Код документа: RU2135732C1
Изобретение относится к области промышленности, связанной с добычей полезных ископаемых - жидкого топлива, а конкретно к подземной скважинной системе для бурения и обустройства такого множества скважин, которое позволяет таким скважинам отклоняться на значительные углы разделения и/или быть пробуренными и обустроенными в раздельных подземных формациях или зонах, имеющих различающиеся характеристики давления в резервуарах.
В настоящее время скважинные каналы все в большей степени бурятся в подземных формациях с ориентацией, существенно отличающейся от вертикальной, с помощью обычной уипстоковой техники или турбобура, т.е. двигателя бурового раствора, установленного в буровой колонне рядом с буровой коронкой. В трещиноватых подземных формациях наклонные скважины используются для увеличения области откачки, определяемой скважиной в подземной формации, и, таким образом, для увеличения выработки углеводородов из подземной формации.
Насущной проблемой при использовании обычного уипстока для бурения наклонной скважины является то, что как глубинная, так и радиальная ориентация уипстока устанавливаются, когда уипсток размещен в скважинном канале, и не могут быть изменены без изъятия уипстока из скважинного канала и изменения его глубинной и/или радиальной ориентации.
Кроме того, скважины, пробуренные с буровых платформ в открытом море, обычно наклонены для увеличения числа скважин, которые могут быть пробурены и обустроены с одной платформы. Буровые платформы в открытом море, которые используются для бурения и обустройства скважин в подземных формациях под большим слоем воды, различаются по размеру, структуре и стоимости в зависимости от глубины воды и несущих, на которых будет установлена платформа. Например, платформа может быть сконструирована так, чтобы поддерживаться частично одной опорой или кессоном, который протянут до океанского дна, или восемью такими опорами или кессонами. Стоимость таких буровых платформ в открытом море меняется от 5 до 500 миллионов долларов. Каждая буровая платформа в открытом море снабжена установленным числом отверстий, через которые наклонные скважины могут быть пробурены или обустроены через поверхностную обсадную трубу, которая крепится к линии бурового раствора обычными методами.
Из-за значительного расхода средств, требуемых для этих платформ в открытом море, были разработаны шаблоны и способы для бурения и обустройства множества скважин через единственную поверхностную или промежуточную обсадные трубы. Для достижения наиболее экономичного пути разработки подземных углеводородных резервуаров может быть желательно бурить и обустраивать скважины в раздельных подземных формациях и зонах, которые могут быть расположены на глубинах, различающихся вплоть до 10000 футов и более. Подземные формации или зоны с различающейся глубиной часто содержат жидкости с существенно различающимися давлениями, выработка которых идет при значительно различающихся скоростях потока. Поскольку разработанные шаблоны могут быть использованы для бурения и обустройства подземных скважин в раздельных формациях и зонах с различными глубинами, эти шаблоны не предназначены для приема обсадных труб диаметром, например, 7 дюймов, который достаточен для того, чтобы дать возможность жидкостям выходить со скоростью и/или в объеме, необходимом для того, чтобы сделать относительно глубокую скважину рентабельной. Таким образом существует реальная потребность в устройстве и способах бурения и обустройства множества подземных скважин из скважинного канала во множестве подземных формаций или зон на различающихся глубинах. Далее, существует потребность в устройстве и способе бурения и обустройства множества подземных скважинных каналов с более высокими степенями разделения друг от друга, чтобы значительно увеличить тем самым область откачки и, таким образом, повысить добычу углеводородов из скважины.
Известно устройство для бурения и
оборудования многоствольной нефтяной скважины, содержащее по меньшей мере один комплект отклоняющих устройств для ответвления, закрепленный на месте во внешней (обсадной) трубе скважины, и по меньшей
мере одна из отклоняющих труб сообщается посредством своего нижнего конца с разветвленной скважиной (Заявка на патент ЕПВ N 0136935, МКИ E 21 В 43/30, E 21 В 7/08, E 21 В 43/14, E 21 В 33/14, опубл.
1985 г.)
Известна также плавучая буровая установка для бурения и оснащения скважины, содержащая платформу для бурения и оснащения скважины, содержащая платформу с размещенными на ней вышкой,
средствами для перемещения соответствующих колонн и звеньев труб, буровое оборудование, подводное оборудование для оснащения устья скважины, включающее башмачную плиту с кондуктором и механизм
компенсации с натяжным грузом (авторское свидетельство СССР N 1335671, МКИ E 21 В 19/09, E 21 В 7/12, F 21 B 15/02, опубл. 1986 г.).
Известные устройства в целом решают задачу выполнения бурения нескольких скважин из одного или общего бурового отверстия с последующим их оснащением для обеспечения эксплуатации, однако они не позволяют совмещать ремонтно-восстановительные операции на одной из скважин, при одновременном получении углеводородного сырья из других скважин.
Наиболее близким по технической сущности и достигаемым техническим результатам при
использовании является подземная скважинная система, содержащая по крайней мере два подземных скважинных канала, один из которых протянут до поверхности земли, а второй пробурен посредством шаблона из
первого скважинного канала, отклоняющее устройство для ответвления, буровое оборудование, оборудование для оснащения устья скважины (международная заявка PCT/US 95/17580, кл. E 21 В 43/20, E 21 В
33/047, опубл. 1995 г.)
Несмотря на устранение ряда недостатков, присущих описанным выше техническим решениям, данная система не обеспечивает бурение и обустройство множества подземных
скважин на значительно различающихся точно по вертикали глубины через единственную поверхностную или промежуточную обсадные трубы и для обустройства множества таких скважин через раздельные обсадные
трубы, протянутые через поверхностную или промежуточную обсадные трубы.
Основной задачей, на решение которой направлено данное изобретение, является создание подземной скважинной системы, свободной от указанных выше недостатков.
Техническим результатом при использовании настоящего изобретения является обеспечение бурения и обустройства множества подземных скважин от единственной поверхностной или промежуточной обсадной трубы, в котором по меньшей мере одна скважина из множества подземных скважин пробурена и обустроена на значительно большие глубины, чем было достижимо в прошлом.
Другим техническим результатом является обеспечение поверхностного шаблона и бурение множества заключенных в трубы скважин, которые имеют высокий уровень разделения без использования уипстока.
Следующим техническим результатом является обустройство множества заключенных в трубы скважин таким образом, чтобы ремонтные работы могли проводиться на одной скважине при одновременной добыче углеводородов из подземной формации или зоны через другие скважины, которые обустроены через разделительные обсадные трубы, помещенные в одной поверхностной или промежуточной обсадной трубе.
Еще один технический результат заключается в обеспечении предлагаемой подземной системой обсадным трубам каждой из множества скважин спускаться от шаблона по отдельности, при этом отдельные обсадные трубы каждой из множества скважин могут тянуться до поверхности.
Наконец, можно отметить и использование шурфового или подповерхностного шаблона для бурения и/или обустройства множества подземных скважин из трубного или многоскважинного поверхностного шаблона, который расположен в подземной окружающей среде.
Для достижения упомянутых технических результатов и в соответствии с настоящим изобретением, как они раскрыты и подробно здесь описаны, одним из вариантов настоящего изобретения является подземная скважинная система для бурения и обустройства ее из первого подземного скважинного канала, вытянутого до поверхности земли. Второй подземный скважинный канал пробуривается из первого скважинного канала, и первая труба из шаблона бурения и обустройства расположена в первом скважинном канале, тогда как вторая труба шаблона расположена как в первом, так и во втором скважинных каналах.
Другим вариантом настоящего изобретения является подземная скважинная система, пробуренная и обустроенная из первого подземного скважинного канала, который тянется до поверхности земли. Второй подземный скважинный канал и третий подземный скважинный канал бурятся из первого скважинного канала. Первая труба из шаблона бурения и обустройства расположена как в первом, так и во втором скважинном канале, тогда как вторая труба шаблона расположена как в первом, так и в третьем скважинных каналах.
Еще одним вариантом настоящего изобретения является подземная скважинная система, пробуренная и обустроенная из первого подземного скважинного канала, который тянется до поверхности земли. Второй подземный скважинный канал и третий подземный скважинный канал бурятся по отдельности из первого скважинного канала. Четвертый скважинный канал пробуривается из второго скважинного канала, тогда как пятый скважинный канал пробуривается из третьего скважинного канала. Первая труба из шаблона бурения и обустройства расположена как в первом, так и во втором скважинном канале. Вторая труба шаблона расположена как в первом, так и в третьем скважинных каналах.
И, наконец, еще один вариант изобретения представлен подземной скважинной системой, пробуренной и обустроенной из первого скважинного канала, который тянется до поверхности земли. Второй подземный скважинный канал пробуривается из первого скважинного канала. Первая труба из первого шаблона расположена в первом скважинном канале, а вторая труба расположена как в первом, так и во втором скважинном канале. По меньшей мере две скважины бурятся из второго скважинного канала через второй шаблон, который прикреплен ко второй трубе.
Прилагаемые чертежи, которые включены и составляют часть описания, иллюстрируют варианты выполнения настоящего изобретения и совместно с описанием служат для объяснения принципов изобретения.
На
чертежах представлены:
фиг. 1 является видом в перспективе одного варианта выполнения шурфового шаблона для использования в настоящем изобретении;
фиг. 2 является видом в разрезе по
линии 2-2 на фиг. 1 одного выполнения шурфового шаблона по настоящему изобретению;
фиг. 3 является видом в разрезе другого варианта выполнения поверхностного шаблона по настоящему изобретению;
фиг. 4 является видом в перспективе еще одного варианта выполнения шурфового шаблона по настоящему изобретению;
фиг. 5 является видом в перспективе другого выполнения шаблона по
настоящему изобретению;
фиг. 6 является видом в разрезе по линии 6-6 на фиг. 5;
фиг. 7 является видом в разрезе по линии 7-7 на фиг. 5;
фиг. 8 является видом в разрезе по
линии 8-8 на фиг. 5;
фиг. 9 является видом в перспективе предпочтительного стояка, используемого вместе с шаблоном по настоящему изобретению;
фиг. 10 является видом в перспективе и
частично в разрезе предпочтительного стояка, показанного на фиг. 9;
фиг. 11 является разверткой внешней поверхности предпочтительного стояка по настоящему изобретению;
фиг. 12
является видом в перспективе другого выполнения шаблона по настоящему изобретению;
фиг. 13 является видом в поперечном разрезе по линии 12 - 12 на фиг. 12;
фиг. 14 - 19 являются
схематическими, частично в разрезе, видами шурфового шаблона, который использован для бурения и обустройства множества подземных скважин в соответствии со способом по настоящему изобретению;
фиг. 20 является видом в разрезе поверхностного шаблона для использования в настоящем изобретении, который расположен над скважинным каналом;
фиг. 21 является видом в разрезе входных
отверстий двух каналов, расположенных внутри поверхностного шаблона, который используется в одном выполнении настоящего изобретения, и поддерживаемых им;
фиг. 22 является видом в разрезе
поверхностного шаблона, используемого в одном выполнении настоящего изобретения, показывающим две трубы спускающимися от устья скважины и идущими в отдельные подземные скважинные каналы, пробуренные
из общего скважинного канала;
фиг. 23 является видом в разрезе поверхностного шаблона, используемого в одном выполнении настоящего изобретения, показывающим секции устья скважины,
объединенные вместе во время сборки узла устья скважины;
фиг. 24 является видом в разрезе поверхностного шаблона, используемого в одном выполнении настоящего изобретения, включающего в себя
буровой фланец, используемый для бурения первого подземного скважинного канала через один канал устья скважины с двумя каналами, и связанную с ним трубу шаблона;
фиг. 25 является частичным
видом в разрезе поверхностного шаблона, показывающим обсадную выпускную трубу, расположенную в первом подземном скважинном канале, пробуренном с использованием поверхностного шаблона в соответствии с
одним выполнением настоящего изобретения;
фиг. 26 является частичным видом в разрезе поверхностного шаблона, включающего в себя буровой фланец, используемый для бурения второго подземного
скважинного канала через другой канал устья скважины с двумя каналами, и связанную с ним трубу поверхностного шаблона в соответствии с одним выполнением настоящего изобретения;
фиг. 27
является частичным видом в разрезе поверхностного шаблона, показывающим обсадную выпускную трубу, расположенную во втором подземном скважинном канале, пробуренном с использованием поверхностного
шаблона в соответствии с одним выполнением настоящего изобретения;
фиг. 28 является частичным видом в разрезе поверхностного шаблона, включающего в себя бобину труб двух каналов;
фиг. 29 является частичным видом в разрезе поверхностного шаблона и связанного с ним устья скважины, имеющей отдельные выпускные трубы, расположенные в первом и втором подземных скважинных каналах,
пробуренных с использованием поверхностного шаблона в соответствии с одним выполнением настоящего изобретения; каждый из скважинных каналов имеет отдельные выпускные стойки на поверхности;
фиг. 30 является частичным видом в разрезе поверхностного шаблона, который частично показан на фиг. 28, где первый и второй подземные скважинные каналы, пробуренные с использованием поверхностного
шаблона в соответствии с одним выполнением настоящего изобретения, имеют отдельные выпускные стойки на поверхности так, чтобы обеспечить добычу подземной жидкости через обсадные выпускные трубы,
расположенные в каждом скважинном канале;
фиг. 31 является видом сверху на входное отверстие поверхностного шаблона с тремя сквозными каналами, расположенное внутри узла устья скважины и
поддерживаемое им;
фиг. 32 является видом в разрезе поверхностного шаблона, используемого в соответствии с одним выполнением настоящего изобретения, показывающим три трубы, спускающиеся от
устья скважины; и
фиг. 33 является видом в разрезе подземной скважинной системы, разработанной при использовании выполнения по настоящему изобретению, где подповерхностный или шурфовый
разделитель используется вместе с поверхностным расщепителем для бурения и обустройства по меньшей мере двух подземных скважинных колодцев по меньшей мере из одной трубы поверхностного шаблона.
Подробное описание предпочтительных выполнений
Способ по настоящему изобретению может быть проведен на практике путем использования либо шурфового, либо подповерхностного шаблона,
который расположен внутри скважины, или поверхностного шаблона, который расположен на наземной или на подводной поверхности, или на платформе в открытом море, и протягивается в скважину. В одном
выполнении настоящего изобретения способ проводится путем использования шурфового или подповерхностного шаблона вместе по меньшей мере с одной трубой поверхностного шаблона.
На фиг. 1 в общем виде иллюстрируется шаблон или направляющая множества скважин, который обозначен поз. 10 и имеет периферийную конфигурацию, которая позволит шаблону быть помещенным в шурф внутри скважинного канала, как описано ниже. Шурфовый шаблон 10 может быть единым, но предпочтительно он изготавливается из многих секций, которые соединены вместе с помощью любого подходящего средства, такого как винтовая резьба, кулачковые зажимы, сварные соединения, и которые герметизированы с помощью, например, тороидальных колец. Шаблон 10 предпочтительно изготавливается из подходящего металла или соединения металлов, которое выбирается на основании нагрузок и давлений, которые появятся в обсадной трубе в течение использования.
Как показано на фиг. 2, шурфовый шаблон 10 по настоящему изобретению имеет торцевую поверхность 12 и два сквозных канала 20, 30, которые пересекают отдельные торцевые поверхности 13 и 14 на другом торце шаблона. Между торцевыми поверхностями 13, 14 расположена поверхность 11 и направлена так, чтобы позволить скважине быть пробуренной от более длинного канала 30 в отдельную и раздельную подземную интересующую зону, которая может находиться на глубине до 10000 футов и глубже по сравнению с зоной, до которой пробуривают и выполняют канал 20. Как показано на фиг. 2, каждый канал 20 и 30 вытянут и смещен вдоль всей осевой длины шаблона 10. Каждый канал 20, 30 снабжен первыми секциями 21, 31, вторыми секциями 23, 33 и третьими секциями 25, 35 соответственно. Первые и вторые секции каналов 20, 30 определяют кольцевые уступы 22, 32 между ними, тогда как вторые и третьи секции каналов 20, 30 определяют кольцевые уступы 24, 34 между ними. Каждый канал 20 и 30 снабжен винтовой резьбой 17 для прикрепления стояка или обсадной трубы, как обсуждено ниже. Каналы 20, 30 могут быть расположены так, чтобы отклоняться друг от друга от торцевой поверхности 12 к торцевым поверхностям 13, 14 (фиг. 2 и 3). Такое отклонение обычно не превышает 2o от всей длины шаблона 10, и предпочтительно меньше 1o. Одноходовой клапан 36, такой как пружинный поплавковый клапан, установлен внутри третьей секции 35 с помощью любого пригодного средства, такого как сварное соединение, тогда как пробка 26 установлена внутри третьей секции 25 для обеспечения плотной закупорки жидкости в канале 20.
Шурфовый шаблон, используемый в настоящем изобретении, может быть снабжен тремя или более каналами в зависимости от диаметра канала, в котором размещен шаблон, и от диаметра скважинных каналов, которые будут пробурены с использованием этого шаблона. Как показано на фиг. 3, шурфовый шаблон или направляющая 10 представлена имеющей три в общем случае цилиндрических канала 20, 30 и 40. Торцевая поверхность 12 может быть снабжена множеством наклонных фасок или углублений 16, чтобы помочь в помещении стояка в каналы 20, 30 и 40 во время бурильных операций, что будет понятно специалисту. Каждый канал 20, 30 и 40 снабжен винтовой резьбой для свободного прикрепления стояка или обсадной трубы, как обсуждено ниже. В этом выполнении шаблон 10 снабжен тремя отдельными торцевыми поверхностями 13, 14 и 15, которые пересекаются каналами 20, 30 и 40 соответственно, и которые изготавливаются на различных расстояниях по длине шаблона 10, как показано на фиг. 3. Как показано на фиг. 3, каждый из каналов 20, 30 и 40 может также отклоняться друг от друга от торцевой поверхности 12 к торцевым поверхностям 13, 14 и 15, хотя такое отклонение обычно не должно превышать 2o от всей длины шаблона 200, и предпочтительно меньше 1o. Когда через шаблон, показанный на фиг. 3, выполнено три канала, канал 30, который оборудован одноходовым клапаном 36, займет самое низкое положение относительно наклонной торцевой поверхности 12.
Шаблон 10 может быть прикреплен к дну проводящей, поверхностной или промежуточной обсадной трубы 90 (фиг. 2 и 3) любым подходящим средством, таким как резьба или сварные швы. Обсадная труба 90 снабжена выступающим внутрь ключом или собачкой 92, которая прикреплена к обсадной трубе 90, например, сварными швами. Альтернативно и как показано на фиг. 4, шаблон 10 может быть оборудован обычным пакерным узлом 80, который расположен над окружностью узла 80 и прикреплен к ней, предпочтительно на верхней поверхности шаблона 10, который расположен внутри скважинного канала 54. Пакерный узел 80 содержит множество выступающих кольцевых эластомерных элементов 82 и множество скользящих элементов 84. В этом выполнении шаблон 10 имеет такой размер, чтобы войти в обсадную трубу, и таким образом может быть опущен с помощью буровой колонны, колонны труб или проводной линии (не показана) внутри поверхностной или промежуточной обсадной трубы 50, которая была предварительно вцементирована в скважинном канале 54. Размещенные около самого низкого торца обсадной трубы 50 ползуны 84 и элементы 82 последовательно зацепляются с поверхностной или промежуточной обсадной трубой 50 таким образом и с помощью такого обычного средства, которые будут ясны специалисту, так, чтобы закрепить шаблон 10 внутри поверхностной или промежуточной обсадной трубы 50 и уплотнить кольцо между ними. Ползуны 84 имеют такой размер и форму, чтобы поддерживать не только шаблон 10, но также и любые трубы скважинного канала, которые могут быть подвешены от них, как описано ниже.
Как упомянуто выше, шаблон по настоящему изобретению может быть единым либо изготовленным из множества секций. Пример шаблона по настоящему изобретению, который изготовлен из множества секций, показан в общем виде на фиг. 5 и 6 как 100. Шаблон 100 состоит из первой верхней секции 101, удлиненной балки 107 и множества трубных элементов 104. Первая верхняя секция 101 снабжена двумя сквозными скважинными каналами и имеет нижние резьбовые секции 102. Торцевая поверхность 112 первой секции 101 образуется углублениями 115, 116, окружающими пересечение двух каналов. Удлиненная балка, например двутавровая балка 107 с широкими или с узкими полками, прикреплена к другой торцевой поверхности первой секции 101 любым подходящим средством, таким как болты 108 (фиг. 7). В общем случае C-образные направляющие 109 могут быть прикреплены к двутавровой балке 107 с широкими или узкими полками по ее длине, например, сварными швами. Трубные элементы 104 размещаются через направляющие 109 на каждом торце двутавровой балки 107 с широкими или с узкими полками (фиг. 8) и сопрягаются с резьбовыми секциями 102 каналов через первую секцию 101. Направляющие 109 работают в комбинации с удлиненной балкой 107 для ограничения и запрещения движения элемента(ов) 104 трубы, размещенных через такие направляющие. Различные трубные элементы 104, расположенные на одной стороне двутавровой балки 107 с широкими или с узкими полками, скреплены вместе любым подходящим средством, например муфтами 105 с резьбой. Свободный торец каждого трубного элемента 104 сопряжен с колодкой 106, в которой поплавковый клапан 136 прикреплен к одной из сторон двутавровой балки 107 с широкими или с узкими полками, тогда как пробка 126 введена в другой торец балки 107.
При такой сборке первая секция 101, балка 107 и трубные элементы 104 определяют шаблон 100, имеющий два в общем случае цилиндрических сквозных канала 120, 130. Как пример относительных размеров шаблона 100, длина первой секции может быть 4 фута, балка 107 может быть 30 футов и поверхностная или промежуточная обсадная труба 90 может быть 8 футов. Канал 120, при измерении ото дна первой секции 101 до торцевой поверхности 113, может иметь длину, приближающуюся, например, к 30 футам или менее, чем длина балки 107 (как показано на фиг. 5 или 6), или может выступать за балку 107 на длину до нескольких тысяч футов или более (как показано на фиг. 12 и 13). Канал 130 длиннее, чем канал 120, и, при измерении ото дна первой секции 101 до торцевой поверхности 114, может быть длиной до 10000 футов или более в зависимости от формаций, подлежащих бурению и обустройству в соответствии с настоящим изобретением. Как показано на фиг. 6, каждый канал 120, 130 снабжен первыми секциями 121, 131, вторыми секциями 123, 133, и третьими секциями 125, 135 соответственно. Первые и вторые секции каналов 120, 130 определяют кольцевые уступы 122, 132 между ними, тогда как тогда как вторые и третьи секции каналов 120, 130 определяют кольцевые уступы 124, 134 между ними. В этом выполнении каналы 120, 130 обычно будут отклоняться друг от друга. В выполнении, показанном на фиг. 5 и 6, канал 120 короче канала 130 для достижения части подземной формации между торцевыми поверхностями 113 и 114, внутри которой буровая колонна, идущая из канала 120, может отклоняться так, чтобы минимизировать возможность помех между скважинными каналами, которые бурятся и обустраиваются в соответствии с настоящим изобретением. Одна сторона двутавровой балки 107 с узкими полками может быть снабжена ударной прокладкой, прикрепленной к ней ниже канала(ов) 120 любым подходящим средством, таким как сварной шов, для дальнейшей помощи в минимизации помех между скважинными каналами, пробуренными с использованием шаблона 100 по настоящему изобретению.
Ориентирующий кулачок 143 снабжен сдвинутым от оси каналом 145, проходящим через него (фиг. 10), который, в свою очередь, снабжен резьбой 146 около верхнего торца, к которому съемно прикреплен в общем случае трубный корпус 150. Корпус 150 снабжен способным к расширению запорным кольцом 152, имеющим внутренний диаметр 153 с резьбой и расположенным в идущей по кольцу канавке в канале 145. Запорное кольцо 152 расщеплено таким образом, который очевиден специалисту, чтобы допустить расширение, когда изделие достаточного диаметра вводится через кольцо. Резьба 141 и/или внутренний диаметр 153 с резьбой могут быть скошенными (коническими), чтобы допустить их полное зацепление. Стояк 140 показан имеющим множество кольцевых уплотнений 142, например уплотненные кольца из молибденового стекла, такие как выпускаемые компанией Baker Oil Tools, и цангу 144, имеющую множество пальцев 147. Каждый палец смещен наружу и соответствующая часть внешней поверхности каждого пальца имеет резьбу. Над цангой 144 внешняя поверхность стояка 140 снабжена резьбой 141. Поскольку кулачок 143 и стояк 140 соединены для ввода в скважинный канал, секция 141 с резьбой стояка 140 зацеплена с внутренней резьбой запорного кольца 152.
Как показано на фиг. 9 и 11, внешняя поверхность кулачка 143 снабжена пазом 148 J-4, который совместно с ключом 92 работает для ориентирования стояка 140 для введения либо в канал 120, либо в канал 130 способом, описанным ниже.
В соответствии с выполнением способа по настоящему изобретению, первый скважинный канал 54, например скважинный канал с диаметром 24 дюйма, пробуривается от поверхности земли на глубину до 5000 футов или больше. Затем второй скважинный канал, например, скважинный канал с диаметром 12 1/4 дюймов, пробуривается из первого скважинного канала тем образом, который будет очевиден специалисту, на глубину, например, 13500 футов или больше. Шурфовый шаблон 100 прикреплен ко дну поверхностной или промежуточной обсадной трубы 90 и расположен внутри скважинного канала 54 так, что торцевая поверхность 113 канала 120 расположена рядом с дном скважинного канала 54, и торцевая поверхность 114 канала 130 расположена внутри скважинного канала 55, предпочтительно рядом с его нижним торцом (фиг. 14). Поверхностная или промежуточная обсадная труба закрепляется в скважинном канале 54 обычным образом с помощью цемента 53. Скважинный(ые) канал(ы) 54, 55 могут быть в целом вертикальными или наклонными. Поверхностная или промежуточная обсадная труба 90 вытянута до поверхности земли 51, определяя тем самым устье 52 скважины. Затем, часть трубных элементов 104, которые определяют канал 130 и которые вытянуты вниз внутрь скважинного канала 55, могут быть обычным образом прикреплены цементом внутри канала 55 путем циркуляции цемента вниз через канал 130 и поплавковый клапан 136 и вверх в кольцо, определенное между трубными элементами 104 и скважинным каналом 55. Цемент, циркулирующий таким образом, может также быть использован для цементирования части трубных элементов 104, которые определяют каналы 120 и 130, внутри скважинного канала 54. Альтернативно, канал 120 может быть снабжен поплавковым клапаном, и цемент может циркулировать вниз через канал 120 и поплавковый клапан и вверх в кольцо, определенное между трубными элементами 104 и скважинным каналом 54 (а также обсадной трубой 90 и скважинным каналом 54) обычным образом для цементирования трубных элементов 104, которые определяют каналы 120 и 130, внутри скважинного канала 54. Затем, каналы 120 и 130 могут быть помещены в жидкостную связь с подземными формациями или зонами, которые вертикально разделены друг от друга любым подходящим средством, таким как бурильная пушка. Для выполнения канала 120 бурильная пушка должна выборочно выстреливать снаряды как можно дальше от канала 130, чтобы не повредить последний. Жидкости, в частности углеводороды, могут затем извлекаться из подземных формаций по отдельности через каналы 120 и 130. Эти жидкости могут быть смешаны и извлечены через обсадную трубу 90 на поверхность или, альтернативно, оба канала 120 и 130 могут быть снабжены обсадной выпускной трубой и/или трубами для раздельного извлечения жидкостей на поверхность.
В соответствии с одним выполнением настоящего изобретения, трубный стояк 140 и ориентирующий кулачок 143 опускаются внутри поверхностной или промежуточной трубы 90, пока ключи 92 не войдут в контакт с пазом 148 во внешней поверхности кулачка 143. Наклонные поверхности паза 148 заставят кулачок 143 и стояк 140 вращаться, пока ключи 92 не примут положение 148а, показанное на фиг. 11. Когда они будут так ориентированы, стояк 140 будет на одной линии с каналом 130. Вращение стояка 140 от поверхности заставит внешнюю поверхность 141 с резьбой стояка 140 отъединиться от внешнего диаметра 153 с резьбой расширяющегося запорного кольца 152. Стояк 140 затем опускается в канал 130 шаблона 100, пока пальцы 147 цанги не войдут в зацепление с резьбовой секцией 137 канала 130 (фиг. 15 ). Когда пальцы цанги сцеплены с шаблоном, стояк 140 затем прикрепляется к устью скважины способом, который будет очевиден для специалиста. Первый скважинный канал 60 может быть пробурен из скважинного канала 55 с помощью обычной буровой колонны, включающей в себя буровую коронку и мотор бурового раствора (не показаны), проведенные через стояк 140 и канал 130 обычным образом, как будет очевидно для специалиста, с помощью бурового раствора, и частицы формации будут циркулировать из скважинного канала 55 на поверхность 51 через канал 130 шаблона 100 и стояка 140. Хотя на фиг. 16 первый скважинный канал 60 показан как наклонный, он также может быть пробурен в основном вертикально. Затем, буровая колонна изымается из стояка 140 и обсадная труба 62 опускается через стояк 140 и прикрепляется к шаблону 100 и, таким образом, к поверхностной или промежуточной обсадной трубе 90 с помощью обычной подвески 64 для обсадной трубы. В предпочтительном выполнении, подвеска 64 обсадной трубы насажена на кольцевой уступ 134 и поддерживается им (фиг. 13). Подвеска 64 обсадной трубы включает в себя расширяющийся пакер 65 для уплотнения кольца между подвеской обсадной трубы и каналом 130 и расширяющиеся ползуны 67 для помощи в прикреплении подвески 64 внутри второй секции 133 канала 130. В зависимости от общей нагрузки, поддерживаемой кольцевым уступом 134, ползуны 67 могут не потребоваться для помощи в поддержке такой нагрузки. Обсадная труба 62 может быть зацементирована внутри первого скважинного канала 60.
Стояк 140 отъединяется от устья скважины, располагается в напряженном состоянии и вращается для разъединения внешних поверхностей с резьбой пальцев 147 цанги от резьбовой секции 137 канала 130, чтобы позволить стояку 140 быть поднятым в кулачок 143 и прикрепленным путем автоматического зацепления внешней поверхности 141 с резьбой стояка 140 с внутренним резьбовым диаметром 153 расширяющегося запорного кольца 152. Стояк затем поднимается от поверхности, и зацепление ключа 92 в пазе 148 заставляет стояк и кулачок 143 автоматически вращаться, пока ключ 92 не займет положение 148b внутри паза 148. Последующее опускание стояка 140 заставляет стояк и кулачок вращаться, пока ключ 92 не будет расположен в положении 148c в пазе 148. Когда они будут так ориентированы, стояк 140 будет на одной линии с каналом 120. Вращение стояка 140 от поверхности заставит внешнюю резьбовую поверхность 141 стояка 140 разъединиться от внешнего резьбового диаметра 153 расширяющегося запорного кольца 152. Стояк 140 затем опускается в канал 120 шаблона 100, пока пальцы 147 цанги не войдут в зацепление с резьбовой секцией 127 канала 120 (фиг. 17 ). Когда пальцы цанги сцеплены с шаблоном, стояк 140 затем прикрепляется к устью скважины способом, который будет очевиден для специалиста. Буровая колонна затем передается через стояк 140 в канал 120 и пробка 126 выбуривается. Буровая колонна проходит через канал 120, и пробуривается второй скважинный канал 70. Хотя на фиг. 17 второй скважинный канал 70 показан как наклонный, он также может быть пробурен в основном вертикально, обычно если первый скважинный канал наклонен. Затем, буровая колонна изымается из стояка 140, и обсадная труба 72 опускается через стояк 140 и прикрепляется к шаблону 100 и, таким образом, к поверхностной или промежуточной обсадной трубе 90 с помощью обычной подвески 74 для обсадной трубы (включая расширяющийся пакер и ползуны). Подвеска 74 обсадной трубы насажена на кольцевой уступ 124 и поддерживается им, тогда как пакер 75 расширяется для уплотнения кольца между подвеской обсадной трубы и каналом 120, и расширяющиеся ползуны 77 могут быть расширены, когда необходима помощь в прикреплении подвески 74 внутри второй секции 123 канала 120 (фиг. 18). Обсадная труба 72 может быть зацементирована внутри первого скважинного канала 70, что будет очевидно для специалиста.
Стояк 140 затем отъединяется от устья скважины, помещается в напряженное состояние и вращается для разъединения внешних резьбовых поверхностей пальцев 147 цанги от резьбовой секции 127 канала 120, чтобы позволить стояку 140 быть поднятым в кулачок 143 и прикрепленным к нему путем автоматического зацепления внешней резьбовой поверхности 141 стояка 140 с внутренним резьбовым диаметром 153 расширяющегося запорного кольца 152. Стояк поднимается от поверхности, и зацепление ключа 92 в пазе 148 заставляет ключ 92 отъединиться от паза 148, и стояк 140 и ориентирующий кулачок 143 поднимаются на поверхность.
Обсадные трубы 62, 72 помещены в жидкостную связь с подземной(ыми) формацией(ями) любым подходящим средством, таким как бурение. Жидкости, извлекаемые из подземной(ых) формации(ий) в скважинных каналах 60 и/или 70, могут извлекаться по отдельности через обсадные трубы 63, 72 в обсадную трубу 90, где жидкости смешиваются и извлекаются на поверхность. Альтернативно, обсадные выпускные трубы 66, 76 могут быть последовательно герметично прикреплены к обсадным трубам 62, 72 или каналам 120, 130 соответственно (фиг. 19) с помощью уплотнений, прикрепленных к нижнему торцу обсадных труб 66 и 76 и расположенных вокруг них. Обсадные трубы 66, 76 прикреплены и поддерживаются в устье 52 скважины обычной системой разъемной подвески (не показана) и разделены в отдельные соединения или стойки устья скважины с помощью трубной бобины (не показана), как будет очевидно специалисту. Затем, обсадные трубы 62, 72 помещены в жидкостную связь с подземной(ыми) формацией(ями) любым подходящим средством, таким как бурение, и жидкости, такие как углеводороды, могут извлекаться из формации на поверхность через обсадные трубы 62, 66 и/или обсадные трубы 72, 76.
В зависимости от применения, обычная выпускная труба может быть введена в обсадные трубы 62, 72, и могут быть использованы обычные пакеры для уплотнения кольца между такими выпускными трубами и обсадной трубой от потока жидкости, чтобы обеспечить извлечение жидкостей, таких как углеводороды, на поверхность через выпускные трубы. В соответствии с настоящим изобретением, нет необходимости бурить и обустраивать либо первый скважинный канал 60, либо второй скважинный канал 70. Если не пробуривается первый скважинный канал 60, то в скважинном канале 55 обустраивается канал 130 шаблона 100 способом, обсужденным выше. Если не пробуривается второй скважинный канал 70, то в скважинном канале 54 обустраивается канал 120 шаблона 100 способом, обсужденным выше. При обустройстве таким образом в соответствии с настоящим изобретением, ремонтные работы, включающие в себя повторное обустройство и осуществление запасного пути, но не ограниченные ими, могут проводиться в одной скважине, тогда как жидкости, такие как углеводороды, одновременно с этим извлекаются из другой скважины. Кроме того, в подземную формацию через одну скважину может быть впрыснута жидкость, тогда как углеводороды извлекаются из той же или другой подземной формации через другую скважину.
Многоскважинный шаблон 300, который расположен по наземной или подводной поверхности и вытянут в подземный скважинный канал, также может быть использован для осуществления настоящего изобретения. Как показано на фиг. 20, труба 302 сравнительно большого диаметра, например труба диаметром 30 дюймов, направляется в землю, либо на суше, либо под водой, ударом или любым другим подходящим средством для относительного уменьшения глубины, на которой труба перестает двигаться. Альтернативно, отверстие большого диаметра, например отверстие диаметра 36 дюймов, может быть пробурено в земле любым подходящим средством, как будет очевидно специалисту, и труба 302 относительно большого диаметра, например труба диаметром 30 дюймов, помещается внутри отверстия и цементируется там. Затем, скважинный канал несколько меньшего диаметра пробуривается через трубу 302 на глубину, например, 1200 футов и проводящая труба 304 помещается и цементируется внутри этого скважинного канала обычным образом, что будет очевидно специалисту. Устье 306 скважины, имеющее множество стоек или подкладок 303 располагается над трубой 302 и обсадной трубой 304 так, что дно стоек 307 остается над верхним торцом трубы 302, и либо над поверхностью земли на земле, либо над площадкой устья морской буровой платформы или подводной поверхности, которые все показаны как 305 на фиг. 20. Верхний торец проводящей трубы 304 принимается внутри устья 306 скважины и прикрепляется в нем любым подходящим средством, таким как сварные швы (не показаны). Скважинный канал затем пробуривается через обсадную трубу 304 на примерную глубину, например, около 3500 - 4000 футов. Итоговый скважинный канал 309 может быть либо вертикальным, либо наклонным. В соответствии с настоящим изобретением, первый скважинный канал 307, который может быть либо вертикальным, либо наклонным, затем пробуривается из скважинного канала 309 из любой точки по его длине. Второй вертикальный или наклонный скважинный канал 308 также может быть пробурен из скважинного канала 309 из любой точки по его длине.
На фиг. 21 устье 306 скважины имеет сквозной канал 312 изменяющегося диаметра, который определяет в целом кольцевой уступ 314. Втулка 320 имеет по меньшей мере два сквозных канала 322, 326 различного диаметра, которые определяют в целом кольцевые уступы 323, 327 и скошенные (конические) секции 324, 328 соответственно. Как показано на фиг. 22, множество труб 330, 334, меньшее или равное числу каналов, проходящих через втулку 320, и соответствующее числу скважин, подлежащих пробуриванию и обустройству в соответствии с настоящим изобретением, размещается через скважины 322 и 326 способом, описанным ниже, и прикрепляется в них, например, обычными ползунами 331, 335 обсадных труб, которые расширяются до зацепления со втулкой 320, пока не опустятся до контакта со скошенными (коническими) секциями 324, 328 соответственно. Ползуны 331, 335 обсадных труб снабжены уплотнителями 332, 336, которые могут быть изготовлены из любого подходящего материала, например из эластомера. Любое другое подходящее средство, такое как разъемные шпиндельные подвески, может быть использовано вместо ползунов 331, 335 обсадных труб для прикрепления труб 330, 334 ко втулке 320. Трубы 330, 334 также снабжены обычными выпускными уплотнительными кольцами 333, 337. Трубы 334 протянуты через скважинный канал 309 и внутри скважинного канала 308. Трубы 330 протянуты по меньшей мере внутри скважинного канала 307 и могут быть протянуты внутри скважинного канала 307, если последний пробурен. Трубы 330, 334 могут иметь в значительной степени одинаковые или отличающиеся длины. Как использовано во всем этом описании, термин "трубы" относится к колонне труб, таких как обсадные трубы, обычно расположенной внутри подземного скважинного канала и обычно изготовленной из отдельных длин труб, которые соединены друг с другом, например, винтовой резьбой.
Когда трубы 330, 334 прикреплены ко втулке 320, устье 315 скважины с двумя каналами (фиг. 23) прикреплено к устью 306 скважины любым подходящим средством, таким как болты (не показаны), и имеет два сквозных канала 316, 318, которые находятся в основном на одних линиях с трубами 330, 334. Диаметр каждого канала 316, 318 ограничен по их длине, определяя тем самым кольцевые уступы 317, 319 соответственно. При установке выпускные уплотнительные кольца 333 и 337 работают для обеспечения жидкостной плотной герметизации между трубами 330, 334 и устьем 315 скважины с двумя каналами. После размещения таким образом внутри скважинных каналов 309, 308 и, возможно, 307 трубы 330 и 334 цементируются обычным образом, предпочтительно путем перемещения цементного теста только через одну из труб. Предпочтительно, чтобы цемент был помещен в скважинные каналы 307, 308 и 309, вытянутые в обсадную трубу 304. Трубы 330 и/или 334 могут быть помещены непосредственно в жидкостную связь с подземной(ыми) формацией(ями) любым подходящим средством, например бурильной пушкой, и жидкости могут извлекаться на поверхность через трубы 330 и/или 334. Когда скважинный канал 307 не пробурен, трубы 330 могут быть вцементированы в скважинном канале 309, как показано, и помещены в жидкостную связь с подземной(ыми) формацией(ями) любым подходящим средством, например бурильной пушкой, которая изготовлена и работает для выстреливания в радиальном направлении, которое не проходит через трубы 334 или не мешает им.
Альтернативно, пробка 338, имеющая уплотнения 339, например эластомерные тороидальные кольца, помещена внутри верхнего торца одного из каналов 316 или 318, проходящих через устье 315 скважины с двумя каналами (канал 316, как показано на фиг. 24), а бурильный фланец 340 прикреплен к устью 315 скважины с двумя каналами любым подходящим средством, таким как болты (не показаны). Фланец 340 имеет сквозной канал 341, который находится в основном на одной линии с каналом 318 и трубами 334, чтобы обеспечить прохождение через него буровой колонны. Далее, фланец 340 имеет такой размер, чтобы соединяться с обычным предохранителем от выдувания для безопасности во время бурения, что будет очевидно специалисту. Собранные таким образом буровой фланец 340, устье 306 скважины, устье 315 скважины с двумя каналами и трубы 330, 334 обеспечивают узел, через который могут быть пробурены и обустроены две скважины от поверхности способом, описанным ниже, чтобы устранить необходимость в шурфовых инструментах, имеющих подвижные части, и проблемы, связанные с ними. Это устройство может быть использовано во время бурения скважин из наземной буровой вышки и/или с буровых платформ в открытом море.
Буровая колонна, имеющая буровую коронку, прикрепленную к одному из торцов последней, проходит через каналы 341 и 318 и трубы 334 для выбуривания любого затвердевшего цемента, имеющегося в них. Буровая колонна наращивается ото дна труб 334, и в основном вертикальный или наклонный скважинный канал 346 пробуривается оттуда обычным образом, чтобы пронзить подземную формацию или зону (фиг. 24). Когда скважинный канал пробурен из труб 334 и пройден, обсадная выпускная труба 356 (фиг. 25), если необходимо, опускается от поверхности, пока ее часть не разместится внутри скважинного канала 346. Обсадная выпускная труба 356 сначала цементируется внутри скважинного канала 346 обычным образом цементом, предпочтительно вплоть до дна труб 334. Перед установкой цемента обсадная выпускная труба 356 прикрепляется внутри скважинного канала 318 или к устью 315 скважины с двумя каналами посредством обычных ползунов 357 обсадных труб, которые вытягиваются до зацепления со скважинным каналом 318 или устьем 315 скважины с двумя каналами до контакта с кольцевым выступом 319. Ползуны 357 обсадных труб снабжены уплотнителем 358 для обеспечения жидкостной плотной герметизации между каналом 318 и устьем 315 скважины с двумя каналами и обсадной выпускной трубой 356. Верхний торец обсадной выпускной трубы 356 также снабжен обычными выпускными уплотнительными кольцами 359.
Когда обсадная выпускная труба 356 прикреплена таким образом внутри канала 318 устья 315 скважины с двумя каналами и зацементирована внутри скважинного канала 346, буровой фланец 340 удаляется из устья 315 скважины с двумя каналами и часть обсадной выпускной трубы 356, выступающая над выпускными уплотнительными кольцами 359, отрезается обычными инструментами, а пробка 338 удаляется из верхнего торца канала 316. В выполнении, где должен быть пробурен скважинный канал 307, буровой фланец 340 снова прикрепляется к устью 315 скважины с двумя каналами любым подходящим средством, таким как болты (не показаны), так что канал 341 через фланец 340 находится в основном на одной линии с каналом 316 и трубами 330, чтобы обеспечить прохождение буровой колонны внутрь (фиг. 26). Обычный предохранитель от выдувания снова прикрепляется к буровому фланцу 340 для обеспечения безопасности во время бурения. Буровая колонна, имеющая буровую коронку, прикрепленную к одному из ее торцов, проходит через каналы 341 и 316 и трубы 330 для выбуривания любого затвердевшего цемента, имеющегося в них. Буровая колонна наращивается ото дна труб 330, и в основном вертикальный или наклонный скважинный канал 344 пробуривается оттуда обычным образом, чтобы пронзить подземную формацию. Когда скважинный канал пробурен из труб 330 и пройден, обсадная выпускная труба 350, если необходимо, опускается от поверхности, пока ее часть не будет расположена внутри скважинного канала 344, как показано на фиг. 27. Обсадная выпускная труба 350 сначала цементируется внутри скважинного канала 344 обычным образом цементом, предпочтительно вплоть до дна труб 330. До установки цемента обсадная выпускная труба 350 прикрепляется внутри скважинного канала 316 или к устью 315 скважины с двумя каналами посредством обычных ползунов 351 обсадных труб, которые вытягиваются до зацепления со скважинным каналом 316 до контакта с кольцевым выступом 317. Ползуны 351 обсадных труб снабжены уплотнителем 352 для обеспечения жидкостной плотной герметизации между каналом 316 и устьем 315 скважины с двумя каналами и обсадной выпускной трубой 350. Верхний торец обсадной выпускной трубы 350 также снабжен обычными выпускными уплотнительными кольцами 353. Любое другое средство, такое как шпиндельные подвески, может быть использовано вместо ползунов 351, 357 обсадных труб для прикрепления труб 350, 356 соответственно к устью 315 скважины с двумя каналами. Когда обсадная выпускная труба 350 прикреплена таким образом внутри канала 316 устья 315 скважины с двумя каналами и зацементирована внутри скважинного канала 344, буровой фланец 340 удаляется из устья 315 скважины с двумя каналами и часть обсадной выпускной трубы 350, выступающая над выпускными уплотнительными кольцами 353, отрезается обычными инструментами (фиг. 28).
Как показано на фиг. 28, бобина 360 труб двух каналов прикрепляется от устья 315 скважины с двумя каналами любым подходящим средством, таким как болты (не показаны), так что каналы 362 и 364 через бобину 360 находятся в основном на одних линиях с обсадными выпускными трубами 350, 356 соответственно. Каждый канал 362, 364 имеет ограничение на диаметр, который определяет скошенные (конические) секции 363, 365. Выпускные уплотнительные кольца 353, 359 работают для обеспечения жидкостной плотной герметизации между трубами 350, 359 соответственно бобиной 360 труб. Обсадные выпускные трубы 350 и 356 затем помещены в жидкостную связь с подземной(ыми) формацией(ями), каждая из которых пронизана любым подходящим средством, например бурением, так что жидкости, предпочтительно углеводороды, поступают в обсадные трубы 350 и 356 для извлечения на поверхность. Как показано на фиг. 29, обсадные трубы 370, 376 меньшего диаметра помещаются внутри обсадных выпускных труб 350, 356 соответственно и поддерживаются с помощью обычных подвесок 371, 377 труб, которые разъединяются внутри бобины 360 труб, когда подвески труб контактируют с кольцевыми уступами 363 и 365 соответственно. Любое другое обычное средство, такое как шпиндельные подвески, может быть использовано вместо подвесок 371, 377 труб (как показано на фиг. 29) для прикрепления выпускных труб 370, 376 соответственно к бобине 360 труб. Верхний торец выпускных труб 370, 376 также снабжен обычными уплотнениями 372 и 378 для обеспечения жидкостной плотной герметизации между бобиной 360 труб и выпускными трубами 370 и 376. Отдельные выпускные стойки 380 и 386 установлены так, чтобы быть в жидкостной связи с выпускными трубами 370 и 376 соответственно.
Альтернативно, жидкости из подземной(ых) формации(ий), пронизанных обсадными выпускными трубами 350 и 356, может извлекаться на поверхность земли прямо через обсадную выпускную трубу без использования выпускных труб, в зависимости от конкретного применения, что будет очевидно специалисту. В этом выполнении отдельные выпускные стойки 380 и 386 установлены на бобине 360 труб так, чтобы быть в жидкостной связи с выпускными трубами 350 и 356 соответственно, как показано на фиг. 30.
Пробуренные и выполненные таким образом в соответствии с этим выполнением настоящего изобретения, две подземные скважины 344, 346 пробурены в одних и тех же или в различных подземных формациях, горизонтах или зонах, на одинаковые или различные общие глубины, и каждая из них наклонена. Путем бурения скважинных каналов 307 и/или 308 и установки труб 330 и 334 соответственно степень разделения между наклонными скважинами 344 и 346 значительно увеличивается, допуская тем самым более значительное разделение и увеличенное извлечение из данной подземной формации. Скважины 344 и 346 обустроены раздельно к поверхности через единственный или общий скважинный канал, так что жидкость может одновременно извлекаться из подземной(ых) формации(ий) и/или впрыскиваться в них через обе скважины. Или ремонтные работы, включающие в себя повторное выполнение и осуществление запасного пути, но не ограниченные ими, могут проводиться в одной скважине, тогда как углеводороды одновременно с этим извлекаются из подземной формации или впрыскиваются в нее через другую скважину. Кроме того, жидкость может быть впрыснута в подземную формацию через одну скважину, тогда как углеводороды извлекаются из той же или другой подземной формации через другую скважину.
Хотя показана и описана установка используемого в соответствии с настоящим изобретением поверхностного шаблона, как имеющего два канала, через которые размещены две отдельных длины поверхностной обсадной трубы, для специалиста будет очевидно, что установка может быть снабжена более чем двумя каналами и что более чем две колонны поверхностной обсадной трубы может быть помещено через такие каналы в зависимости от диаметра поверхностного скважинного канала и поверхностных обсадных труб, установленных в нем. Например, втулка 420 снабжена тремя сквозными каналами 421, 424 и 427 (фиг. 31) и помещена внутри устья 330 скважины и поддерживается им таким же образом, как описано выше по отношению ко втулке 320. Трубы 430, 434 и 437 помещены через каналы 421, 424 и 427 соответственно (фиг. 32) и прикреплены к ним таким же образом, как описано выше по отношению к трубам 330 и 334. При изготовлении таким образом поверхностный шаблон позволит трем подземным скважинам быть по отдельности пробуренными и выполненными в соответствии с настоящим изобретением.
Следующий пример демонстрирует практику и использование настоящего изобретения, но он не должен рассматриваться как ограничивающий его объем.
Пример. Буровая вышка установлена в слоте на обычной буровой платформе в открытом море с одной опорой, и канал диаметром 36 дюймов пробуривается уипстоком на 400 футов. Обсадная труба толщиной 1 1/2 дюйма и диаметром 30 дюймов помещается внутри канала и обычным образом цементируется в нем. Буровая колонна с буровой коронкой на 17 1/2 дюйма устанавливается внутри обсадной трубы диаметром 30 дюймов, и канал диаметром 17 1/2 дюйма пробуривается с 450 до 2500 футов, и разбуривается вниз до диаметра 28 дюймов. Колонна обсадных труб толщиной 5/8 дюйма и диаметром 24 дюйма опускается до 2500 футов и цементируется. Канал диаметром 12 1/4 дюйма пробуривается с 2500 до 12000 футов и разбуривается вниз до диаметра 24 дюйма с 2500 до 4500 футов. Обсадная труба диаметром 20 дюймов, имеющая одно выполнение шаблона по настоящему изобретению, прикрепленного к ее самому нижнему соединению, помещается внутри скважинного канала диаметром 24 дюйма и прикрепляется в обсадной трубе диаметром 24 дюйма посредством устьевого оборудования скважины и обычных шпиндельных подвесок. Шаблон имеет один набор труб диаметром 9 5/8 дюйма, который помещен внутри канала диаметром 24 дюйма на глубине установки шаблона, то есть примерно на глубине 4500 футов. Другой набор труб шаблона диаметром 9 5/8 дюйма вытянут в канале диаметром 12 1/2 дюйма на глубину примерно 12000 футов. Герметизированная секция нижнего торца стояка диаметром 9 5/8 дюйма введена внутрь канала через шаблон, который оборудован одноходовым поплавковым клапаном, и цемент циркулирует через трубы шаблона, вытянутые на глубину примерно 12000 футов для цементирования шаблона внутри обоих каналов и обсадной трубы диаметром 20 дюймов внутри канала диаметром 24 дюйма. Любые цементные остатки внутри труб диаметром 9 5/8 дюйма выбуриваются, и прямой канал диаметром 8 1/2 дюйма затем пробуривается до требуемой глубины 15000 футов буровой колонной, которая снабжена обычным мотором бурового раствора и которая проходит через стояк и трубы шаблона, помещенный в канале на 12000 футов. Затем, обсадная труба диаметром 7 дюймов, которая снабжена подвеской обсадной трубы, помещается внутри прямого канала диаметром 8 1/2 дюйма и прикрепляется к нему путем зацепления подвески обсадной трубы с профилем, имеющимся внутри шаблонного канала. Обсадная труба диаметром 7 дюймов вращается пока цемент нагнетается через буровую колонну и обсадную трубу. Стояк затем удаляется из первого канала в шаблоне по настоящему изобретению и вводится в другой его канал, то есть канал через трубы диаметром 9 5/8 дюйма, который расположен на глубине примерно 4500 футов. Второй прямой канал диаметром 8 1/2ц футов пробуривается до глубины 9000 футов и оборудуется внутри второй подземной цели через второй канал. Затем, обсадная труба диаметром 7 дюймов, которая снабжена подвеской обсадной трубы, помещается внутри прямого канала диаметром 8 1/2 дюйма и прикрепляется к нему путем зацепления подвески обсадной трубы с профилем, имеющимся внутри шаблонного канала, таким же образом, как описано выше. Стояк затем удаляется из скважины, и отдельные колонны труб диаметром 7 дюймов, имеющих уплотнительный комплект, прикрепленный к их нижнему торцу, последовательно и по отдельности вводятся в отдельные скважинные каналы и ввинчиваются в верхние части подвесок обсадных труб диаметром 7 дюймов и прикрепляются к обычному двойному поверхностному оборудованию добычи.
Хотя они и описаны в этом описании как используемые по отдельности в процессе по настоящему изобретению, шурфовый или подземный шаблон 10 или 100 может быть прикреплен по меньшей мере к одним трубам 330, 334 поверхностного шаблона 300 для пробуривания двух или более отдельных подземных скважин из каждого из скважинных каналов 307 и 308 соответственно. Скважины, пробуренные таким образом, могут быть оборудованы до поверхности по отдельности тем способом, который описан выше для скважин 60 и 70, или, альтернативно, скважины могут быть по отдельности оборудованы до шурфового или подземного шаблона 10 или 100 с помощью обсадных труб 64, 74 и связанных с ними подвесок обсадных труб и пакеров, и добыча из них смешивается к поверхности через одни трубы 330, 334 поверхностного шаблона 300. Когда шурфовый или подземный шаблон 10 или 100 используется вместе с трубами поверхностного шаблона, каналы 20, 30 или 120, 130 шурфового шаблона могут быть одинаковой или различной длины и когда эти каналы имеют различную длину, каналы 20, 30 или 120, 130 могут быть расположены только внутри скважинного канала 309. В объеме настоящего изобретения лежит и то, что три или более скважинных каналов могут быть пробурены из общего скважинного канала с использованием отдельных труб поверхностного шаблона тем образом, как описано выше, и что три или более скважин могут быть пробурены и по отдельности оборудованы из каждого из этих скважинных каналов с помощью шурфового или подземного шаблона, который прикреплен к каждым из таких труб поверхностного шаблона.
Хотя были представлены и показаны вышеописанные предпочтительные выполнения изобретения, понятно, что альтернативы и изменения - и предложенные, и другие - могут быть выведены из них и попасть в объем изобретения.
Изобретение относится к области бурения системы скважин при добыче жидкого топлива и представляет собой подземную скважинную систему, содержащую первый подземный скважинный канал, протянутый до поверхности земли, и второй скважинный канал, который может быть пробурен из первого скважинного канала, и первые трубы многоскважинного бурильного шаблона, которые могут быть помещены внутри первого скважинного канала, тогда как вторые трубы шаблона могут быть помещены как внутри первого, так и внутри второго скважинных каналов, кроме того третий скважинный канал может быть пробурен из первого скважинного канала и первые трубы могут быть помещены в нем. Первый и второй скважинный(ые) канал(ы) могут пронизывать подземную(ые) формацию(ии) или дополнительный(ые) скважинный(ые) канал(ы) и могут быть пробурены из первого, второго и/или третьего скважинных каналов, чтобы пронизывать подземные формации, второй многоскважинный бурильный шаблон может быть использован для бурения такого(их) дополнительного(ых) скважинного(ых) канала(ов) из второго или третьего скважинных каналов. Жидкость извлекается из подземной(ых) формации(ий) на поверхность через первый, второй, третий и/или дополнительные скважинные каналы, и/или через обсадные выпускные трубы, и/или трубы, расположенные в них. Изобретение обеспечивает бурение и обустройство множества подземных скважин на значительно различающихся по вертикали глубинах и позволяет добывать жидкие полезные ископаемые сразу из нескольких подземных формаций. 4 с. и 59 з.п. ф-лы, 33 ил.