хлор-2-пропенилоксикарбонильная группа, 3-метоксикарбонил-2-пропенилоксикарбонильная группа, 2-метил-2-пропенилоксикарбонильная группа, 2-бутенилоксикарбонильная группа, циннамоилоксикарбонильная группа и т.п.; аралкилоксикарбонильные группы, такие как бензилоксикарбонильная группа, п-метоксибензилоксикарбонильная группа, о-нитробензилоксикарбонильная группа, п-нитробензилоксикарбонильная группа и т.п.
Снятие защитной группы у гидроксильной группы может осуществляться обычным способом, таким как гидролиз, восстановление или тому подобное, в зависимости от типа используемой защитной группы.
L представляет уходящую группу.
Используемая здесь уходящая группа может быть любой группой, применяемой в органическом синтезе в качестве уходящей группы, и особо не ограничена. Примеры уходящей группы включают, например, атомы галогена, такие как атом хлора, атом брома, атом иода и т.п., алкилтиогруппы, такие как метилтиогруппа, этилтиогруппа, пропилтиогруппа и т.п.; арилтиогруппы, такие как фенилтиогруппа, толилтиогруппа, 2-пиридилтиогруппа и т.п., алкилсульфонилоксигруппы, такие как мезилоксигруппа, трифторметансульфонилоксигруппа, этансульфонилоксигруппа, пропансульфонилоксигруппа и т.п.; арилсульфонилоксигруппы, такие как бензолсульфонилоксигруппа, тозилоксигруппа и т.п.; алканоилоксигруппы, такие как ацетоксигруппа, трифторацетоксигруппа и т.п.; алкоксигруппы, такие как метоксигруппа, этоксигруппа, пропоксигруппа и т.п.; алкиламиногруппы, такие как метиламиногруппа, этиламиногруппа, пропиламиногруппа, бутиламиногруппа и т.п.; диалкиламиногруппы, такие как диметиламиногруппа, диэтиламиногруппа, дипропиламиногруппа, метилэтиламиногруппа, этилпропиламиногруппа, метилпропиламиногруппа и т.п.; и замещенная фосфорилоксигруппа, такая как дифеноксифосфорилоксигруппа и т.п. Соответственно активирующий реагент, используемый в реакциях данного изобретения, включает, например, ангидриды кислот, такие как трифторуксусный ангидрид, метансульфоновый ангидрид, трифторметансульфоновый ангидрид, п-толуолсульфоновый ангидрид и т.п.; хлорангидриды кислот, такие как метансульфонилхлорид, п-толуолсульфонилхлорид, дифенилхлорфосфат и т.п., и сверх того включает 2-меркаптопиридин, оксалилхлорид, тионилхлорид, тионилбромид и тому подобное.
X являются одинаковыми или отличаются друг от друга и обозначают атом водорода или атом галогена. Представленные примеры атома галогена включают атом фтора, атом хлора, атом брома, атом иода и тому подобное.
Y означает атом хлора, атом брома или атом иода.
Реакционноспособное производное соединения, представленное общей формулой:
Используемая здесь пероксикислота может быть любой, обычно применяемой в органическом синтезе, и особо не ограничена. Примеры уходящей группы включают, например, органические пероксикислоты, такие как мета-хлорпербензойная кислота (м-ХПБК), перуксусная кислота и т.п., и водная перекись водорода. Метахлорпербензойная кислота является предпочтительной.
Используемый здесь окислительный агент может быть любым, обычно применяемым в качестве окислительного агента в органическом синтезе, и особо не ограничен. Примеры окислительного агента включают, например, тетраоксид осмия, перманганат калия и тому подобное.
Алкоксидиметилсилилметилмагний галогенид означает диметилсилилметилмагний галогенид, замещенный алкоксигруппой, соответствующей низшей алкильной группе, описанной выше, и, в частности, включает
метоксидиметилсилилметилмагний хлорид,
метоксидиметилсилилметилмагний бромид,
этоксидиметилсилилметилмагний хлорид,
этоксидиметилсилилметилмагний бромид,
пропоксидиметилсилилметилмагний хлорид,
изопропоксидиметилсилилметилмагний хлорид,
пропоксидиметилсилилметилмагний бромид,
изопропоксидиметилсилилметилмагний бромид и
т.п.
Диалкоксиметилсилилметилмагний галогенид означает метилсилилметилмагний галогенид, замещенный алкоксигруппой, соответствующей низшей алкильной группе, описанной выше, и на
практике включает диметоксиметилсилилметилмагний хлорид,
диметоксиметилсилилметилмагний бромид,
диэтоксиметилсилилметилмагний хлорид,
диэтоксиметилсилилметилмагний бромид,
дипропоксиметилсилилметилмагний хлорид,
дипропоксиметилсилилметилмагний бромид,
дибутоксиметилсилилметилмагний хлорид,
дибутоксиметилсилилметилмагний бромид и
т.п.
Используемое здесь основание может быть любым, обычно известным в качестве основания в органическом синтезе, и особо не ограничено. Примеры основания включают, например, карбонат натрия, гидрокарбонат натрия, карбонат калия, гидрид натрия, гидрид калия, трет-бутоксикалий, пиридин, диметиламинопиридин, триметиламин, триэтиламин, N,N-диизопропилэтиламин, N-метилморфолин, N-метилпирролидин, N,N-диметиланилин, 1,8-диазабицикло[5,4,0] ундека-7-ен (ДБУ), пиридин, 4-диметиламинопиридин, пиколин, лутидин, хинолин, изохинолин, гидроксид натрия, гидроксид калия, гидроксид лития, бутил лития и т.п.
A означает CH или атом азота.
R2 представляет низшую алкильную группу. Низшая алкильная группа имеет те же значения, что описаны выше.
R3 представляет метильную или низшую алкоксильную группу.
Низшая алкоксильная группа соответствует вышеописанной низшей алкильной группе и является, в частности, алкоксильной группой с прямой или разветвленной цепью, содержащей 1-6 атомов углерода, и включает, например, метоксильную группу, этоксильную группу, н-пропоксильную группу, изопропоксильную группу, н-бутоксильную группу, изобутоксильную группу, втор-бутоксильную группу, трет-бутоксильную группу, н-пентоксильную группу, изопентоксильную группу, втор-пентоксильную группу, 1-метилбутоксильную группу, 2-метилбутоксильную группу, 1,1-диметилпропоксильную группу, 1,2-диметилпропоксильную группу, н-гексилоксильную группу, изогексилоксильную группу, 1-метилпентоксильную группу, 2-метилпентоксильную группу, 3-метилпентоксильную группу, 1,1-диметилбутоксильную группу, 1,2-диметилбутоксильную группу, 2,2-диметилбутоксильную группу, 1,3-диметилбутоксильную группу, 2, 3-диметилбутоксильную группу, 3,3-диметилбутоксильную группу, 1-этилбутоксильную группу, 2-этилбутоксильную группу, 1,1,2-триметилпропоксильную группу, 1,2,2-триметилпропоксильную группу, 1-этил-1-метилпропоксильную группу, 1-этил-2-метилпропоксильную группу, и т.п.
Q представляет атом кислорода или CH2.
М представляет гидроксильную группу или уходящую группу.
Уходящая группа имеет те же значения, что указаны выше.
Используемые соли не ограничены по их типу и включают, например, соли прибавления кислоты, такие как гидрофторид, гидрохлорид, сульфат, нитрат, перхлорат, фосфат, карбонат, гидрокарбонат, гидробромат, гидроиодид и т.п.; соли прибавления органокарбоновых кислот, такие как ацетат, малеат, фумарат, оксалат, лактат, цитрат, трифторацетат и т.п.; соли прибавления органосульфоновых кислот, такие как метансульфонат, трифторметансульфонат, этансульфонат, гидроксиметансульфонат, гидроксиэтансульфонат, бензолсульфонат, толуолсульфонат, соль таурина и т.п.; соли прибавления амина, такие как соль триэтиламина, соль триметиламина, соль пиридина, соль прокаина, соль пиколина, соль дициклогексиламина, соль N, N-дибензилэтилендиамина, соль N-метилглюкамина, соль диэтаноламина, соль триэтаноламина, соль трис(гидроксиметиламино)метана и соль фенетилбензиламина; соли прибавления щелочного металла, такие как соль натрия, соль калия и т.п.; соли прибавления щелочноземельного металла, такие как соль магния, соль кальция и т.п.; соли прибавления аминокислот, такие как соль аргинина, соль лизина, соль серина, соль глицина, соль аспартамовой кислоты, соль глутаминовой кислоты и тому подобное.
Фармацевтически приемлемая соль означает соль, обычно применяемую для получения лекарств.
Используемые здесь производные гидроксиламина могут являться любым соединением, которое обычно применимо в органическом синтезе для преобразования в цианогруппу формильной группы и особо не ограничено, и включает, например, гидроксиламин-О-сульфоновую кислоту и т.п.
Способы получения в соответствии с настоящим изобретением, которые представлены следующей схемой общей, описаны далее (схему см. в конце описания).
Путь A-1 является путем, по которому гидроксильная группа соединения, представленного формулой (101) [в котором R и R1, каждый, означают те же группы, что указаны выше. Они же будут использоваться далее], является защищенной. Соединение, представленное формулой (102) [в котором Pr означает ту же группу, что указана выше. Она же будет использоваться далее], гидроксильная группа которого защищена таким методом, может быть получено путем защиты гидроксильной группы в соответствии со способом, известным специалистам. Гидроксильные группы, защищенные различными защитными группами, могут быть получены в соответствии с, например, методом, описанным у Green, "Protective Groups in Organic Synthesis (A Wily-Interscience Publication Co. ,)".
Путь A-2 является путем, по которому защитная группа для карбоксильной группы соединения, представленного формулой (102), подвергается снятию. Как и при пути A-1, при этом пути соединение, представленное формулой (103), может быть получено по способу снятия защитной группы для карбоксильной группы в соответствии с общепринятым способом, например гидролизом или каталитическим восстановлением с кислотой или основанием. Более конкретно, снятие защиты может быть осуществлено взаимодействием соединения формулы (102) с соляной кислотой, трифторуксусной кислотой, уксусной кислотой, бромистым водородом, муравьиной кислотой, tosic кислотой, перекисью водорода, триметилсилилхлоридом, трет-бутоксидом калия, гидроксидом лития, гидроксидом натрия, гидроксидом калия, гидразином, карбонатом калия, карбонатом натрия, трифторидом бора, галогенидом алюминия, тетрабутиламмоний фторидом и т.п., в растворителе, который не ингибирует реакцию.
Путь A-3 является путем, по которому уходящая группа (L) присоединяется к соединению, представленному формулой (103). Соединение, представленное формулой (104), может быть получено взаимодействием соединения, представленного формулой (103), с активирующим реагентом, например ангидридом кислоты, таким как трифторуксусный ангидрид, метансульфоновый ангидрид, трифторметансульфоновый ангидрид или п-толуолсульфоновый ангидрид; хлорангидриды кислот, например метансульфонилхлорид, п-толуолсульфонилхлорид, дифенилхлорфосфат, оксалилхлорид или тионилхлорид; или 2-меркаптопиридин. Если желательно, может быть использован конденсирующий агент, такой как дициклокарбодиимид (ДЦК), в соответствии с реакционной способностью используемого реагента.
По пути B-1 соединение формулы (105), в котором уходящая группа L в формуле (104) заменена на дизамещенную фенильную группу, может быть получено взаимодействием соединения, представленного формулой
(104), с соединением, представленным формулой
По пути C-1 олефиновое соединение, представленное формулой (106), может быть получено взаимодействием (так называемая реакция Виттига) соединения, представленного формулой (105), с трифенилфосфоний метилидом, который получен обработкой метилтрифенилфосфоний хлорида, метилтрифенилфосфоний бромида или метилтрифенилфосфоний иодида основанием, таким как бутиллитий, или взаимодействием его с триметилсилилметилмагний хлоридом, триметилсилилметилмагний бромидом или триметилсилилметиллитием с получением промежуточного силилового спирта, и подвергая промежуточный силиловый спирт удалению группы силилового спирта с помощью комплекса трифторида бора или тому подобное.
Путь D-1 является путем, по которому олефиновое соединение, представленное формулой (106), эпоксидируют. Нет конкретных ограничений, накладываемых на реагент для эпоксидирования, поскольку он является реагентом, способным к эпоксидированию двойной связи. Однако в качестве примеров можно указать органические пероксикислоты, такие как метахлорпербензойная кислота (мХПБК), и перуксусная кислота, и водная перекись водорода. Эпоксисоединение, представленное формулой (107), было получено, предпочтительно, путем взаимодействия с метахлорпербензойной кислотой.
Эпоксисоединение, представленное формулой (107), может быть также получено следующим путем Е-1. А именно, эпоксисоединение может быть получено взаимодействием соединения формулы (105) с хлорметиллитием, полученным из хлориодметана или бромиодметана с помощью основания, такого как бутиллитий, или с диметилсульфоксоний метилидом, диэтилсульфоксоний метилидом или диэтилсульфоний метилидом.
Путь F-1 относится к реакции, по которой эпоксисоединение, представленное формулой (107), сразу подвергается раскрытию цикла с присоединением имидазольного кольца или 1,2,4-триазольного кольца. Соединение, представленное формулой (108) [в котором A означает атом азота или CH. Оно же будет использовано далее] , может быть получено взаимодействием эпоксисоединения, представленного формулой (107), с солью щелочного металла имидазола или 1,2,4-триазола, которая получена смешиванием гидрида щелочного металла, такого как гидрид натрия, гидрид лития или гидрид калия, с имидазолом или 1,2,4-триазолом в растворителе.
Путь G-1 является путем, по которому защитная группа для гидроксильной группы подвергается снятию. Эта защитная группа для гидроксильной группы может быть снята способом, известным специалистам. Например, он может быть осуществлен способом, описанным Green в литературе, указанной выше.
Путь H-1 является путем, по которому олефиновое соединение окисляют в 1,2-дигликоль с помощью окислительного агента. Соединение, представленное формулой (110), может быть получено обработкой соединения, представленного формулой (106), окислительным агентом, таким как тетраоксид осмия или перманганат калия.
Путь I-1 является путем, по
которому соединение, представленное формулой (105), преобразуют в соединение, представленное формулой (110). По этому пути соединение, представленное формулой (110), может быть получено
взаимодействием соединения, представленного формулой (105), с алкоксидиметилсилилметилмагний галогенидом или диалкоксиметилсилилметилмагний галогенидом с получением соединения, представленного общей
формулой
Путь J-1 является путем, по которому первичная гидроксильная группа соединения, представленного формулой (110), заменяется уходящей группой L. Этот процесс может быть осуществлен в соответствии с путем А-3. Соединение, представленное формулой (111), может быть получено взаимодействием соединения, представленного формулой (110), с предпочтительно хлорангидридом кислоты, таким как метансульфонилхлорид, п-толуолсульфонилхлорид, дифенилхлорфосфат, оксалилхлорид или тионилхлорид.
По пути J-2 уходящая группа L соединения, представленного формулой (111), может быть заменена имидазолильной или 1,2,4-триазолильной группой проведением взаимодействия в соответствии с путем F-1.
Путь K-1 является путем, по которому первичная гидроксильная группа соединения, представленного формулой (109), окисляется в формильную группу. Окисление этой первичной гидроксильной группы может быть осуществлено известным специалистам способом. Его легко осуществлять, используя, например, соль или оксид металла, такого как хром, марганец или серебро, или органический окислительный агент, типичный для диметилсульфоксида. В качестве реагентов могут быть использованы, например, комплекс хромовая кислота - пиридин, пиридиний хлорхромат или пиридиний дихромат. Альтернативно обычно используют способ окисления с ДМСО, используя оксалилхлорид.
Путь L-1 является путем, по которому первичная гидроксильная группа соединения, представленного формулой (112), заменяется цианогруппой. Соединение, представленное формулой (113), может быть получено взаимодействием соединения, представленного формулой (112), с производным гидроксиламина, таким как гидроксиламиносульфоновая кислота.
Пути M-1 и N-1 являются способами получения противогрибкового агента, который является конечным соединением и представлен формулой (115). Этими путями может быть получено соединение, обладающее превосходной противогрибковой активностью и представленное формулой (115), путем прибавления сероводорода к соединению, представленному формулой (113), с образованием соединения, представленного формулой (114), и затем взаимодействием полученного таким образом соединения с 2-бром-4'-метилтиоацетофеноном.
Реакции по вышеуказанным путям можно проводить, главным образом, при температуре в области от -78oC до 150oC, предпочтительно от -40oC до 50oC, более предпочтительно от -20oC до 25oC.
Никакие конкретные ограничения не накладываются на растворители, используемые по настоящему изобретению, поэтому они не должны препятствовать реакциям и обычно используются в органических синтезах. Однако, как показано в примерах, можно указать низшие спирты, такие как метанол, этанол, пропанол и бутанол; полигидроспирты, такие как этиленгликоль и глицерин; кетоны, такие как ацетон, метилэтилкетон, диэтилкетон и циклогексанон; простые эфиры, такие как диэтиловый эфир, изопропиловый эфир, тетрагидрофуран, диоксан, 2-метоксиэтанол и 1,2-диметоксиэтан; нитрилы, такие как ацетонитрил и пропионитрил; сложные эфиры, такие как метилацетат, этилацетат, изопропилацетат, бутилацетат и диэтилфталат; галогенированные углеводороды, такие как дихлорметан, хлороформ, четыреххлористый углерод, 1,2-дихлорэтан, трихлорэтилен и тетрахлорэтилен; ароматические соединения, такие как бензол, толуол, ксилол, монохлорбензол, нитробензол, индол, пиридин, хинолин, коллидин и фенол; углеводороды, такие как пентан, циклогексан, гексан, гептан, октан, изооктан, петролейный бензин и петролейный эфир; амины, такие как этаноламин, диэтиламин, триэтиламин, пирролидин, пиперидин, пиперазин, морфолин, анилин, диметиланилин, бензиламин и толуидин; амиды, такие как формамид, N-метилпирролидон, N,N-диметилимидазолон, N,N-диметилацетамид и N,N-диметилформамид; амиды фосфорной кислоты, такие как триамид гексаметилфосфорной кислоты и триамид гексаметилфосфористой кислоты; органические кислоты, такие как муравьиная кислота, уксусная кислота, дифторуксусная кислота, трифторуксусная кислота и хлоруксусная кислота; сульфоксиды, такие как диметилсульфоксид; сульфиды углерода, такие как дисульфид углерода; вода и другие обычно используемые растворители. Эти растворители могут быть простыми растворителями или смесями двух или трех растворителей. Нет особых ограничений, накладываемых на соотношение между смешиваемыми растворителями.
По пути, указанному выше, полученные продукты могут быть очищены известным специалистам способом, таким как колоночная хроматография на силикагеле или тому подобное, если необходимо, и они могут быть подвергнуты реакциям по снятию их защитных групп, если желательно. Снятие защитных групп можно проводить, подвергая продукты восстановлению, такому как каталитическое восстановление или сольволиз.
Кроме того, соединения, представленные следующей формулой
Для соединений и способов получения в соответствии с настоящим изобретением существуют стереомеры, имеющие асимметрический атом углерода в молекулах и обладающие S-конфигурацией или R-конфигурацией. Кроме того, что касается тех соединений, которые обладают двойной связью, то существуют геометрические изомеры типа E или Z. Для подтверждения в описании описана одна конфигурация. Однако настоящим изобретением охватываются как соединения, так и их смеси. Соединения согласно настоящему изобретению не ограничены представленными в формуле, описанной для иллюстрации. Оптические изомеры могут быть отделены обычными методами по оптическому разделению, в то время как диастереомеры могут быть разделены с использованием метода разделения, такого как хроматография.
Когда предполагается получение индивидуальных изомеров, они могут быть получены стереоизбирательно или энантиоизбирательно в соответствии с их соответствующими способами получения по настоящему изобретению.
С точки зрения противогрибковой активности стерически предпочтительно использовать способ получения, где оптически активный (S)-метилгидрокси-2-метилпропионат используют в качестве соединения общей формулы (101) или исходного продукта при осуществлении вышеописанного способа получения для образования соединения общей формулы (113), поддерживая стереоструктуру, с получением посредством этого оптически активного (2S,3R)-3-(2,4- дифторфенил)-3-гидрокси-2-метил-4-(1H-1,2,4-триазол-1-ил)- бутиронитрила в качестве соединения общей формулы (113) и промежуточных продуктов, имеющих такую стереоструктуру.
Согласно настоящему изобретению, например, могут быть получены соединения, представленные общей формулой:
Некоторые примеры будут даны далее для описания изобретения более подробно. Однако настоящее изобретение но ограничивается только этими примерами. В следующих примерах1H ЯМР спектр измеряют с помощью FT ЯМР (400 МГц), изготовленного Varian Company.
Кроме прочего, Tr, Ms, MOM, TBDPS и Bn обозначают далее группы тритил, мезил, метоксиметил, трет-бутилдифенилсилил и бензил соответственно.
Примеры.
Настоящее изобретение далее описано в примерах, экспериментальных примерах и препаративных
примерах более конкретно. Однако настоящее изобретение не ограничивается только этими примерами, экспериментальными примерами и препаративными примерами
Пример 1:
Синтез 1-(2,
4-дифторфенил)-1-(4-(2,4-дифторфенил)тиазол-2-ил)- 2-(1H-1,2,4-триазол-1-ил)этанола
Пример 2.
(1) Синтез 1-(2,
4-дифторфенил)-1-(6-цианобензотиазол-2-ил)-2- хлорэтанола
(2) Синтез 1-(2,4-дифторфенил)-1-(6-цианобензотиазол-2-ил)-2- (1H-1,2,4-триазол-1-ил)этанола
Пример 3.
Синтез 1-(2,4-дифторфенил)-1-[4-[(4-(5- тетразол)фенил)тиазол]-2-ил]-2-(1H-1,2,4-триазол-1-ил)этанола
Пример 4.
Синтез 1-(2,4-дифторфенил)-1-[4-[(4-(5-(3-метил)тетразол)- фенил]тиазол]
-2-ил-2-(1H-1,2,4-триазол-1-ил)этанола [структурная формула A] и 1-(2,4-дифторфенил)-1-[4-[(4-(5-(4- метил)тетразол)фенил)тиазол] -2-ил-2-(1H-1,2,4-триазол-1-ил)этанола [структурная формула B]
Структурная формула A
Пример 5.
Синтез 1-(2,4-дифторфенил)-1-[2-(4-1-1H-1,2,4- триазол)фенил)тиазол-5-ил)]-2-(1H-1,2,4-триазол-1-ил)этанола
Пример 6.
Синтез 1-(2,4-дифторфенил)-1-(6-тиокарбамоилбензотиазол-2-ил)- 2-(1H-1,2,4-триазол-1-ил)этанола
Пример 7.
Синтез 1-(2,4-дифторфенил)-1-(6-(3-метилтиазол-1-ил) бензотиазол-2-ил)-2-(1H-1,2,
4-триазол-1-ил)этанола
Пример 8.
Синтез 1-(2,4-дифторфенил)-1-(6-тиазол-1-ил)бензотиазол-2-ил)- 2-(1H-1,2,4-триазол-1-ил)этанола
Пример 9.
(1) Синтез 1-(2,4-дифторфенил)-1-(4-(4-этоксикарбонилтиазол-2- ил)тиофен-2-ил)-2-(1H-1,2,
4-триазол-1-ил)этанола
(2) Синтез 1-(2,
4-дифторфенил)-1-(4-(4-карбамоилтиазол-2- ил)тиофен-2-ил)-2-(1H-1,2,4-триазол-1-ил)этанола
Пример 10:
Синтез 1-(2,4-дифторфенил)-1-(4-(4-цианотиазол-2-ил)тиофен-2- ил)-2-(1H-1,2,4-триазол-1-ил)этанола
Примеры 11-17.
Соединения, представленные общей
формулой (II):
В таблицах, приведенных далее, даны следующие обозначения:
mp. - Т. пл.
1Н.M.R. -1H ЯМР
Hz
- Гц
brd - ушир. д. (уширенный дублет)
brs - ушир. с. (уширенный синглет)
d - д (дублет)
dd - дд (двойной дублет)
m - м (мультиплет)
s - с
(синглет)
td - тд (тройной дублет)
Примеры 18-87.
Целевые соединения, полученные тем же способом, что и по примерам 1-10, суммарно показаны в таблице 2.
Экспериментальный пример 1.
Группы по пять мышей ICR инфицируют через их хвостовые вены штаммом Candida albicans MCY 8622 (2 х 106 СОЕ/мышь) (SFU - СОЕ, синтицийобразующая единица). Через 1 час соединения [представленные общей формулой (III)], показанные в таблице 3, вводят орально в дозе 2,5 или 10 мг на кг веса мыши соответствующим группам мышей. Наблюдения проводят в течение 7 дней для расчета среднего числа дней выживания для каждой группы. Это среднее число используют в качестве показателя, указывающего на противогрибковую активность in vivo.
Общая формула (III) следующая:
Т. пл. 181-182oC.
ЯМР: δ растворитель (CDCl3) 1,17 (3H, д, J=7,2 Гц), 3,29 (1H, кв, J=7,2 Гц), 4,82 (1H, д, J=14, 0 Гц), 4,97 (1H, д, J=14,0 Гц), 5,44 (1H, д, J=0,8 Гц), 6,74-6,82 (2H, м), 7,39-7,46 (1H, м), 7,83 (1H, с), 7,84 (1H, с).
МС: MH+ = 279.
Препаративный
пример 2:
Получение сырого продукта 1 другим методом:
Гексагидрат хлорида иттербия в количестве 388 мг (1 ммоль) оставляют на 6 часов при 120oC при пониженном давлении.
Это соединение суспендируют в 10 мл тетрагидрофурана в атмосфере азота и суспензию охлаждают до -78oC. К этой суспензии прибавляют по каплям 1,9 мл п-нитробутиллития (1,63 М раствор в
гексане) и полученную смесь перемешивают в течение 5 минут при комнатной температуре и затем охлаждают до -78oC. К этой смеси осторожно прибавляют по каплям 0,8 мл триметилсилилцианида.
Полученную смесь перемешивают в течение 10 минут при -78oC и затем в течение 5 минут при комнатной температуре охлаждают до -78oC. К этой смеси прибавляют по каплям раствор 128
мг (0,5 ммоль) оптически активного (2R,3S)-2-(2,4-дифторфенил)-3-метил-2-(1H-1,2,4-триазол- 1-ил)метилоксирана, растворенного в 1 мл тетрагидрофурана, и температуру полученной смеси сразу повышают до
комнатной температуры. К этой смеси прибавляют насыщенный водный раствор хлорида аммония с последующей экстракцией этилацетатом. Полученный органический слой промывают водой и насыщенным водным
раствором соли. После отгонки растворителя при пониженном давлении остаток перекристаллизовывают из диэтилового эфира с получением посредством этого 81 мг (58,2%) оптически активного (2S,3R)-3-(2,
4-дифторфенил)-3-гидрокси-2-метил-4-(1H- 1,2,4-триазол-1-ил)бутиронитрила.
Препаративный пример 3:
Получение сырого продукта 1 другим методом:
Гидрид лития в
количестве 48 мг (60,0 ммоль) добавляют к охлаждаемому льдом раствору (50 мл) тетрагидрофурана до полного суспендирования. Через 10 минут к суспензии добавляют по каплям 5,4 г (63,5 ммоль)
ацетонциангидрина [(CH3)2C(OH)CN] с последующим продолжением перемешивания дополнительно 1,5 часа при комнатной температуре. К этой смеси прибавляют 5 г (20,0 ммоль) оптически
активного (2R,3S)-2-(2,4-дифторфенил)-3-метил-2- (1H-1,2,4-триазол-1-ил)метилоксирана. К полученному реакционному раствору прибавляют 100 мл этилацетата и затем последовательно промывают 100 мл воды и
50 мл раствора хлорида натрия. Далее сушат над сульфатом магния. Полученный раствор затем фильтруют. Фильтрат концентрируют при пониженном давлении. К концентрату добавляют 50 мл диизопропилового
эфира. Полученный раствор подвергают фильтрации с получением 4,2 г (76,0%) оптически активного (2S,3R)-3-(2,4-дифторфенил)-3-гидрокси-2-метил-4-(1H- 1,2,4-триазол-1-ил)бутиронитрила.
Препаративный пример 4:
Получение сырого продукта 2:
Получение 2-(2,4-дифторфенил)-3-тиоамид-1-(1H-1,2,4-триазол-1- ил)-2-бутанола
Структурная формула:
Физические свойства этого продукта описаны далее.
Т. пл. 164-167oC.
ЯМР: δ растворитель (CDCl3) 1,11 (3H, д, J=7,1 Гц), 3,69-3,72 (1H, м), 4,55 (1H, д, J=14,3 Гц), 5,08 (1H, д, J=14,3 Гц), 6,71-6,80 (2H, м), 7,42-7,48 (1H, м), 7,80 (1H, ушир. с), 7,94 (1H, с), 8,41 (1H, ушир. с).
МС: MH+ = 313.
Препаративный пример 5:
Получение сырого продукта 3:
Получение 2-бром-4'-цианоацетофенона
Структурная формула:
Т. пл. 82-84oC.
ЯМР: δ растворитель (CDCl3) 4,44 (2H, с), 7,81-7,84 (2H, м), 8,09 (1H, д, J=8 Гц), 8,23 (1H, д, J=8 Гц).
Препаративный
пример 6:
Получение сырого продукта 4:
Получение 2-этил-4-хлорбензотиазола
Структурная формула:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,47 (3H, т, J=7,4 Гц), 3,14 (2H, кв, J=7,4 Гц), 7,40 (1H, дд, J=2,0 Гц, 8,8 Гц), 7,81 (1H, д, J=2,0 Гц), 7,86 (1H, д, J=8,8 Гц).
Препаративный пример 7:
Получение сырого продукта 5:
Получение 2-этил-6-(1,2,
3-триазол-2-ил)бензотиазола
Структурная формула:
4-(1,2,3-Триазол-2-ил)нитробензол (5,75 г) растворяют в 300 мл этанола и к раствору прибавляют 10% палладий-на-угле (0,58 г) и гидразингидрат (15,0 г) с последующим нагреванием и кипячением с обратным холодильником в течение 5 часов. Реакционную смесь охлаждают до комнатной температуры и фильтруют через Целит. Фильтрат концентрируют при пониженном давлении, добавляют 500 мл воды и подвергают экстракции этилацетатом (200 мл, 100 мл х 2). Полученный таким образом органический слой промывают водой и затем насыщенным раствором соли, сушат над безводным сульфатом магния и затем концентрируют при пониженном давлении с получением посредством этого 4-(1,2,3-триазол-2-ил)анилина (5,0 г). Этот продукт используют в последующей реакции без его очистки.
4-(1,2,3-Триазол-2-ил)анилин (5,0 г), полученный по предшествующей реакции, растворяют в 55 мл уксусной кислоты и к раствору прибавляют тиоцианат аммония (6,0 г). Полученную смесь перемешивают при охлаждении ледяной водой. К этой смеси прибавляют по каплям раствор брома (1,62 мл) в 20 мл уксусной кислоты в течение более 30 минут. Затем смесь нагревают до комнатной температуры, перемешивают при этой температуре в течение 4 часов.
Реакционную смесь охлаждают ледяной водой и прибавляют по каплям концентрированный раствор аммиака с достижением таким образом pH 6. Образующийся осадок выделяют фильтрацией, промывают водой и затем холодным этанолом и сушат при пониженном давлении с получением 2-амино-6-(1,2,3-триазол-2-ил)бензотиазола (5,6 г).
2-Амино-6-(1,2,3-триазол-2-ил)бензотиазол (2,8 г) растворяют в N,N-диметилформамиде (60 мл) и к раствору прибавляют изоамилнитрит (8,66 мл) с последующим перемешиванием в течение 20 минут при 65oC. Реакционную смесь выливают в 100 мл воды и подвергают экстракции этилацетатом (100 мл х 3). Полученный органический слой промывают водой и затем насыщенным раствором соли, сушат над безводным сульфатом магния и затем концентрируют при пониженном давлении. Полученный маслянистый продукт очищают хроматографированием на колонке с силикагелем (дихлорметан) с получением 6-(1,2,3-триазол-2-ил)бензтиазола (1,1 г).
6-(1,2,3-Триазол-2-ил)бензтиазол (1,1 г) суспендируют в этаноле (90 мл) и к суспензии прибавляют 12 мл гидразинмоногидрата. Полученную смесь нагревают и кипятят с обратным холодильником в течение 2 часов. После концентрирования реакционной смеси при пониженном давлении добавляют 20 мл воды и устанавливают pH 7 с помощью уксусной кислоты. Полученную таким образом смесь 3 раза подвергают экстракции этилацетатом и полученный органический слой промывают насыщенным раствором соли, сушат над безводным сульфатом магния и затем концентрируют при пониженном давлении с получением 2-амино-5-(1,2,3-триазол-2-ил)тиофенола (2,3 г). Этот продукт используют в последующей реакции без очистки.
2-Амино-5-(1,2,3-триазол-2-ил)тиофенол (2,3 г) растворяют в N-метилпирролидоне (8 мл) и к раствору прибавляют пропионилхлорид (0,472 мл) с последующим нагреванием и перемешиванием при 70oC в течение 5 часов. Реакционную смесь выливают в насыщенный водный раствор гидрокарбоната натрия и подвергают экстракции дихлорметаном. Полученный органический слой сушат над безводным сульфатом магния, концентрируют при пониженном давлении и затем очищают на колонке с силикагелем (гексан-этилацетат = 4:1 _→ 1:1) с получением целевого соединения, 2-этил-6-(1,2, 3-триазол-2- ил)бензотиазола (940 мг). Физические свойства этого продукта описаны далее.
Состояние: твердый продукт.
ЯМР; δ растворитель (CDCl3) 1, 49 (3H, т, J=7,7 Гц), 3,17 (2H, кв, J=7,7 Гц), 7,83 (2H, с), 8,03 (1H, д, J=8,8 Гц), 8,20 (1H, дд, J=8,8 Гц, 3,2 Гц), 8,55 (1H, д, J=8,8 Гц).
Пример 88.
Получение
соединения структурной формулы:
Т. пл. 196-197oC.
ЯMP: δ растворитель (CDCl3) 1,23 (3H, д, J=8,0 Гц), 4,09 (1H, кв, J=8,0 Гц), 4,26 (1H, д, J=14,3 Гц), 4,92 (1H, д, J=14,3 Гц), 5,74 (1H, с), 6,78-6,85 (2H, м), 7,48-7,54 (1H, м), 7,64 (1H, с), 7,69 (1H, с), 7,75 (1H, д, J= 8,1 Гц), 7,85 (1H, с), 8,03 (1H, д, J=8,1 Гц).
МС: MH+ = 483.
Пример 89.
Получение соединения, представленного структурной формулой:
ЯМР:
МС: MH+ = 459.
Пример 90.
Получение
соединения, представленного структурной формулой:
_→
Целевое соединение получают в соответствии с тем же способом, что описан в примере 88, за исключением того, что
вместо 2-бром-4'-цианоацетофенона используют 2-бром-2', 4'-дифторацетофенон. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,23 (3H, д, J = 7,1 Гц), 4,07 (1H, кв, J = 7,1 Гц), 4,26 (1H, д, J = 14,4 Гц), 4,89 (1H, д, J = 14,4 Гц), 5,93 (1H, с), 6,92 - 6,98 (1H, м), 7,00 - 7,05 (1H, м), 7,47 - 7,54 (1H, м), 7,67 (1H, с), 7,68 (1H, с), 7,88 (1H, с), 8,13 - 8,19 (1H, м).
МС: MH+ = 449.
Пример 91.
Получение соединения,
представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,23 (3H, д, J = 7,1 Гц), 2,41 (3H, с), 4,04 (1H, д, J = 7,1 Гц), 4,28 (1H, д, J = 14,3 Гц), 4,88 (1H, д, J = 14,3 Гц), 6,24 (1H, с), 6,76 - 6,84 (1H, с), 7,27 (2H, д, J = 8,3 Гц), 7,40 (1H, с), 7,47 - 7,53 (1H, м), 7,65 (1H, с), 7,80 (2H, д, J = 8,3 Гц), 7,94 (1H, с).
МС: MH+ = 427.
Пример 92.
Получение соединения, представленного структурной формулой:
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 443.
Пример 93.
Получение соединения, представленного структурной формулой:
μ
Целевое соединение получают в соответствии с тем же способом, что описан в
примере 88, за исключением того, что вместо 2-бром-4'-цианоацетофенона используют 2-бром-4'-нитроацетофенон. Физические свойства этого соединения описаны далее.
Т. пл. 180 - 182oC.
ЯМР: δ растворитель (CDCl3) 1,25 (3H, д, J = 7,1 Гц), 4,11 (1H, д, J = 7,1 Гц), 4,27 (1H, д, J = 14,2 Гц), 4,94 (1H, д, J = 14,2 Гц), 5,70 (1H, с), 6,79 - 6,85 (2H, м), 7,43 - 7,55 (1H, м), 7,70 (1H, с), 7,71 (1H, с), 7,85 (1H, с), 8,08 (2H, д, J = 9,0 Гц), 8,32 (2H, д, J = 9,0 Гц).
МС: MH+ = 458.
Пример 94.
Получение соединения, представленного структурной формулой:
После этого промежуточное соединение, представленное структурной формулой:
μ
получают в соответствии с тем же способом, что описан в препаративном примере 4. Целевое соединение затем получают в соответствии с тем же способом, что описан в примере 88, за
исключением того, что это соединение используют вместо 2-бром-4'-цианоацетофенона. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,22 (3H, д, J = 7,0 Гц), 4,05 (1H, кв, J = 7,0 Гц), 4,26 (1H, д, J = 14,6 Гц), 4,88 (1H, д, J = 14,6 Гц), 6,04 (1H, с), 6,76 - 6,85 (2H, м), 7,07 (2H, ушир. дд, J = 8,4, 8,4 Гц), 7,32 (2H, ушир. д, J = 8,4 Гц), 7,44 (1H, ушир. с), 7,44 (2H, ушир. дд, J = 8,4, 8,4 Гц), 7,45 - 7,54 (1H, м), 7,66 (1H, с), 7,82 (2H, ушир. д, J = 8,4 Гц), 7,89 (1H, с).
МС: MH+ = 539.
Пример 95.
Получение соединения, представленного структурной формулой:
Т. пл. 166 - 169oC.
ЯМР: μ растворитель (CDCl3 ) 1,14 (3H, д, J = 7,3 Гц), 4,11 (1H, кв, J = 7,3 Гц), 4,37 (1H, д, J = 14,6 Гц), 4,87 (1H, д, J = 14,6 Гц), 6,08 (1H, с), 6,91 - 6,96 (1H, м), 7,18 - 7,25 (1H, м), 7,27 - 7,34 (1H, м), 7,62 (1H, с), 8,11 (2H, д, J = 8,5 Гц), 8,20 (2H, д, J = 8,5 Гц), 8,22 (1H, с), 8,29 (1H, с).
МС: MH+ = 481.
Пример 96.
Получение соединения,
представленного структурной формулой:
μ
В воде (4 мл) суспендируют 800 мг соединения, полученного по примеру 88, и к суспензии прибавляют 2,6 мл (16,479 ммоль) соединения,
представленного структурной формулой:
δ
с последующим нагреванием и кипячением с обратным холодильником в течение 30 минут. К жидкой реакционной смеси прибавляют воду и смесь
подвергают экстракции AcOEt. После промывки экстракта водой и затем насыщенным водным раствором NaCl и сушки над сульфатом магния отгоняют AcOEt. Полученный остаток без его очистки растворяют в 10 мл
ацетона и к раствору добавляют 0,45 мл CH3I с последующим перемешиванием при 40oC в течение 40 минут. К полученной жидкой реакционной смеси прибавляют воду и смесь подвергают
экстракции AcOEt. После промывки экстракта водой и затем насыщенным водным раствором NaCl и сушки над сульфатом магния отгоняют AcOEt. Полученный остаток без его очистки растворяют в 10 мл EtOH и к
раствору прибавляют 220 мг NH2NHCHO, 0,26 мл Et3N и одну каплю серной кислоты с последующим нагреванием и кипячением с обратным холодильником в течение 1 часа. К полученной
жидкой реакционной смеси прибавляют воду и подвергают экстракции AcOEt. После промывки экстракта водой и затем насыщенным водным раствором NaCl и сушки над сульфатом магния отгоняют AcOEt. Полученный
остаток очищают хроматографией на колонке с силикагелем (SiO2: 50 г, элюирование хлористым метиленом и затем 1% раствором MeOH в хлористом метилене и затем 2% раствором MeOH в хлористом
метилене) с получением посредством этого 369 мг целевого соединения. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 480.
Пример 97.
Получение соединения, представленного структурной формулой:
Т.пл. 191 - 193oC.
ЯМР: μ растворитель (CDCl3) 1,25 (3H, д, J = 7,0 Гц), 4,09 (1H, кв, J = 7,0 Гц), 4,29 (1H, д, J = 14 Гц), 4,33 (3H, с), 4,92 (1H, д, J = 14 Гц), 6,01 (1H, с), 6,77 - 6,85 (2H, м), 7,49 - 7,55 (1H, м), 7,58 (1H, с), 7,67 (1H, с), 7,91 (1H, с), 8,04 (2H, д, J = 8,2 Гц), 8,24 (2H, д, J = 8,2 Гц).
МС: MH+ = 495.
Пример 98.
Получение соединения,
представленного структурной формулой:
_→
В 5 мл ацетона растворяют 200 мг соединения, полученного по примеру 96, и к раствору прибавляют 60,6 мг карбоната калия и 0,03
мл хлористого метила. Полученную смесь перемешивают в течение 19 часов при комнатной температуре. К жидкой реакционной смеси прибавляют воду и подвергают экстракции AcOEt. После промывки экстракта
водой и затем насыщенным водным раствором NaCl и сушки над сульфатом магния отгоняют AcOEt. Полученный остаток очищают хроматографией на колонке (SiO2: 40 г, элюирование хлористым метиленом
и затем 0,5% раствором MeOH в хлористом метилене и затем 1% раствором MeOH в хлористом метилене) с получением 142 мг целевого соединения. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР: _→ растворитель (CDCl3) 1,13 (1H, д, J = 6,0 Гц), 1,25 (2H, д, J = 7,1 Гц), 4,01 - 4,13 (4H, м), 4,27 (2/3H, д, J = 14 Гц), 4,29 (1/3H, д, J = 14 Гц), 4,91 (1H, д, J = 14 Гц), 5,45 (1/3H, с), 6,08 (2/3H, с), 6,70 - 6,84 (2H, м), 7,50 - 7,55 (2H, м), 7,67 - 7,68 (4/3H, м), 7,79 - 7,81 (2/3H, м), 7,93 (1H, с), 7,96 (1H, с), 7,98 (1H, с), 8,10 (1H, с), 8,19 (2H, д, J = 8,4 Гц).
Пример 99.
Получение соединения, представленного структурной формулой:
δ
К
раствору 138 мг соединения, полученного по примеру 89, растворенного в 3 мл хлороформа, прибавляют 215 мг мета-хлорпербензойной кислоты с последующим перемешиванием при комнатной температуре. После
исчезновения сырого материала к жидкой реакционной смеси прибавляют воду с последующей экстракцией этилацетатом. Полученный органический слой промывают 50% насыщенным водным раствором гидрокарбоната
натрия, водой и насыщенным раствором соли. После удаления растворителя при пониженном давлении остаток очищают хроматографией на колонке с силикагелем и кристаллизуют из дихлорэтана-диизопропилового
эфира с получением посредством этого 98,5 мг целевого соединения. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,24 (3H, д, J = 7,2 Гц), 3,09 (3H, с), 4,09 (1H, кв, J = 7,2 Гц), 4,27 (1H, д, J = 14,4 Гц), 4,91 (1H, д, J = 14,4 Гц), 5,78 (1H, с), 6,78 - 6,85 (2H, м), 7,47 - 7,55 (1H, м), 7,67 (1H, с), 7,69 (1H, с), 7,87 (1H, с), 8,02 (2H, ушир. д, J = 8,4 Гц), 8,10 (2H, ушир. д, J = 8,4 Гц).
МС: MH+ = 491.
Пример 100.
Получение соединения, представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,22 (3H, д, J = 7,2 Гц), 4,07 (1H, кв, J = 7,2 Гц), 4,23 (1H, д, J = 14,4 Гц), 4,90 (1H, д, J = 14,4 Гц), 5,73 (1H, с), 6,77 - 6,84 (2H, м), 7,20 (2H, ушир. дд, J = 8,4, 8,4 Гц), 7,46 - 7,53 (1H, м), 7,63 (1H, с), 7,68 (1H, с), 7,83 (1H, с), 7,97 - 8,07 (6H, м).
МС: MH+ = 571.
Пример 101.
Получение производных, представленных структурными формулами:
(I)
Т.пл. 149 - 151oC.
ЯМР:
МС: MH+ = 414.
(II)
Т.пл. 148 - 149oC.
ЯМР: δ растворитель (CDCl3) 1,24 (3H, д, J = 7,1 Гц), 4,09 (1H, кв, J = 7,1 Гц), 4, 27 (1H, д, J = 14,3 Гц), 4,92 (1H, д, J = 14,3 Гц), 5,84 (1H, ушир. с), 6,77 - 6,85 (2H, м), 7,40 (1H, ддд, J = 7,8, 4,8, 0,92 Гц), 7,48 - 7,56 (1H, м), 7,58 (1H, с), 7,68 (1H, с), 7,88 (1H, с), 8,21 (1H, ддд, J = 7,8, 2,2, 1,6 Гц), 8,61 (1H, дд, J = 4,8, 1,6 Гц), 9,15 (1H, дд, J = 2,2, 0,92 Гц).
МС: MH+ = 414.
(III)
Состояние: Твердый
продукт.
ЯМР:
МС: MH+ = 414.
Пример 102.
Получение
соединения, представленного структурной формулой:
δ
В 7 мл AcOEt и 5 мл тетрагидрофурана растворяют 700 мг соединения (I), полученного по примеру 101, и к раствору прибавляют
500 мг мета-хлорпербензойной кислоты с последующим перемешиванием в течение 1 часа при комнатной температуре и далее прибавлением 227 мг (0,882 ммоль) мХПБК. Полученную смесь перемешивают в течение 1
часа. К жидкой реакционной смеси прибавляют водный раствор сульфита натрия, перемешивают 5 минут и подвергают экстракции AcOEt. После промывания экстракта водным раствором сульфита натрия, водным
раствором гидрокарбоната натрия, водой и затем водным раствором NaCl и сушки над сульфатом магния растворитель отгоняют. Остаток кристаллизуют из CH2Cl2-ИПЭ с получением
посредством этого промежуточного N-оксида. Соединение растворяют в 5 мл CH2Cl2 и к раствору прибавляют 0,49 мл TMS-CN при комнатной температуре. Через 5 минут прибавляют 0,34 мл
Me2NCOCl и смесь нагревают и кипятят с обратным холодильником в течение 1,5 часов. Затем добавляют 0,25 мл TMS-CN и 0,17 мл Me2NCOCl и полученную смесь нагревают и кипятят с
обратным холодильником в течение 2,5 часов. К жидкой реакционной смеси прибавляют водный раствор гидрокарбоната натрия и смесь подвергают экстракции AcOEt. После промывания экстракта водой и
насыщенным водным раствором NaCl и сушки над сульфатом магния растворитель отгоняют. Остаток очищают хроматографией на силикагеле (SiO2: 40 г, элюирование хлористым метиленом и затем 1%
раствором MeOH в хлористом метилене и затем 2% раствором MeOH в хлористом метилене) с получением посредством этого 198 мг целевого соединения. Физические свойства этого соединения описаны далее.
Т.пл. 197 - 200oC.
ЯМР: δ растворитель (ДМСО-d6) 1,14 (3H, д, J = 7,0 Гц), 4,07 - 4,11 (1H, м), 4,47 (1H, кв, J = 14,3 Гц), 4,84 (1H, д, J = 14, 3 Гц), 6,10 (1H, с), 6,91 - 6,96 (1H, м), 7,18 - 7,22 (1H, м), 7,23 - 7,33 (2H, м), 7,61 (1H, с), 7,98 (1H, д, J = 7,7 Гц), 8,14 (1H, т, J = 7,7 Гц), 8,21 (1H, с), 8,40 (1H, д, J = 7,7 Гц), 8,44 (1H, с).
МС: MH+ = 439.
Пример 103.
Получение соединения (I), представленного структурной формулой:
К 5 мл ТГФ прибавляют 60% NaH (109 мг) при охлаждении ледяной водой и к смеси прибавляют по каплям раствор (Et2O)2P(=O)CH2CN (0,44 мл) в 5 мл ТГФ. После перемешивания смеси в течение 1 часа к смеси медленно прибавляют раствор с 989 мг вышеполученного продукта, растворенного в 10 мл ТГФ. После перемешивания полученной смеси в течение 30 минут при комнатной температуре к жидкой реакционной смеси прибавляют воду с последующей экстракцией AcOEt. После промывки экстракта водой и затем насыщенным водным раствором NaCl и сушки над сульфатом магния отгоняют AcOEt. Полученный остаток очищают хроматографией на силикагеле (SiO2: 60 г, элюирование CHCl3 и затем 1% раствором MeOH в CHCl3 и 2% раствором MeOH в CHCl3) с получением посредством этого 115 мг соединения I в виде первого элюата и 220 мг соединения II геометрического изомера в виде второго элюата. Физические свойства этих соединений описаны далее.
1,19 (3H, д, J = 7,1 Гц), 4,02 (1H, кв, J = 7,1 Гц), 4,16 (1H, д, J = 14,3 Гц), 4,91 (1H, д, J = 14,3 Гц), 5,47 (1H, с), 6,33 (1H, д, J = 16,0 Гц), 6,77 - 6,84 (2H, м), 7,33 (1H, д, J = 16, 0 Гц), 7,46 (1H, с), 7,47 - 7,51 (1H, м), 7,72 (1H, с), 7,82 (1H, с).
МС: MH+ = 388.
1,20 (3H, д, J = 7,0 Гц), 4,05 (1H, кв, J = 7,0 Гц), 4,45 (1H, д, J = 14,0 Гц), 4,89 (1H, д, J = 14,0 Гц), 5,56 (1H, д, J = 11,9 Гц), 5,78 (1H, с), 6,75 - 6,82 (2H, м), 7,17 (1H, д, J = 11,9 Гц), 7,50 - 7,59 (1H, м), 7,60 (1H, с), 7,75 (1H, с), 8,10 (1H, с).
МС: MH+ = 388.
Пример 104.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в
соответствии с тем же способом, что описан в примере 88, за исключением того, что вместо 2-(2,4-дифторфенил)-3-тиоамид-1-(1H-1,2,4-триазол-1-ил)бутан-2-ола используют 2-(2,
4-дифторфенил)-3-тиоамид-1-(1H-1,2,4-триазол-1-ил) пропан-2-ол. Физические свойства этого соединения описаны далее.
Т.пл. 148 - 149oC.
ЯМР:
МС: MH+ = 424.
Пример 105.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в
соответствии с тем же способом, что описан в примере 104, за исключением того, что вместо 2-бром-4'-цианоацетофенона используют 2-бром-4'-фторацетофенон. Физические свойства этого соединения описаны
далее.
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 417.
Пример 106.
Получение соединения I, представленного структурной формулой:
После прибавления по каплям н-бутиллития (1,6 М гексанового раствора; 313 мл) к диизопропиламину (840 δ л) в 15 мл тетрагидрофурана при -65oC смесь охлаждают до 4oC с проведением таким образом реакции в течение 15 минут с получением раствора диизопропиламида лития. После охлаждения раствора до -63oC к амидному раствору последовательно прибавляют тетрагидрофурановый раствор (10 мл) 2-этил-6-хлорбензотиазола (988 мл), полученный в препаративном примере 5, и тетрагидрофурановый раствор (12 мл) 1-(1H-1,2,4-триазол-1-ил)-2,4-дифторацетофенона (1, 227 г) при внутренней температуре не выше чем -60oC. После проведения реакции в течение 15 минут реакционную смесь нагревают до 0oC и прибавляют к водному раствору хлорида аммония. Полученную смесь подвергают экстракции этилацетатом. Полученный органический слой промывают водой и затем насыщенным раствором соли, сушат и упаривают досуха при пониженном давлении. Остаток очищают на колонке с силикагелем (дихлорметан : метанол = 100:1). Полученную таким образом смесь диастереомеров пропускают через колонку с силикагелем (дихлорметан : этилацетат = 10:1
I
Т.пл. 187oC
ЯМР: δ растворитель
(CDCl3) 1,25 (3H, д, J = 7,0 Гц), 4,09 (1H, кв, J = 7,0 Гц), 4,27 (1H, д, J = 14,4 Гц), 4,93 (1H, д, J = 14,4 Гц), 5,80 (1H, с), 6,85 - 6,78 (2H, м), 7,48 (1H, дд, J = 8,8 Гц, 2,4 Гц), 7,49
- 7,55 (1H, м), 7,67 (1H, с), 7,87 (1H, с), 7,90 (1H, д, J = 2,4 Гц), 7,94 (1H, д, J = 8,8 Гц).
МС: MH+ = 421.
II
Т.пл. 127 - 130oC
ЯМР:
МС: MH+ = 421.
Пример 107.
Получение соединения, представленного структурной формулой:
δ
Смесь 2-этил-6-цианобензтиазола (1,78 г), азида натрия (1622 г) и триэтиламина гидрохлорида (2,59 г) нагревают при 100oC в течение 3 часов в 300 мл N-метилпирролидона. После
охлаждения смеси до комнатной температуры к ней прибавляют 150 мл воды, устанавливают pH 3 с помощью концентрированной соляной кислоты и дважды подвергают экстракции этилацетатом. Полученный
органический слой промывают насыщенным раствором соли и сушат. Растворитель отгоняют и оставшийся растворитель далее отгоняют азеотропной отгонкой с толуолом с получением посредством этого
2-этил-6-(тетразол-5-ил)бензотиазола (1,86 г). Это соединение растворяют в диметилформамиде (20 мл) и к раствору добавляют карбонат цезия (3,06 г) с последующим нагреванием при 80oC в
течение 1,5 часов. Затем к реакционной смеси добавляют 1,17 мл иодметана при охлаждении льдом. Смеси дают достичь комнатной температуры и перемешивают в течение 7 часов. Добавляют воду и этилацетат
для разделения смеси на слои и полученный органический слой промывают водой и сушат. Остаток очищают через колонку с силикагелем (гексан : этилацетат = 4:1) с получением посредством этого
2-этил-6-(2-метилтетразол-5-ил)бензтиазола (930 мг). Используя полученное таким образом соединение, получают тем же способом, что и по примеру 106, целевое соединение. Физические свойства этого
соединения описаны далее.
Т.пл. 184 - 185oC
ЯМР:
Пример 108.
Получение соединения,
представленного структурной формулой:
δ
Целевое соединение получают тем же способом, что и по примеру 106, за исключением того, что вместо 2-бром-6-хлорбензотиазола используют
2-этил-6-фторбензотиазол. Физические свойства этого соединения описаны далее.
Т.пл. 151 - 153oC.
ЯМР:
МС: MH+ = 405.
Пример 109.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают тем же способом, что и по примеру 106, за исключением того, что
вместо 2-бром-6-хлорбензотиазола используют 2-этил-6-цианобензотиазол. Физические свойства этого соединения описаны далее.
Т.пл. 186 - 188oC.
ЯМР:
МС: MH+ = 412.
Пример 110.
Получение соединения, представленного структурной формулой:
δ
Соединение (506 мг),
полученное по примеру 109, суспендируют в метаноле (10 мл) и к суспензии последовательно прибавляют 0,37 мл 1н водного раствора гидроксида натрия и 30% перекись водорода (0,42 мл). Полученную смесь
перемешивают в течение 2 часов при комнатной температуре и для проведения экстракции прибавляют воду и этилацетат. Полученный органический слой промывают водой, сушат с последующей отгонкой. Остаток
очищают на колонке с силикагелем (дихлорметан : метанол = 50:1
Т.пл. 112 - 117oC.
ЯМР: δ растворитель (CDCl3) 1,25 (3H, д, J = 7,0 Гц), 4,13 (1H, кв, J = 7,0 Гц), 4,29 (1H, д, J = 14,4 Гц), 4,94 (1H, д, J = 14,4 Гц), 5,82 (1H, с), 5,60 - 6,25 (2H, ушир.), 6,78 - 6,86 (2H, м), 7,50 - 7,56 (1H, м), 7,67 (1H, с), 7,87 (1H, с), 7, 90 (1H, дд, J = 1,6 Гц, 8,4 Гц), 8,08 (1H, дд, J = 1,6 Гц, 8,4 Гц), 8,48 (1H, дд, J = 0,6 Гц, 1,6 Гц).
МС: MH+ = 430.
Пример 111.
Получение соединения, представленного структурной формулой:
Т.пл. 157 - 160oC.
ЯМР: δ растворитель (CDCl3) 1,23 (3H, д, J = 7,2 Гц), 4,13 (1H, кв, J = 7,2 Гц), 4,27 (1H, д, J = 14,0 Гц), 4,94 (1H, д, J = 14,0 Гц), 5,81 (1H, с), 6,78 - 6,85 (2H, м), 7,24 - 7,30 (1H, ушир. c), 7,39 - 7,56 (1H, м), 7,67 (1H, с), 7,66 - 7,72 (1H, ушир. c), 7,86 (1H, с), 7,95 (1H, дд, J = 2,0 Гц, 8,8 Гц), 8,02 (1H, д, J = 8,8 Гц), 8,59 (1H, д, J = 2,0 Гц).
МС: MH+ = 446.
Пример 112.
Получение соединения (смесь 1: 1 диастереомеров), представленного
структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,27 (3H, д, J = 7,2 Гц), 1,73 (3H, д, J = 7,2 Гц), 4,10 (1H, кв, J = 7,2 Гц), 4,15 (1H, кв, J = 7,2 Гц), 4,32 (1H, д, J = 14,0 Гц), 4,73 (1H, д, J = 14,0 Гц), 4,94 (1H, д, J = 14,0 Гц), 4,95 (1H, д, J = 14,0 Гц), 5,92 (1H, с), 5,98 (1H, с), 6,44 - 6,50 (1H, м), 6,63 - 6,70 (1H, м), 6,77 - 6,84 (2H, м), 7,12 - 7,17 (1H, м), 7,17 (1H, ушир. с), 7,22 (1H, ушир. с), 7,50 - 7,57 (1H, м), 7,66 (1H, с), 7,69 (1H, с), 7,84 (1H, дд, J = 1,6 Гц, 8,4 Гц), 7,89 (1H, с), 7,91 (1H, д, J = 8,4 Гц), 7,93 (H, дд, J = 1,6 Гц, 8,4 Гц), 8,05 (1H, д, J = 8,4 Гц), 8,06 (1H, с), 8,27 (1H, д, J = 1,6 Гц), 8, 46 (1H, д, J = 1,6 Гц).
Пример 113.
Получение соединения, представленного структурной формулой:
Т.пл. 138 - 140oC.
ЯМР:
МС: MH+ = 472.
Пример 114.
Получение соединения, представленного структурной формулой:
δ
Соединение (264 мг), полученное по примеру 111, диметилацеталь бромацетоальдегида (390
Т.пл. 153 - 158oC.
ЯМР:
МС: MH+ = 470.
Пример 115.
Получение соединения, представленного
структурной формулой A:
δ
и структурной формулой B:
A
Т.пл. 180 - 190oC.
ЯМР:
МС: MH+ = 454.
B
Т.пл. 196 - 197oC.
ЯМР:
Пример 116.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение (120 мг) получают тем же
способом, что описан в примере 106, за исключением того, что вместо 2-бром-6-хлорбензотиазола используют 2-этил-6-(1,2,3-триазол-2-ил)бензотиазол (529 мг), который является сырым продуктом 5,
полученным по препаративному примеру 7. Физические свойства этого соединения описаны далее.
Состояние: маслянистый продукт.
ЯМР:
Пример 117.
Получение соединения (смесь 1: 1 диастереомеров), представленного структурной формулой:
δ
2-Этил-6-метоксикарбонилбензотиазол получают в
соответствии с тем же способом, что описан в препаративном примере 7. Это соединение растворяют в 1 мл диэтилового эфира и к раствору при 0oC прибавляют метилмагнийиодид (2,0 М раствор в
диэтиловом эфире, 1,2 мл). После перемешивания смеси при комнатной температуре прибавляют насыщенный водный раствор хлорида аммония и подвергают экстракции этилацетатом. Полученный органический слой
промывают водой и затем насыщенным раствором соли и растворитель отгоняют при пониженном давлении. Полученный таким образом сырой продукт очищают на колонке с силикагелем с получением (2
метил-2-(2-этилбензотиазол-6-ил)этанол) (138 мг). Целевое соединение (смесь 1:1 диастереомеров) получают в соответствии с тем же способом, что описан в примере 99, за исключением того, что этот
продукт в двойном количестве по сравнению с примером 116 вместо 2-этил-6-хлорбензотиазола используют 2-этил-6-хлорбензотиазол и н-бутиллитий. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 445.
Пример 118.
Получение соединения (смесь 1: 1 диастереомеров), представленного структурной формулой:
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 484.
Пример 119.
Получение соединения (I), представленного структурной формулой:
δ
и другого соединения (II), которое является его диастереомером.
2-Этил-6-метилтиобензотиазол получают в соответствии с тем же способом, что описан в препаративном примере 7, и смесь диастереомеров, которая является целевыми соединениями, получают в соответствии с тем же способом, что описан в примере 106, за исключением того, что используют этот продукт. Смесь подвергают хроматографии на силикагеле с разделением соединения (I) и соединения (II), которое является его диастереомером.
(I)
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 433.
(II)
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,24 (3H, д, J = 7,0 Гц), 2,57 (3H, с), 4,06 (1H, кв, J = 7,0 Гц), 4,27 (1H, д, J = 14,2 Гц), 4,92 (1H, д, J = 14,2 Гц), 5,93 (1H, с), 6,76 - 6, 84 (2H, м), 7,42 (1H, дд, J = 2,0, 8,4 Гц), 7,47 - 7,55 (1H, м), 7,65 (1H, с), 7,76 (1H, д, J = 2,0 Гц), 7,88 (1H, с), 7,92 (1H, д, J = 8,4 Гц).
МС: MH+ = 433.
Пример 120.
Получение соединения (I), представленного структурной формулой:
Вышеуказанное соединение (I) и соединение (II), которое является его диастереомером, получают из соединения, полученного по примеру 119 и его диастереомера соответственно согласно тому же способу, что описан в примере 99. Физические свойства этих соединений описаны далее.
(I)
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,29 (3H, д, J = 7,2 Гц), 3,13 (3H, с), 4,18 (1H, кв, J = 7,2 Гц), 4,24 (1H, д, J = 14,12 Гц), 4,98 (1H, д, J = 14,2 Гц), 5,68 (1H, с), 6,79 - 6,86 (2H, м), 7,49 - 7,56 (1H, м), 7,70 (1H, с), 7,84 (1H, с), 8,06 (1H, дд, J = 2,0, 8,8 Гц), 8,19 (1H, д, J = 8,8 Гц), 8,58 (1H, д, J = 2,0 Гц).
МС: MH+ = 465.
(II)
Состояние: твердый продукт.
ЯМР:
МС: MH+ = 465.
Пример 121.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом, что описан
в примере 106, за исключением того, что вместо 2-этил-6-хлорбензотиазола используют 2-этил-6-(4-фторфенилтио)бензотиазол, полученный по тому же способу, что описан в препаративном примере 6.
Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР:
MC: MH+ = 513.
Пример 122.
Получение соединения (I), представленного структурной формулой:
(I)
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,27 (3H, д, J = 7,2 Гц), 4,22 (1H, д, J = 14,4 Гц), 4,63 (1H, кв, J = 7,2 Гц), 5,11 (1H, д, J = 14,4 Гц), 6,56 (1H, ушир. с), 6,76 - 6,87 (2H, м), 7,23 (2H, ушир. дд, J = 8,4, 8,4 Гц), 7,46 - 7,54 (1H, м), 7,68 (1H, с), 7,92 (1H, с), 7,99 - 8,04 (2H, м), 8,12 (1H, дд, J = 1,6, 8,4 Гц), 8,32 (1H, д, J = 8,4 Гц), 8,51 (1H, ушир. д, J = 1,6 Гц).
МС: MH+ = 561.
1,26 (3H, д, J = 7,2 Гц), 4,14 (1H, кв, J = 7,2 Гц), 4,19 (1H, д, J = 14,4 Гц), 4,94 (1H, д, J = 14,4 Гц), 5,64 (1H, с), 6,78 - 6,85 (2H, м), 7,20 (2H, ушир. дд, J = 8,6, 8,6 Гц), 7,47 - 7,54 (1H, м), 7,68 (1H, с), 7,81 (1H, с), 7,98 - 8,03 (1H, м), 8,12 (1H, д, J = 8,8 Гц), 8,58 (1H, д, J = 2,0 Гц).
MC: MH+ = 545.
Пример 123.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом, что
описан в примере 106, за исключением того, что вместо 2-этил-6-хлорбензотиазола используют 2-этил-4-хлорбензотиазол. Физические свойства этого соединения описаны далее.
Состояние: маслянистый продукт.
ЯМР: δ растворитель (CDCl3) 1,26 (3H, д, J = 8,0 Гц), 4,19 (1H, кв, J = 8,0 Гц), 4,34 (1H, д, J = 15,2 Гц), 4,96 (1H, д, J = 15,2 Гц), 5,92 (1H, ушир. с), 6,78 - 6,84 (2H, м), 7,34 - 7,40 (1H, м), 7,50 - 7,58 (2H, м), 7,68 (1H, с), 7,78 - 7,58 (2H, м), 7,68 (1H, с), 7,78 - 7,85 (1H, м), 7,92 (1H, с).
Пример 124.
Получение соединения, представленного структурной формулой:
Состояние: маслянистый продукт.
ЯМР: δ растворитель (CDCl3) 1,26 (3H, д, J = 7,1 Гц), 4,15 (1H, кв, J = 7,1 Гц), 4,22 (1H, д, J = 14,2 Гц), 4,98 (1H, д, J = 14,2 Гц), 5,63 (1H, ушир. с), 6,78 - 6,86 (2H, м), 7,48 - 7,56 (1H, м), 7,67 (1H, дд, J = 8,2, 1,5 Гц), 7,70 (1H, с), 7,84 (1H, с), 8,03 (1H, д, J = 8,2 Гц), 8,33 (1H, д, J = 1,5 Гц).
Пример 125.
Получение соединения, представленного структурной формулой:
Т.пл. 185 - 186oC.
ЯМР:
Пример 126.
Получение соединения, представленного структурной формулой:
Т.пл. 211 - 214oC.
ЯМР: δ растворитель (CDCl3) 1,30 (3H, д, J = 7,0 Гц), 3, 32 (3H, с), 4,14 (1H, кв, J = 7,0 Гц), 4,23 (1H, д, J = 14,4 Гц), 5,01 (1H, д, J = 14,4 Гц), 5,59 (1H, с), 6,80 - 6,86 (2H, м), 7,48 - 7,56 (1H, м), 7,72 (1H, с), 7,82 (1H, с), 8,25 (1H, д, J = 8,4 Гц), 8,47 (1H, д, J = 8,4 Гц).
МС: MH+ = 466
Пример 127.
Получение соединения, представленного структурной формулой:
Т.пл. 177 - 178oC.
ЯМР: δ растворитель (CDCl3) 1,27 (3H, д, J = 7,2 Гц), 4,07 (1H, д, J = 7,2 Гц), 4,27 (1H, д, J = 14,0 Гц), 4,96 (1H, д, J = 14,0 Гц), 5,63 (1H, с), 6,78 - 6,85 (2H, м), 7, 47 (1H, д, J = 8,4 Гц), 7,48 - 7,55 (1H, м), 7,70 (1H, с), 7,83 (1H, с), 8,19 (1H, д, J = 8,4 Гц).
Пример 128.
Получение соединения, представленного структурной
формулой:
Т.пл. 170 - 173oC.
ЯМР: μ растворитель (CDCl3) 1,30 (3H, д, J = 7,0 Гц), 4,13 (1H, кв д, J = 7,0 Гц, 0,8 Гц), 4,25 (1H, д, J = 14,0 Гц), 4,98 (1H, д, J = 14,0 Гц), 5,59 (1H, д, J = 0,8 Гц), 5,59 (1H, д, J = 0,8 Гц), 6,79 - 6,86 (2H, м), 7,49 - 7,56 (1H, м), 7,72 (1H, с), 7,81 (1H, с), 7,84 (1H, д, J = 8,4 Гц), 8,35 (1H, д, J = 8,4 Гц).
МС: MH+ = 413
Пример 129.
Получение соединения, представленного структурной формулой:
_→
Целевое
соединение получают из соединения, которое получено согласно примеру 128, в соответствии с тем же способом, что описан в примере 111. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,30 (3H, д, J = 7,2 Гц), 4,12 (1H, кв, J = 7,2 Гц), 4,28 (1H, д, J = 14,4 Гц), 5,00 (1H, д, J = 14,4 Гц), 5,65 (1H, с), 6,80 - 6,87 (2H, м), 7,49 - 7,56 (1H, м), 7,70 (1H, с), 7,70 - 7,76 (1H, ушир. с), 7,80 (1H, с), 8,33 (1H, д, J = 8,8 Гц), 8,91 (1H, д, J = 8,8 Гц), 9,32 - 8,38 (1H, ушир. с).
Пример 130.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом,
что описан в примере 127, за исключением того, что вместо 1-(1H-1,2,4-триазол-1-ил)-2', 4'-дифторацетофенона используют 1-(1H-1,2,4-триазол-1-ил)-2'-хлорацетофенон. Физические свойства этого
соединения описаны далее.
Состояние: твердый продукт.
ЯМР:
Пример 131.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом, что описан в примере 106, за исключением того, что вместо 2-этил-6-хлорбензотиазола используют
2-метил-6-хлорбензотиазол. Физические свойства этого соединения описаны далее.
Состояние: твердый продукт.
ЯМР
Пример 132.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом, что описан в примере
131, за исключением того, что вместо 2-метил-6-хлорбензотиазола используют 2-метил-6-цианобензотиазол. Физические свойства этого соединения описаны далее.
Т.пл. 176 - 178o C.
ЯМР:
Пример 133.
Получение соединения, представленного структурной формулой:
δ
Целевое соединение получают в соответствии с тем же способом,
что описан в примере 127, за исключением того, что вместо 2-этил-6-хлор-7-азабензотиазола используют 2-метил-6-хлор-7-азабензотиазол. Физические свойства этого соединения описаны далее.
Т.пл. 145 - 147oC.
ЯМР: δ растворитель (CDCl3) 3,47 (1H, д, J = 15,2 Гц), 3,90 (1H, д, J = 15,2 Гц), 4,69 (2H, с), 5,76 (1H, с), 6,70 - 6,83 (2H, м), 7,39 (1H, д, J = 8,4 Гц), 7,42 - 7,49 (1H, м), 7,86 (1H, с), 8,08 (1H, д, J = 8,4 Гц), 8,13 (1H, с).
Пример 134.
Получение соединения, представленного
структурной формулой:
Т.пл. 137 - 148oC.
ЯМР: δ растворитель (CD3OD) 3,69 (1H, д, J = 14,8 Гц), 4,08 (1H, д, J = 14,8 Гц), 4,77 (1H, д, J = 14,4 Гц), 4,87 (1H, д, J = 14,4 Гц), 6,71 - 6,84 (1H, м), 6,92 - 7,04 (1H, м), 7,32 - 7,46 (1H, м), 7,83 (1H, с), 7,97 (1H, д, J = 5,2 Гц), 8,37 (1H, д, J = 5,8 Гц), 8,37 (1H, с), 9,06 (1H, с).
Пример 135.
Получение соединения, представленного структурной формулой:
Состояние: маслянистый продукт.
ЯМР: δ растворитель (CDCl3) 1,55 (3H, д, J = 8,0 Гц), 2,50 (3H, с), 3,88 (1H, кв, J = 8,0 Гц), 4,69 (1H, д, J = 13,3 Гц), 4,98 (1H, д, J = 13,3 Гц), 5,56 (1H, ушир. с), 6,60 - 6,72 (2H, м), 7,20 - 7,26 (2H, м), 7,22 - 7,34 (1H, м), 7,27 (2H, с), 7,33 - 7,38 (2H, м), 7,70 (1H, с), 8,30 (1H, с).
Пример 136.
Получение соединения, представленного структурной формулой:
Состояние: маслянистый продукт.
ЯМР: δ растворитель (CDCl3) 1,60 (3H, д, J = 7,2 Гц), 3,07 (3H, с), 3,91 (1H, кв, J = 7,1 Гц), 4,71 (1H, д, J = 14,1 Гц), 5,00 (1H, д, J = 14,1 Гц), 5,40 - 5,50 (1H, ушир. с), 6,62 - 6,72 (2H, м), 7,26 - 7,33 (1H, м), 7,31 (1H, с), 7,60 - 7,64 (2H, м), 7,73 (1H, с), 7,92 - 7,97 (2H, м), 8,05 (1H, с).
MC: m/e FAB 475 (MH+).
Пример 137.
Получение соединения, представленного структурной формулой:
(I)
Т.пл. 198 - 205oC.
ЯМР: δ растворитель (CDCl3) 1,20 (3H, д, J = 7,1 Гц), 4,06 (1H, кв, J = 14,4 Гц), 4,08 (1H, кв, J = 7,1 Гц), 4,96 (1H, д, J = 14,4 Гц), 5,41 (1H, с), 6,77 - 6,83 (2H, м), 7,42 - 7,49 (1H, м), 7,75 (1H, с), 7,80 (1H, с), 8,05 (1H, с).
МС: MH+ = 362
(II)
Т.пл. 191 - 194oC.
ЯМР: δ растворитель (CDCl3) 1,61 (3H, д, J = 7,1 Гц), 4,08 (1H, кв, J = 7,1 Гц), 4,66 (1H, д, J = 14,0 Гц), 4,98 (1H, д, J = 14,0 Гц), 5,37 (1H, с), 6,58 - 6,70 (2H, м), 7,12 - 7,18 (1H, м), 7,75 (1H, с), 7,79 (1H, с), 7,97 (1H, с).
MC: MH+ = 362
Пример 138.
Получение соединения, представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (DMSO - d6) 1,13 (3H, д, J = 7,0 Гц), 4,11 - 4,14 (1H, м), 4,34 (1H, д, J = 14,2 Гц), 4,80 (1H, д, J = 14,2 Гц), 6,16 (1H, с), 6,93 - 6,98 (1H, м), 7,18 - 7,24 (1H, м), 7,28 - 7,33 (1H, м), 7,61 (1H, с), 8,22 (1H, с), 8,45 (1H, ушир. с).
MC: MH+ = 405.
Пример 139.
Получение соединения, представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,22 (0,9H, д, J = 7,1 Гц), 1,25 (2,1H, д, J = 7,1 Гц), 4,08 - 4,21 (2H, м), 4,45 (0, 9H, с), 4,49 (2,1H, с), 4,95 (0,7H, д, J = 14,2 Гц), 5,00 (0,3H, д, J = 14,8 Гц), 5,40 (0,7H, c), 5,53 (0,3H, с), 6,76 - 6,84 (2H, м), 7,45 - 7,52 (1H, м), 7,72 (0,3H, с), 7,75 (0,7H, с), 7,78 (0,7H, с), 7,81 (0,3H, с), 8,14 (0,3H, с), 8,35 (0,7H, с).
MC: MH+ = 419
Пример 140.
Получение соединения (I), представленного структурной формулой:
(I)
Т.пл. 122 - 124oC.
ЯМР: δ растворитель (CDCl3) 1,67 (3H, д, J = 7,0 Гц), 4,08 (1H, кв, J = 7,0 Гц), 4,73 (1H, д, J = 13,8 Гц), 4,93 (1H, д, J = 13,8 Гц), 6,14 (1H, д, J = 1,7 Гц), 6,48 - 6,54 (1H, м), 6,66 - 6,73 (1H, м), 7,06 - 7,12 (3H, м), 7,67 (1H, с), 7,71 - 7,24 (2H, м), 8,05 (1H, с).
(II)
Т.пл. 87 - 89oC.
ЯМР: δ растворитель (CDCl3) 1,23 (3H, д, J = 7,1 Гц), 4,06 (1H, кв, J = 7,1 Гц), 4,28 (1H, д, J = 14,4 Гц), 4,89 (1H, д, J = 14,4 Гц), 6,04 (1H, с), 6,77 - 6,85 (2H, м), 7,13 - 7,17 (1H, м), 7,41 (1H, с), 7,47 - 7,55 (1H, м), 7,67 (1H, с), 7,85 - 7,92 (2H, м), 7,90 (1H, с).
Пример 141.
Получение соединения (I), представленного структурной формулой:
Соответствующие целевые соединения получают в соответствии с тем же способом, что описан в примере 137, за исключением того, что вместо 2-этил-4-циано-5-триметилсилилтиазола используют 2-этил-4-(4'-хлорфенил)-5-триметилсилилтиазол. Физические свойства этого соединения описаны далее.
(I)
Т.пл.: 132 - 133oC.
ЯМР: δ растворитель (CDCl3) 1,67 (3H, д, J = 7,0 Гц), 4,10 (1H, кв, J = 7,0 Гц), 4,73 (1H, д, J = 13,9 Гц), 4,93 (1H, д, J = 13,9 Гц), 6,09 (1H, с), 6,46 - 6,55 (2H, м), 7,65 - 6,73 (1H, м) 7,05 - 7,13 (1H, м), 7,17 (1H, с), 7,35 - 7,40 (2H, м), 7,65 - 7,70 (2H, м), 8,04 (1H, с).
(II)
Т.пл.: 162 - 164oC.
ЯМР: δ растворитель (CDCl3) 1,23 (3H, д, J = 7,1 Гц), 4,06 (1H, кв, J = 7,1 Гц), 4,27 (1H, д, J = 14,4 Гц), 4,89 (1H, д, J = 14,4 Гц), 5,97 (1H, с), 6,76 - 6,85 (2H, м), 7, 40 - 7,55 (4H, м), 7,67 (1H, с), 7,72 - 7,77 (2H, м), 7,89 (1H, с).
Пример 142.
Получение соединения, представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 3,44 (1H, д, J = 15,0 Гц), 3,81 (1H, д, J = 15,0 Гц), 4,58 (1H, д, J = 14,2 Гц), 4,74 (1H, д, J = 14,2 Гц), 5,48 (1H, с), 6,74 - 6,82 (2H, м), 7,40 - 7,46 (1H, м), 7,85 (1H, с), 7,87 (1H, с), 8,07 (1H, с).
MC: MH+ = 348.
Пример 143.
Получение соединения,
представленного структурной формулой:
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 3,34 (1H, д, J = 15,3 Гц), 3,85 (1H, д, J = 15,3 Гц), 4,62 (1H, д, J = 14,2 Гц), 4,71 (1H, д, J = 14,2 Гц), 6,21 (1H, с), 6,69 - 6,83 (2H, м), 7,27 (1H, с), 7,36 - 7,46 (3H, м), 7,68 - 7,73 (2H, м), 7,85 (1H, с), 8,20 (1H, с).
Пример 144.
Получение соединения, представленного структурной формулой:
К раствору этого соединения в EtOH (12 мл) прибавляют 50% NaOH (0,67 г) и затем по каплям прибавляют MeI (0,46 мл). Полученную смесь перемешивают в течение 4 часов при комнатной температуре. Затем к смеси прибавляют этилацетат и промывают водой, остаток, полученный упариванием органического слоя, очищают хроматографией на колонке (SiO2; гексан-CH2Cl2 = 3:1 _ → 1:1) с получением посредством этого 0,5 г соединения, 4-(2-(2,4-дифторфенил)-1-метил-2-оксо)этилбензонитрила.
1,0 М эфирного раствора (3,9 мл) TMSCH2MgCl охлаждают до -78oC и прибавляют по каплям эфирный раствор (5 мл) вышеописанного соединения (0,5 г). После этого смесь нагревают до 0oC и перемешивают в течение 10 минут. К смеси прибавляют насыщенный водный раствор хлорида аммония с последующей экстракцией AcOEt. Полученный органический слой упаривают досуха и добавляют CH2Cl2 (10 мл) и BF3-OEt2 (0,24 мл) при 0oC с последующим перемешиванием в течение 1,5 часов при той же температуре. Затем к смеси прибавляют AcOEt и промывают водным раствором гидрокарбоната натрия и затем насыщенным раствором соли, растворитель отгоняют. Полученный осадок очищают хроматографией на колонке (SiO2; гексан-CH2Cl2 = 3:1 _→ 1:1) с получением посредством этого соединения, 4-(2-(2,4-дифторфенил)-1-метил-2-пропенилбензонитрила (0,2 г).
К раствору этого соединения (200 мг) в хлороформе (4 мл) прибавляют мета-хлорпербензойную кислоту (490 мг) при охлаждении ледяной водой и полученную смесь оставляют стоять всю ночь. После промывания жидкой реакционной смеси разбавленным карбонатом натрия и затем водой к остатку, полученному упариванием полученного органического слоя, прибавляют 5 мл диметилформамида. Полученную таким образом смесь прибавляют к раствору натрий 1,2,4-триазола в диметилформамиде (3 мл), который получают из 1,2,4-триазола (272 мг) и 60% NaH (141 мг). После проведения реакции в течение 2 часов при 90oC к реакционной смеси прибавляют этилацетат с последующим промыванием водой. Растворитель отгоняют и полученный остаток подвергают хроматографии на колонке (SiO2; гексан-CH2Cl2 = 1:1 _→ 1:2) с получением посредством этого 50 мг целевого соединения. Физические свойства этого соединения описаны далее.
Т.пл. 208 - 209oC.
ЯМР: δ растворитель (CDCl3) 1,13 (3H, т, J = 7,1 Гц), 3,38 (1H, кв, J = 7,1 Гц), 3,79 (1H, д, J = 14,5 Гц), 4,79 (1H, д, J = 14,5 Гц), 4,98 (1H, д, J = 1,5 Гц), 6,74 - 7,81 (2H, м), 7,44 - 7,51 (1H, м), 7,64 (2H, д, J = 8,4 Гц), 7,67 (2H, д, J = 8,4 Гц), 7,72 (1H, с), 7,75 (1H, с).
Пример 145.
Получение соединения, представленного структурной формулой A:
ii) Вышеуказанный твердый продукт (514 мг) растворяют в N,N-диметилформамиде (5 мл) и к этому раствору прибавляют Cs2CO3 (422 мг) и MeI (0,089 мл) с последующим нагреванием в течение 4 часов при комнатной температуре. Добавляют этилацетат и полученный органический слой промывают 3 раза водой. После этого растворитель отгоняют и остаток очищают хроматографией на колонке (SiO2; CH2Cl2:EtOA = 4:1) с получением посредством этого соединения (333 мг) структурной формулы A и соединения (93 мг) структурной формулы B. Физические свойства этих соединений описаны далее.
A
Т.пл. 216 - 218oC.
ЯМР: δ растворитель (CDCl3) 1,17 (3H, т, J = 7,0 Гц), 3,39 (1H, кв, J = 7,0 Гц), 3,89 (1H, д, J = 14,3 Гц), 4,41 (3H, с), 4,83 (1H, д, J = 14,3 Гц), 4,83 (1H, д, J = 1,5 Гц), 6,74 - 6,81 (2H, м), 7,44 - 7,54 (1H, м), 7,64 (2H, д, J = 8,4 Гц), 7,71 (1H, с), 7,75 (1H, с), 8,14 (2H, д, J = 8,4 Гц).
B
Т.пл. 169 - 171oC.
ЯМР: δ растворитель (CDCl3) 1,17 (3H, д, J = 7,1 Гц), 3,42 (1H, кв, J = 7,1 Гц), 3,88 (1H, д, J = 14,1 Гц), 4,22 (3H, с), 4,83 (1H, д, J = 14,1 Гц), 4,95 (1H, д, J = 1,5 Гц), 6,75 - 6,82 (2H, м), 7,44 - 7,55 (1H, м), 7,70 - 7,78 (6H, м).
Пример 146.
Получение соединения A, представленного структурной формулой:
Целевое соединение получают в соответствии с тем же способом, что описан в примере 144, за исключением того, что вместо 2-(4-цианофенил)ацетилхлорида используют 2-(4-(1,2,3-триазол-2-ил)фенил)ацетилхлорид. Физические свойства этого соединения описаны далее.
A
Т.пл. 198 - 199oC.
ЯМР: δ растворитель (CDCl3) 1,16 (3H, д, J = 7,1 Гц), 3,39 (1H, кв, J = 7,1 Гц), 3,89 (1H, д, J = 14,1 Гц), 4,83 (1H, д, J = 14,1 Гц), 4,85 (1H, с), 6,72 - 6,80 (2H, м), 7,44 - 7,55 (1H, м), 7,64 (2H, д, J = 8,6 Гц), 7,72 (1H, с), 7,76 (1H, с), 7,83 (2H, с), 8,08 (2H, д, J = 8,6 Гц).
B
Состояние: твердый продукт.
ЯМР: δ растворитель (CDCl3) 1,58 (3H, д, J = 7,0 Гц), 3,46 (1H, кв, J = 7,0 Гц), 4,67 (1H, д, J = 13,9 Гц), 4,85 (1H, д, J = 1,3 Гц), 5,03 (1H, д, J = 13,9 Гц), 6,42 - 6,48 (1H, м), 6,61 - 6,67 (1H, м), 6,93 - 6,99 (1H, м), 7,14 (2H, ушир. д, J = 8,6 Гц), 7,75 (2H, с), 7,76 (1H, с), 7,80 (2H, ушир. д, J = 8,6 Гц), 7,86 (1H, с).
Экспериментальный пример 2.
Группы по пять мышей ICR инфицируют через их хвостовые вены штаммом Candida albicans MCY 8622 (2 х 106 СОЕ/мышь) (SFU - СОЕ, синцитийобразующая единица). Через 1 час соединения, показанные в таблице 4, вводят орально в дозе 2, 5 или 10 мг на кг веса тела мыши соответствующим группам мышей. Наблюдения проводят в течение 7 дней для расчета среднего числа дней выживания для каждой группы. Это среднее число используют в качестве показателя, указывающего на противогрибковую активность in vivo (см. табл. 4).
Пример 147.
C24H24O3 MH+ = 360
Рассчитано,%: H = 6,71, C = 79,97, N = 0
Найдено,%: H = 6,76, C = 79,77, N = 0,05
Точка плавления кристаллов: 84
- 85oC.
1H-ЯМР ( δ , CDCl3): 1,15 (3H, д, J = 7,1 Гц), 2,69 - 2,77 (1H, м), 3,17 (1H, дд, J = 5,6 Гц, 8,8 Гц), 3,29 (1H, дд, J = 5,6 Гц, 8,8 Гц), 3,70 (3H, с), 7,20 - 7,44 (15H, м).
C23H22O3 MH+ = 347
Рассчитано,%: C =
79,74 H = 6,47 N = 0
Найдено,%: C = 79,59 H 6,47 N = 0,07
Точка плавления кристаллов: 99 - 102oC.
1H-ЯМР ( δ , CDCl3): 1,18 (3H, д, J = 7,2 Гц), 2,69 - 2,78 (1H, м), 3,25 (1H, дд, J = 5,6 Гц, 8,8 Гц), 3,32 (1H, дд, J = 5,6 Гц, 8,8 Гц), 7,15 - 7,45 (15H, м).
Остаток очищают на колонке с силикагелем (элюирование гексаном : этилацетатом = 9:1) с получением посредством этого 11,9 г (выход 91%) целевого соединения (205) в виде желтого масла.
1H-ЯМР ( δ , CDCl3): 1,21 (3H, д, J = 7,2 Гц), 2, 99 - 3,09 (1H, м), 3,21 (1H, дд, J = 5,6 Гц, 9,2 Гц), 3,44 (1H, дд, J = 7,6 Гц, 9,2 Гц), 7,21 - 7,33 (10H, м), 7,43 - 7,47 (6H, м), 7,63 (1H, д, J = 8,0 Гц), 7,73 (1H, т, J = 8,0 Гц), 8,63 (1H, д, J = 4,8 Гц).
Пример 148.
C29H24F2O2 MH+ = 442
Рассчитано,%: H = 5,47
C = 78,7 N = 0
Найдено,%: H = 5,48 C = 78,73 N = 0
Точка плавления кристаллов: 94 - 97oC.
1H-ЯМР ( δ , CDCl3): 1,21 (3H, д, J = 6,8 Гц), 3,21 (1H, дд, J = 5,2 Гц, 8,8 Гц), 3,42 (1H, дд, J = 6,4 Гц, 8,8 Гц), 3,56 (1H, м), 6,80 (1H, м), 6,94 (1H, м), 7,17 - 7,31 (15H, м), 7,77 - 7,83 (6H, м).
Пример 149.
Органический слой отделяют и промывают 3 раза водой и один раз насыщенным раствором соли и сушат над сульфатом магния, и растворитель отгоняют при пониженном давлении. Остаток очищают на колонке с силикагелем (элюирование гексан : этилацетатом = 50:1) с получением посредством этого 5,4 г (выход 85%) маслянистого продукта (207).
1H-ЯМР ( δ , CDCl3):
1,16 (3H, д, J = 7,0 Гц),
2,81 - 2,89 (1H, м), 2,97 - 3,01 (1H, дд, J = 6,0 Гц, 9,2 Гц), 3,04 - 3,08 (1H, дд, J = 6,0 Гц, 9,2 Гц), 5,11 (1H, с), 5,21 (1H, с), 6,68 - 6,75 (2H, м), 7,00 - 7,06 (1H, м), 7,18 - 7,28 (9H, м), 7,35
- 7,39 (6H, м).
Пример 150.
1H-ЯМР ( δ , CDCl3) 0,93 (3H, д,
J = 8,8 Гц) , 0,98 (3H, д, J = 8,8 Гц), 2,04 - 2,12 (1H, м), 2,20 - 2,28 (1H, м),
2,76 (1H, д, J = 5,2 Гц),
2,76 (1H, д, J = 5,2 Гц), 2,88 (1H, дд, J = 7,2 Гц, 9,2 Гц), 2,96 (1H, дд, J = 7,2 Гц, 9,2 Гц), 3,00 - 3,06 (1H, м), 3,02 (1H, д,
J = 5,2 Гц), 3,11 (1H, д, J = 5,2 Гц), 6,61 - 6,73 (2H, м), 7,12 - 7,50 (16H, м).
Пример 151.
Пример 152.
1ЯМР ( δ , CDCl3) 0,87 (3H, д, J = 7,6 Гц), 2,37 - 2,45 (1H, м), 3,40 (1H, дд, J = 3,2 Гц, 10,0 Гц), 3,55 (1H, дд, J = 5,6 Гц, 10,0 Гц), 4,19 (1H, д, J = 14,4 Гц), 4,65
(1H, д, J = 14,4 Гц), 4,88 (1H, с), 6,64 - 6,72 (2H, м), 7,22 - 7,30 (6H, м), 7,32 - 7,37 (6H, м), 7,46 - 7,50 (6H, м), 7,64 (1H, с), 7,84 (1H, с)
1H-ЯМР ( δ , CDCl3): 1,48 (3H, д, J = 7,6 Гц), 2, 47 - 2,56 (1H, м), 2,92 (1H, дд, J = 3,2 Гц, 9,6 Гц), 3,19 (1H, дд, J = 3,2 Гц, 9,6 Гц), 4,56 (1H, д, J = 14,0 Гц), 4,69 (1H, дд, J = 14,0 Гц), 4,78 (1H, с), 6,49 - 6,61 (2H, м), 7,01 - 7,09 (1H, м), 7,16 - 7,37 (15H, м), 7,63 (1H, с), 7,88 (1H, с).
Пример 153.
C13H15F2N3O2 MH+ = 284
Рассчитано,%: H = 5,34 C = 55,12 N = 14,
83
Найдено,%: H = 5,33 C = 55,09 N = 14,93
Точка плавления кристаллов: 134 - 135oC.
1H-ЯМР ( δ , CDCl3): 0,84 (3H, д, J = 7,2 Гц), 2,30 - 2,39 (1H, м), 2,67 - 2,77 (1H, ушир. с), 3,83 (1H, дд, J = 5,4 Гц, 11,2 Гц), 3,99 (1H, дд, J = 3,2 Гц, 11,2 Гц), 4,76 (1H, д, J = 14,0 Гц), 4,97 (1H, д, J = 14,0 Гц), 5,28 (1H, с), 6,69 - 6,78 (2H, м), 7,36 - 7,43 (1H, м), 7,75 (1H, с), 7,91 (1H, с).
Пример 154.
1H-ЯМР ( δ ,CDCl3): 0,75 (3H, д, J = 8,8 Гц), 1,80 (1H, дд, J = 5,2 Гц, 8,4 Гц), 2,44 - 2,53 (1H, м), 2,77 (1H, дд, J = 5, 6 Гц, 8,4 Гц), 3,21 (1H, дд, J = 8,4, 14,0 Гц), 3,32 (1H, дд, J = 2,8 Гц, 14,0 Гц), 3,63 (1H, дд, J = 8,4 Гц, 11,2 Гц), 3,96 (1H, ддд, 2,8 Гц, 5,6 Гц, 11,2 Гц), 4,39 (1H, с), 6,69 - 6,76 (1H, м), 6,79 - 6,84 (1H, м), 7,22 - 7,30 (3H, м), 7,32 - 7,37 (6H, м), 7,43 - 7,47 (6H, м), 7,52 - 7,58 (1H, м).
1H-ЯМР ( δ , CDCl3) 1,35 (3H, д, J = 7,2 Гц), 2,34 - 2,44 (1H, м), 2,93 (1H, дд, J = 3, 6 Гц, 9,6 Гц), 3,19 (1H, дд, J = 3,6 Гц, 9,6 Гц), 3,82 (1H, дд, J = 6,8 Гц, 10,6 Гц), 3,96 (1H, дд, J = 5,2 Гц, 10,6 Гц), 4,50 (1H, с), 6,57 - 6,64 (1H, м), 6,70 - 6,75 (1H, м), 7,18 - 7,31 (15H, м), 7,39 - 7,45 (1H, м).
Пример 155.
C13H13F2N3O2 MH+ = 262
Рассчитано,%: H = 4,66 C = 55,52 N = 14,94
Найдено,%: H = 4,68 C = 55,44 N = 14,96
Точка плавления
кристаллов: 140 - 144oC.
1H-ЯМР ( δ , CDCl3) 1,01 (3H, д, J = 7,2 Гц), 2,96 - 3,03 (1H, м), 4,62 (1H, д, J = 14,0 Гц), 4,90 (1H, д, J = 14,0 Гц), 5,16 (1H, с), 6,73 - 6,81 (2H, м), 7,37 - 7,44 (1H, м), 7,79 (1H, с), 7,86 (1H, с), 9,85 (1H, д, J = 3,2 Гц).
Пример 156.
C13H12F2N4O MH+ = 279
Точка плавления: 181 - 182oC.
1 H-ЯМР ( δ , CDCl3): 1,17 (3H, д, J = 7,2 Гц), 3,29 (1H, кв, J = 7,2 Гц), 4,82 (1H, д, J = 14,0 Гц), 4,97 (1H, д, J = 14,0 Гц), 5,44 (1H, д, J = 0,8 Гц), 6,74 - 6,82 (1H, м), 7,39 - 7, 46 (1H, м), 7,83 (1H, с), 7,84 (1H, с).
Пример 157.
Колонка: Chiral Cell OB (внутренний
диаметр 4 мм, длина 250 мм)
Подвижная фаза: Гексан : изопропанол = 9:1
Скорость потока: 0,5 мл/мин
1H-ЯМР ( δ , CDCl3): 1,18 (3H, д, J = 6,8 Гц),
2,50 (1H, т, J = 6,0 Гц), 3,45 - 3,54 (1H, м), 3,72 - 3,79 (1H, м), 3,84 - 3,92 (1H, м), 6,82 - 6,88 (1H, м), 6,92 - 6,98 (1H, м), 7,83 - 7,90 (1H, м).
Пример 158.
1H-ЯМР ( δ , CDCl3): 1,22 (3H, д, J = 6,8 Гц), 3,29 (3H, с), 3,85 - 3,68 (2H, м), 3,87 - 3,94 (1H, м), 4,56 (1H, д, J = 8,4 Гц), 4,59 (1H, д, J = 9,4 Гц), 6,84 - 6,91 (1H, м), 6,94 - 6,99 (1H, м), 7,85 - 7,92 (1H, м).
Пример 159.
1H-ЯМР ( δ , CDCl3): 0,99 (3H, д, J = 6,8 Гц), 1,20 (3H, д, J = 6,8 Гц), 2,08 - 2,22 (1H, м), 2,78 (1H, д, J = 5,2 Гц), 3,09 (1H, д, J = 5,2 Гц), 3,33 (1H, с), 3,36 (1H, с), 3,19 - 3,38 (1H, м), 3,45 - 3,54 (1H, м), 4, 57 (2H, с), 4,61 (1H, с), 6,75 - 6,88 (2H, м), 7,32 - 7,45 (1H, м).
Пример 160.
1H-ЯМР ( δ , CDCl3): 0,94 (9H, с), 1,19 (3H, д, J = 10,0 Гц), 3,58 (1H, м), 3,75 (1H, ддд, J = 10,0 Гц, 5,2 Гц, 0,8 Гц), 3,94 (1H, ддд, J = 10,0 Гц, 6,8 Гц, 1,6 Гц), 6,82 - 6,87 (1H, м), 6,92 - 6,98 (1H, м), 7,29 - 7,44 (6H, м), 7,49 - 7,52 (2H, м), 7,57 - 7,61 (2H, м), 7,79 - 7,85 (1H, м).
Пример 161.
Продукт в количестве 262 мг растворяют в 2,5 мл дихлорметана и к раствору прибавляют по каплям 69 μ л комплекса трифторидбора-диэтилового эфира при охлаждении ледяной водой. После перемешивания в течение 10 минут к реакционной смеси прибавляют насыщенный раствор гидрокарбоната натрия с последующей экстракцией дихлорметаном. Экстракт промывают водой и насыщенным раствором соли и сушат над сульфатом магния и растворитель затем отгоняют при пониженном давлении. Остаток очищают хроматографией на колонке с силикагелем (элюирование гексаном : этилацетатом = 20:1) с получением посредством этого 174 мг целевого продукта (217) в виде маслянистого продукта.
1H-ЯМР ( δ , CDCl3): 1,02 (9H, c), 1,17 (3H, д, J = 6,8 Гц), 2,72 - 2,80 (1H, м), 3,50 (1H, дд, J = 6,4 Гц, 10,0 Гц), 3,64 (1H, дд, J = 5,2 Гц, 10,0 Гц), 5,13 (1H, с), 5,23 (1H, с), 6,71 - 6,78 (2H, м), 7,04 - 7,11 (1H, м), 7,31 - 7,43 (6H, м), 7,58 - 7,63 (4H, м).
Пример 162.
1H-ЯМР ( δ , CDCl3): 0,92 (3H, д, J = 8,8 Гц), 0,97 (3H, д, J = 8,8 Гц), 1, 03 (9H, с), 1,06 (3H, с), 1,96 - 2,05 (1H, м), 2,14 - 2,22 (1H, м), 2,78 (1H, д, J = 5,2 Гц), 2,79 (1H, д, J = 5,2 Гц), 3,08 (1H, д, J = 5,2 Гц), 3,17 (1H, д, J = 5,2 Гц), 3,45 - 3,66 (2H, м), 6,70 - 6,82 (2H, м), 7,30 - 7,45 (6H, м), 7,59 - 7,68 (4H, м).
Пример 163.
Пример 164.
1H-ЯМР ( δ , CDCl3): 1,21 (3H, д, J = 7,0 Гц), 3,54 (1H, дд, J = 8,8 Гц, 5,5 Гц), 3,60 - 3,70 (1H, м), 3,82 (1H, дд, J = 8,8 Гц, 3,6 Гц), 4,47 (1H, д, J = 11,9 Гц), 4,54 (1H, д, J = 11,9 Гц), 6,80 - 6,98 (2H, м), 7,20 - 7,40 (5H, м), 7,82 - 7,88 (1H, м).
Пример 165.
Неожиданно, соединение (220) является смесью 1:1 диастереомеров.
1H-ЯМР ( δ , CDCl3): 0,97 (3H, д, J = 7,8 Гц), 1,01 (3H, д, J = 7,5 Гц), 2,14 - 2,18 (1H, м), 2,20 - 2,28 (1H, м), 2,77 - 2,80 (2H, м), 3,07 - 3,10 (2H, м), 3,24 - 3,32 (2H, м), 3,38 - 3, 46 (2H, м), 4,40 - 4,52 (4H, м), 6,75 - 6,84 (4H, м), 7,26 - 7,40 (12H, м).
Препаративные примеры.
Препаративные примеры от соединения (202) до конечного соединения описаны далее.
Препаративный пример 8.
MH+ =
313
Точка плавления: 132 - 134oC.
1H-ЯМР ( δ , CDCl3): 1,11 (3H, д, J = 7,1 Гц), 3,71 (1H, кв, J = 7,1 Гц), 4,55 (1H, д, J = 14,3 Гц), 5,08 (1H, д, J = 14,3 Гц), 6,71 - 6,80 (2H, м), 7,42 - 7,48 (1H, м), 7,80 (1H, ушир. с), 7,94 (1H, с), 8,41 (1H, ушир. с).
Препаративный пример 9.
MH+ = 459
1H-ЯМР ( δ , CDCl3): 1,23 (3H, д, J = 7,2 Гц), 2,54 (3H, с), 4,05 (1H, кв, J = 7,2 Гц), 4,28 (1H, д, J = 14,4 Гц), 4,88 (1H, д, J =
14,4 Гц), 6,13 (1H, с), 6,75 - 6,85 (2H, м), 7,33 (2H, ушир. д, J = 8,4 Гц), 7,42 (1H, с), 7,46 - 7,54 (1H, м), 7,66 (1H, с), 7,82 (2H, ушир. д, J = 8,4 Гц), 7,92 (1H, с).
Препаративный пример 10.
MH+ = 491
1H-ЯМР ( δ , CDCl3): 1,24 (3H, д, J = 7,2 Гц), 3,09 (3H, с), 4,09 (1H, кв, J = 7,2 Гц), 4,27 (1H, д, J = 14,4 Гц),
4,91 (1H, д, J = 14,4 Гц), 5,78 (1H, с), 6,78 - 6,85 (2H, м), 7,47 - 7,55 (1H, с), 7,67 (1H, с), 7,69 (1H, с), 7,87 (1H, с), 8,02 (2H, ушир. д, J = 8,4 Гц), 8,10 (2H, ушир. д, J = 8,4 Гц).
Экспериментальный пример 3.
Группы по пять мышей ICR инфицируют через их хвостовые вены штаммом Candida albicans MCY 8622 (2 x 106 COE/мышь) (SFU - COE, синцитийобразующая единица). Через 1 час соединения по данному описанию вводят орально в дозе 2,5 или 10 мг на кг веса мыши соответствующим группам мышей. Наблюдения проводят в течение 7 дней для расчета среднего числа дней выживания для каждой группы. Это среднее число используют в качестве показателя, указывающего на противогрибковую активность in vivo.
Результаты
Результат эксперимента
показан в табл. 5.
Как ясно из этих данных, соединение, полученное из промежуточных продуктов для синтеза способами получения согласно настоящему изобретению, обладает превосходной противогрибковой активностью и поэтому является полезным для профилактики и лечения различных грибковых инфекционных заболеваний.
Примеры препаративных форм фармацевтической
композиции
Пример I
Два грамма соединения примера 99 настоящего изобретения растворяют в этиловом спирте в 500 мл колбе, затем добавляют 6 г поливинилпирролидона и растворяют.
Растворитель выпаривают и остаток собирают, размалывают в мельнице и затем просеивают через сита с размером отверстий 32 меш с получением гранулированной композиции.
Пример II
Два грамма соединения примера 49 настоящего изобретения растворяют в этиловом спирте в 500 мл колбе, затем добавляют воду для получения 85% этанольного раствора. Добавляют к раствору 6 г
гидроксипропилметилцеллюлозы, затем растворитель выпаривают. Остаток собирают, размалывают в мельнице и затем просеивают через сита с размером отверстий 32 меш с получением гранулированной
композиции.
Использование фталата гидроксипропилметилцеллюлозы или гидроксипропилцеллюлозы также дает гранулированную композицию.
Пример III
Пять граммов
соединения примера 99 настоящего изобретения растворяют в этиловом спирте в 1000 мл колбе, затем добавляют воду для получения 85% этанольного раствора. К раствору добавляют 15 г
гидроксипропилметилцеллюлозы и 100 г кристаллической целлюлозы (торговое наименование XXX, производится Asahi Chemical Industry Co., размер частиц от 200 до 300 мкм) для получения суспензии, затем
растворитель выпаривают. Остаток собирают, размалывают в мельнице и затем просеивают для отделения гранул, которые проходят через сито с размером отверстий 32 меш и не проходят через сита с размером
отверстий 48 меш. Таким образом получают гранулированную композицию.
Данные по биологической активности
1. Определение минимальной концентрации антибиотика (МКА)
Минимальную концентрацию антибиотика определяют с помощью метода на основе двукратно разведенного агара с агаром Сабуро с декстрозой (SDA: Difco Laboratories, Detroit, Mich.). Дрожжи выращивают на SDA
при 30oC в течение 24 часов и разбавляют до конечной концентрации 105 клеток/мл стерилизованным физиологическим раствором.
Нитевидные грибки выращивают на картофельном агаре с декстрозой (PDA: Eiken Chemical Co., Tokyo, Japan) при 30oC в течение 1 недели и разбавляют до конечной концентрации 105 клеток/мл стерилизованным физиологическим раствором, содержащим 0,05% Tween 80. Пять микролитров каждой суспензии грибков наносят с помощью мультиинокулярного репликатора (Microplanar: Sakuma Seisakusho, Tokyo, Japan) на пластину агара, который содержит двукратные серийные разведения антифунгицидных соединений. Наблюдают рост грибков в течение 48 часов после инкубации при 30oC. МКА определяют как наименьшую концентрацию лекарственного средства, при которой наблюдают некоторое ингибирование роста грибков по сравнению с контрольным ростом грибков.
Полученные результаты представлены в табл. 6.
Исследовали активность против C. albicans MYC 8622.
2. Данные по токсичности заявляемых соединений
Соединение примера 104 (200 мг/кг) вводят перорально 4
крысам ежедневно в течение 7 дней. Все крысы были живы на 8 день и не наблюдалось какого-либо токсического действия.
Такой же результат наблюдали при испытании соединения примера 127.
Описываются новые соединения азола общей формулы I, где значения А, R1 - R3, W, X, Y, Z, m указаны в п.1 формулы, которые проявляют противогрибковую активность и могут быть использованы при лечении дерматомикоза, висцеромикоза. Описывается также способ их получения, промежуточные соединения, а также фармацевтическая композиция, обладающая противогрибковой активностью. 26 с. и 5 з.п.ф-лы, 6 табл.