Формула
при изменении потребности в подаче топлива в двигатель без изменения требуемой отдачи двигателя при температуре отработавших газов двигателя выше пороговой, указывают наличие деградации датчика кислорода в отработавших газах, соединенного с выпускной системой двигателя с помощью герметика, из-за выделения газа из герметика; и
корректируют показания датчика кислорода в отработавших газах в ответ на указание наличия деградации.
2. Способ по п. 1, в котором указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика дополнительно включает в себя:
указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика без обволакивания датчика кислорода в отработавших газах, если измеренное датчиком кислорода в отработавших газах воздушно-топливное отношение отработавших газов двигателя является богатым в сочетании со сниженной потребностью в подаче топлива; и
указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика с обволакиванием датчика кислорода в отработавших газах, если измеренное датчиком кислорода в отработавших газах воздушно-топливное отношение отработавших газов двигателя является бедным в сочетании с возросшей потребностью в подаче топлива.
3. Способ по п. 2, в котором указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика с обволакиванием датчика кислорода в отработавших газах дополнительно включает в себя указание того, что состояние датчика кислорода в отработавших газах требует его замены.
4. Способ по п. 1, в котором коррекция показаний датчика кислорода в отработавших газах дополнительно включает в себя:
в состояниях без подачи топлива в двигатель, эксплуатацию датчика кислорода в отработавших газах при первом, более низком, напряжении для формирования первого выходного сигнала и при втором, более высоком, напряжении для формирования второго выходного сигнала;
определение поправочного коэффициента для датчика кислорода в отработавших газах в зависимости от первого и второго выходных сигналов и опорного выходного сигнала датчика; и
умножение каждого показания датчика кислорода в отработавших газах на поправочный коэффициент.
5. Способ по п. 4, дополнительно содержащий шаги, на которых:
указывают, что состояние датчика кислорода в отработавших газах требует его замены, и определяют воздушно-топливное отношение отработавших газов двигателя в режиме прямой связи, если поправочный коэффициент превышает пороговое значение; и
при отсутствии состояний без подачи топлива в течение порогового периода после указания наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика, определяют воздушно-топливное отношение отработавших газов двигателя в режиме прямой связи.
6. Способ по п. 4, в котором первое, более низкое, напряжение представляет собой напряжение, при котором не происходит диссоциация молекул воды, а второе, более высокое, напряжение представляет собой напряжение, при котором происходит диссоциация молекул воды.
7. Способ по п. 5, в котором определение воздушно-топливного отношения отработавших газов двигателя в режиме прямой связи включает в себя оценку массового заряда воздуха цилиндров двигателя по выходному сигналу датчика массового расхода воздуха и оценку количества подаваемого в цилиндры топлива по длительности импульса сигнала, используемого для приведения в действие топливных форсунок двигателя.
8. Способ по п. 1, в котором указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика дополнительно включает в себя подтверждение отсутствия деградации топливной форсунки и деградации датчика массового расхода воздуха.
9. Способ по п. 1, в котором указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика дополнительно включает в себя применение отклонения воздушно-топливного отношения, учитывающего деградацию топливной форсунки и деградацию датчика массового расхода воздуха.
10. Способ по п. 9, в котором отклонение воздушно-топливного отношения определяют по разности командного воздушно-топливного отношения и воздушно-топливного отношения отработавших газов двигателя, измеренного датчиком кислорода в отработавших газах при температуре отработавших газов двигателя ниже пороговой.
двигатель, содержащий множество цилиндров;
топливные форсунки, выполненные с возможностью подачи топлива под давлением в указанные цилиндры;
заборный канал для подачи воздуха в двигатель;
датчик массового расхода воздуха (МРВ), соединенный с заборным каналом и выполненный с возможностью измерения количества воздуха, поступающего в двигатель;
выпускной канал для удаления отработавших газов из двигателя;
датчик кислорода в отработавших газах, соединенный с выпускным каналом выше по потоку от устройства снижения токсичности выбросов с помощью герметика и выполненный с возможностью измерения количества кислорода в отработавших газах; и
контроллер с инструкциями, сохраненными в долговременной памяти, при исполнении которых предусмотрена возможность осуществления контроллером следующего:
определения наличия состояния деградации топливных форсунок;
определения наличия состояния деградации датчика МРВ; и
определения наличия состояния деградации датчика кислорода в отработавших газах, причем определение наличия состояния деградации датчика кислорода предусматривает определение наличия состояния деградации в виде запаздывания и инерционности и/или определение наличия состояния деградации из-за выделения газа из герметика.
12. Система по п. 11, в которой определение наличия состояния деградации из-за выделения газа из герметика дополнительно включает в себя:
указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика без обволакивания датчика кислорода в отработавших газах герметиком, если датчик кислорода в отработавших газах показывает богатое воздушно-топливное отношение отработавших газов при постоянной требуемой отдаче двигателя в сочетании со сниженной потребностью в подаче топлива и температурой отработавших газов выше пороговой;
указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика с обволакиванием датчика кислорода в отработавших газах герметиком, если датчик кислорода в отработавших газах показывает бедное воздушно-топливное отношение отработавших газов при постоянной требуемой отдаче двигателя в сочетании с возросшей потребностью в подаче топлива после того, как температура отработавших газов превзошла пороговую температуру; и
указание отсутствия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика, если датчик кислорода в отработавших газах показывает стехиометрическое воздушно-топливное отношение.
13. Система по п. 12, в которой контроллер содержит дополнительные инструкции в долговременной памяти, при исполнении которых предусмотрена возможность осуществления контроллером следующего:
в состояниях без подачи топлива, определения поправочного коэффициента для датчика кислорода в отработавших газах в ответ на указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика без обволакивания датчика кислорода в отработавших газах герметиком и в ответ на указание наличия деградации датчика кислорода в отработавших газах из-за выделения газа из герметика с обволакиванием датчика кислорода в отработавших газах герметиком; и
применения указанного поправочного коэффициента к каждому показанию датчика кислорода в отработавших газах.
14. Система по п. 12, в которой определение наличия состояния деградации из-за выделения газа из герметика также включает в себя подтверждение отсутствия деградации топливной форсунки и деградации датчика массового расхода воздуха.