Код документа: RU2670308C1
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям ликвидации поглощений бурового раствора при строительстве нефтяных и газовых скважин.
Одной из наиболее актуальных проблем в отрасли строительства нефтяных и газовых скважин является поглощение бурового раствора высокопроницаемыми пластами и пластами с аномально-низким пластовым давлением (АНПД). Указанные геолого-физические особенности подземных пластов приводят к осложнениям технологических процессов вплоть до остановки процесса строительства скважины.
Особенно остро проблема поглощений классических буровых растворов проявляется при вскрытии пластов с АНПД. Под классическими буровыми растворами понимаются наиболее широко применяемые в процессах строительства скважин солевые растворы различной плотности. Ликвидация поглощений в пластах с АНПД не может быть осуществлена классическими буровыми растворами на водной основе в связи с их низкой вязкостью, слабой адгезией, отсутствием тампонирующей способности и гидрофилизацией поверхности горных пород при первичном вскрытии продуктивных пластов.
Для борьбы с такого рода осложнением необходимо применять специальные технологические жидкости с относительно невысокой плотностью, повышенными вязкостными и адгезионными свойствами.
Основными недостатками всех классических буровых растворов на водной основе является гидрофилизация поверхности горных пород, низкая вязкость, слабая адгезия и отсутствие тампонирующей способности, которые приводят к неконтролируемой фильтрации бурового раствора вглубь вскрытого пласта при поглощениях.
В связи с этим, при вскрытии пластов с аномальными условиями применение классических буровых растворов неэффективно. В процессах строительства скважин при бурении интервалов с аномальными условиями необходимо применять особые технологические жидкости - блокирующие составы (блокирующие пачки). Физико-химические свойства блокирующих составов значительно отличаются от свойств классических буровых растворов.
Степень проявления факторов, осложняющих процессы строительства скважин, находится в зависимости от горно-геологических условий месторождения и геолого-физических параметров пластов.
Наиболее часто осложняющие факторы проявляются в следующих условиях:
- при бурении скважин в зонах залегания пластов с пластовым давлением ниже гидростатического (в этих условиях происходит неконтролируемое поглощение бурового раствора в больших объемах, что приводит к гидрофилизации поверхности горных пород, увеличению срока строительства скважины, дополнительным затратам и остановке процесса бурения);
- при бурении скважин в зонах залегания пластов с повышенным пластовым давлением относительно гидростатического (применение тяжелых буровых растворов на водной основе не обеспечивает стабилизацию давления в системе пласт-скважина и при репрессии происходит гидрофилизация поверхности горных пород).
Для повышения эффективности процессов строительства нефтяных и газовых скважин и решения задачи ликвидации осложнений при вскрытии пластов с аномальными условиями необходимо применение технологических жидкостей с особыми реологическими, поверхностно-активными и тампонирующими свойствами.
Из уровня техники известен способ предупреждения и ликвидации зон поглощений в скважине (а.с. СССР №1714081, МПК Е21В 33/13, Е21В 33/138, дата публикации 23.02.1992), включающий последовательную закачку в интервал поглощающего пласта водного раствора соли поливалентного металла и полимерного тампонажного материала с последующим продавливанием их в поглощающий пласт. Недостатком способа является необходимость насыщения поглощающего интервала водными растворами солей поливалентных металлов для последующей реакции водного раствора с полимерным материалом (смесь карбамидной смолы), который закачивается следом. В условиях поглощений водный раствор солей ввиду низкой вязкости будет полностью поглощен принимающим интервалом и профильтрован вглубь пласта. В этих условиях закачиваемый следом полимерный материал с вязкостью выше, чем водный раствор солей, не смешается с водным раствором солей и соответственно смесь не наберет необходимые реологические свойства для создания блокирующего экрана.
Известен способ ликвидации поглощений при бурении и эксплуатации скважин (а.с. СССР №1810490, МПК Е21В 33/138, дата публикации 23.04.1993), включающий последовательную закачку дизельных и масляных щелочных отходов нефтепереработки, разделительной жидкости или промывочной жидкости и водного раствора хлористого кальция или магния, с продавкой их водой или промывочной жидкостью. В качестве разделительной и продавочной жидкости используют воду или глинистый промывочный раствор. В зависимости от уровня поглощений изменяют количественный объем закачиваемых порций. Недостатками способа является невозможность регулирования реологических параметров основного блокирующего агента - дизельных и масляных щелочных отходов нефтепереработки, а также отсутствие в составе твердых частиц. В связи с этим способ будет неэффективен при ликвидации поглощений в высокопроницаемых интервалах пластов.
Известен способ изоляции зон поглощений в скважинах, направленный на повышение эффективности блокировки зон поглощений (патент РФ №2139410, МПК Е21В 33/138, дата публикации 10.10.1999). Способ включает закачку блокирующего состава и продавочной жидкости, при этом одновременно закачивают не менее двух составов, образующих в процессе смешения и продвижения в стволе скважины неньютоновскую высоковязкую дисперсную систему. Недостатками способа является отсутствие возможности регулирования реологических параметров двух последовательно закачиваемых составов, а также невозможность контроля и регулирования процесса смешения составов в процессе их движения в колонне насосно-компрессорных труб.
Известен способ добычи нефти в порово-трещиноватых коллекторах (патент РФ №2465446, МПК Е21В 43/22, Е21В 43/32, дата публикации 27.10.2012) снижающий обводненность продукции скважин, который может быть использован, в частности, при ликвидации поглощений в процессе строительства и ремонта скважин. Недостатками способа является многокомпонентность и сложность приготовления блокирующего состава в промысловых условиях, а также необратимая кольматация фильтрационных каналов при первичном вскрытии продуктивных интервалов нефтегазоносных пластов.
Для решения указанных проблем в области строительства нефтяных и газовых скважин предлагается способ ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, основанный на закачке в пласт блокирующей пачки в виде эмульсионно-суспензионной системы и продавке водным раствором хлористого кальция или хлористого калия.
Сущность изобретения заключается в том, что способ включает следующие последовательные этапы: закачку в пласт блокирующей пачки и продавочной жидкости, при этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия, а в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. При этом для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений до 20 м3/ч включительно (частичное поглощение) в качестве блокирующей пачки можно использовать эмульсионно-суспензионную систему, содержащую (% масс): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 15-30, эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм. - 1-3, микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 5-10 и водный раствор хлористого кальция или хлористого калия - остальное. Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений более 20 м3/ч (полное или катастрофическое поглощение) в качестве блокирующей пачки можно использовать эмульсионно-суспензионную систему, содержащую (% масс.): дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-15, эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния с размером частиц от 5 до 100 нм - 0,5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5, микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 5-10 и водный раствор хлористого кальция или хлористого калия - остальное. В качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс.): двуокись кремния - 31-32,5 в монометиловом эфире пропиленгликоля - 67, воду - остальное; либо двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное; либо двуокись кремния - 29-31 в этиленгликоле - остальное. В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0,7-1, высокомолекулярный органический термостабилизатор - 0,5-1, дизельное топливо - остальное.
Положенное в основу способа радиальное размещение блокирующей пачки в поглощающем пласте обеспечивает создание блокирующего экрана, который благодаря комплексу высоких адгезионных и реологических характеристик способен противостоять высокому перепаду давлений (до 300 атм.) без прорыва пластового флюида и поглощений бурового раствора.
При движении эмульсионно-суспензионной системы (ЭСС) в пористой среде ее эффективная вязкость зависит от объемного водосодержания в ЭСС и скорости фильтрации ЭСС в пористой среде, увеличиваясь с ростом объемного водосодержания и снижением скорости фильтрации. Это приводит к тому, что при движении ЭСС в пористой среде происходит саморегулирование вязкостных свойств, скорости и направления фильтрации в глубь пласта. Эти реологические свойства ЭСС позволяют сформировать радиальный экран, который преимущественно блокирует наиболее проницаемые интервалы пласта.
Увеличение вязкости ЭСС при взаимодействии с водой и разложение ЭСС при взаимодействии с углеводородами обеспечивает селективность действия блокирующей пачки и позволяет предотвратить необратимую кольматацию продуктивного пласта при первичном вскрытии. Гидрофобность и поверхностная активность ЭСС обеспечивает изменение фазовой проницаемости преимущественно гидрофильных горных пород продуктивных пластов.
Техническим результатом изобретения является повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб.
Изобретение иллюстрируется следующими графическими материалами.
На фиг. 1 приведена таблица, раскрывающая технику и оборудование для приготовления и закачки технологических жидкостей.
На фиг. 2 приведена таблица, иллюстрирующая результаты измерений плотности эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).
На фиг. 3 приведена таблица, иллюстрирующая результаты измерений агрегативной устойчивости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).
На фиг. 4 приведена таблица, иллюстрирующая результаты измерений кинематической вязкости эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3).
Подготовительные работы на скважине
При первых признаках возникновения поглощений в процессе строительства скважины необходимо осуществить следующие мероприятия:
- оценить приемистость скважины на разных режимах расхода бурового насоса (данные фиксировать по максимальному значению);
- при падении статического уровня необходимо оценить скорость снижения уровня раствора в скважине и уровень стабилизации, определить интенсивность поглощений как во время бурения на различных режимах, так и в статике;
- по фактическим данным мониторинга приемистости (или интенсивности поглощений) принимать решение по составу блокирующей пачки. Объем блокирующей пачки определяется в зависимости от интенсивности поглощений или приемистости интервала и находится в интервале 5-25 м3 на метр вскрытой толщины пласта (м3/м), но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.
Оценку приемистости
где:
I - интенсивность поглощений при определенном расходе насоса,
TVD - глубина скважины по вертикали, м;
ECD - эквивалентная циркуляционная плотность,
S - удельный вес раствора,
Приготовление блокирующей пачки
Приготовление блокирующей пачки производится на установках приготовления растворов: блок приготовления растворов «БПР» (емкость с лопастной мешалкой и внешним центробежным насосом). Необходимое оборудование для приготовления эмульсионных систем представлено на фиг. 1.
Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений до 20 м3/ч включительно (частичное поглощение) в емкость для приготовления блокирующей пачки набирают (% масс) дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 15-30. Далее запускают центробежный насос на циркуляцию и лопастной перемешиватель. После этого последовательно в дизельном топливе диспергируют эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм. - 1-3 и микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5-10, водный раствор хлористого кальция или хлористого калия - остальное.
Для ликвидации поглощений бурового раствора в пластах с интенсивностью поглощений более 20 м3/ч (полное или катастрофическое поглощение) в емкость для приготовления блокирующей пачки набирают (% масс.) дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти - 5-15. Далее запускают центробежный насос на циркуляцию и лопастной перемешиватель. После этого последовательно в дизельном топливе диспергируют эмульгатор - 2-3, коллоидный раствор наночастиц двуокиси кремния - 0.5-1, сухую аморфную двуокись кремния (92-99%) с размером частиц от 5 до 500 нм - 3-5 и микрочастицы ильменита или тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5-10, водный раствор хлористого кальция или хлористого калия - остальное.
Независимо от интенсивности поглощений пластов (более или менее 20 м3/ч) в качестве коллоидного раствора наночастиц двуокиси кремния можно использовать композицию, содержащую (% масс):
- двуокись кремния - 31-32.5 в монометиловом эфире пропиленгликоля - 67, воду - остальное, или
- двуокись кремния - 30-31 в изопропаноле - 67-69 и метиловом спирте - остальное, или
- двуокись кремния - 29-31 в этиленгликоле - остальное.
В качестве эмульгатора можно использовать композицию, содержащую (% масс.): эфиры высших ненасыщенных кислот жирного ряда и смоляных кислот - 40-42, окись амина - 0.7-1, высокомолекулярный органический термостабилизатор - 0.5-1, дизельное топливо- остальное.
Ввод составляющих в углеводородную основу производится через эжектор с помощью вакуумного шланга или через открытый верх емкости «БПР».
Технологические емкости должны быть оборудованы лопастными мешалками, обеспечивающими постоянное и равномерное распределение реагентов по всему объему. Для обеспечения получения и поддержания свойств стабильности систем рекомендуется применять лопастные мешалки с реверсивным направлением вращения.
Качество приготовления и стабильность свойств систем зависит от полноты охвата перемешиванием всего объема емкости приготовления, чистоты емкостей, скорости ввода составляющих и времени диспергирования. Рекомендуется использовать емкость со «скошенными» углами (форма близкая к цилиндрической).
Контроль качества приготовления ЭСС Контроль проводится путем проверки седиментационной устойчивости систем. Тест считается положительным, если при выдержке ЭСС при комнатной температуре в течение 2 ч произошло отделение водной или углеводородной фазы не более 3% от объема ЭСС.
Перечень оборудования и специальной техники для проведения работ на скважине Количество и вид специальной техники представлены на фиг. 1. Расчет произведен при условии приготовления систем на растворном узле «БПР». Представленный перечень оборудования и специальной техники является базовым и может включать в себя дополнительные наименования в зависимости от условий проведения работ, месторасположения растворного узла. Закачка блокирующей пачки в скважину может быть произведена с применением буровых насосов.
Технология осуществления способа
Порядок технологических операций:
1. Перевод нагнетательной линии на «БПР».
2. Закачка в скважину блокирующей пачки в объеме 5-25 м3/м, но не менее 150% от объема, достаточного для перекрытия поглощающего интервала.
3. Продавка блокирующей пачки водным раствором хлористого кальция или хлористого калия в объеме достаточном для выхода блокирующей пачки из колонны бурильных труб.
4. Поднятие компоновки низа бурильной колонны (КНБК) на 50 м выше интервала установки блокирующей пачки.
5. Закрытие превентора.
6. Продавка водным раствором хлористого кальция или хлористого калия в объеме не менее 150% от объема блокирующей пачки. Продавку производить с низким расходом, периодической остановкой агрегата и мониторингом изменения давления в скважине:
- при регистрации потери давления в скважине после остановки агрегата необходимо продолжить продавку закаченного объема блокирующей пачки;
- если в ходе продавки полного объема блокирующей пачки с низким расходом не происходит рост давления или рост давления незначительный, необходимо повторно произвести вышеперечисленные технологические операции по закачке и продавке блокирующей пачки;
- если достигнута стабилизация давления в скважине - открыть превентор и возобновить циркуляцию с низким расходом;
- если циркуляция полная, медленно увеличить расход промывочной жидкости до рабочего;
- если выход раствора частичный, либо отсутствует, необходимо повторно произвести закачку и продавку блокирующей пачки.
7. Спуск инструмента на забой для удаления остатков блокирующей пачки.
8. Продолжить бурение.
Конкретные объемы закачиваемых в пласт блокирующей пачки и продавочной жидкости рассчитываются в зависимости от интенсивности поглощений или приемистости пласта и мощности вскрытого интервала поглощений.
Скорость закачки технологических жидкостей
Закачка технологических жидкостей на этапе установки блокирующей паки должна производиться непрерывно с производительностью, предотвращающей снижение плотности технологических жидкостей всплывающими газом и нефтью, а также при давлении на агрегате, исключающем полное поглощение жидкости.
Скорость закачки технологических жидкостей определяется величиной пластового давления:
- в случае высокого газового фактора и аномально высокого пластового давления скорость закачки должна быть максимальной, превышающей производительность пласта;
- в случае аномально низкого пластового давления в целях минимизации репрессии на продуктивный пласт и снижения объемов поглощений закачиваемой жидкости пластом необходимо придерживаться минимальной скорости закачки (5-10 л/с).
Расчет требуемой плотности технологических жидкостей
Требуемая плотность технологических жидкостей определяется на основе расчета исходя из условия создания столбом технологических жидкостей давления, превышающего текущее пластовое давление на коэффициент безопасности.
Количество сухого хлористого калия или хлористого кальция, требуемого для приготовления необходимого объема водного раствора определенной плотности, рассчитывается по следующей формуле:
где:
Мр - количество реагента - сухого хлористого калия или хлористого кальция, кг;
Yp - удельный вес реагента, г/см3;
Yжг - удельный вес технологических жидкостей, г/см3;
Yв - удельный вес технической воды, применяемой для приготовления технологических жидкостей, г/см3;
Vp - требуемый объем водного раствора солей, м3.
Расчет необходимой плотности технологических жидкостей при полной замене скважинной жидкости определяется по следующей формуле:
где:
ρ - расчетная плотность технологических жидкостей, кг/м3;
Рпл - пластовое давление, МПа;
П - коэффициент безопасности удельного веса технологических жидкостей, определяемый Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности», утвержденные приказом Ростехнадзора от 12.03.2013 №101;
Н - расстояние от устья до кровли пласта по вертикали, м.
Для скважины, в которой вскрыто несколько пластов с разными пластовыми давлениями и расстояние между ними составляет более 50 м, в расчетах принимается величина Н от устья скважины до кровли пласта с более высоким пластовым давлением.
Лабораторные исследования физических свойств ЭСС
Для исследования физических свойств систем были подготовлены образцы блокирующей пачки с различным объемным содержанием компонентов.
В результате проведения экспериментов определялись следующие параметры систем:
- плотность;
- агрегативная устойчивость;
- термостабильность;
- кинематическая вязкость.
С целью оценки качества приготовления образцов ЭСС производилась их выдержка не менее 2 часов при комнатной температуре до начала проведения экспериментов.
Измерение плотности ЭСС
Результаты измерения плотности (пикнометрический метод) эмульсионно-суспензионных систем (плотность водной составляющей - 1280 кг/м3), применяемых для ликвидации поглощений бурового раствора представлены на фиг. 2.
Измерение агрегативной устойчивости ЭСС
Агрегативная устойчивость - это способность систем сохранять степень дисперсности внутренней фазы.
Оценку проводили по показателю электростабильности - измерений значений электрического напряжения, соответствующего моменту разрушения систем, заключенной между электродами измерительной ячейки прибора. Эксперименты проводились на приборе марки FANN.
Результаты измерения агрегативной устойчивости ЭСС с плотностью водной составляющей - 1280 кг/м3 представлены на фиг. 3.
Измерение термостабильности ЭСС
Измерение термостабильности ЭСС проводили путем выдержки образцов в мерных герметично закрытых цилиндрах в термошкафу в течение 24 часов при заданном температурном режиме 80°С. Тест считался положительным (образец стабилен), если после 6 ч термостатирования из эмульсионной системы отделилось не более 3 об. % водной или углеводородной фаз от общего объема ЭСС. В результате экспериментов на термостабильность определено, что все образцы стабильны в течение 24 часов.
Измерение кинематической вязкости ЭСС
Результаты измерения кинематической вязкости (мм2/с) ЭСС с плотностью водной составляющей 1280 кг/м3 представлены на фиг. 4. Измерения проводились при температуре 23°С (погрешность измерения температуры ±0,1°С) на вискозиметре ВПЖ-2 с константой вискозиметра - 0,09764. Перед экспериментами ЭСС перемешивали в механической мешалке при заданной скорости 1600 об/мин в течение 20 минут.
Результаты комплекса проведенных базовых лабораторных исследований физических свойств ЭСС подтвердили высокие технологические свойства разработанных составов. Особенно важными параметрами являются высокая термостабильность и агрегативная устойчивость систем, а также возможность регулировать вязкость ЭСС изменением объемного содержания водной фазы в системе.
Далее приведены примеры осуществления способа.
Пример 1
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 38 м3/ч. Поглощение было ликвидировано в один цикл.
Провели подготовительные работы на скважине: произвели расстановку техники для проведения закачки согласно утвержденной схемы, произвели обвязку оборудования и опрессовку нагнетательной линии на давление, превышающее ожидаемое рабочее в 1,5 раза, соблюдая меры безопасности.
По завершению подготовительных работ начали проведение технологических операций по закачке блокирующей пачки.
На первом этапе произвели закачку в призабойную зону пласта (ПЗП) блокирующей пачки следующего состава, % масс.: дизельное топливо - 7, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 0.7, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4.5, микрочастицы тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 8, водный раствор хлористого калия плотностью 1050 кг/м3 - 77.8, в объеме 25 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 41, окись амина - 0.8, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (зимнее) - 57.7. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 30, этиленгликоль - 70.
На втором этапе произвели продавку блокирующей и закрепляющей пачек водным раствором хлористого калия с плотностью 1020 кг/м3 в объеме 3 м3/м.
Пример 2
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 18 м3/ч. Поглощение было ликвидировано в один цикл.
Здесь и далее подготовительные работы производились в соответствие с порядком, указанным в примере 1.
На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: дизельное топливо - 23, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 0.9, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 2, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 7, водный раствор хлористого кальция плотностью 1035 кг/м3 - 64.6, в объеме 6 м3/м. При этом эмульгатор содержит (% масс.): эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит (% масс.): двуокись кремния - 30, монометиловый эфир пропиленгликоля - 67, вода - 3.
На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1025 кг/м3 в объеме 3 м3/м.
Пример 3
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 16 м3/ч. Поглощение было ликвидировано в один цикл.
На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс: дизельное топливо - 30, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 0.5, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 1, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 5, водный раствор хлористого кальция плотностью 1035 кг/м3 - 60.5, в объеме 5 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0.5.
На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1020 кг/м3 в объеме 2 м3/м.
Пример 4
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 42 м3/ч. Поглощение было ликвидировано в один цикл.
На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 5, эмульгатор - 2, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 5, микрочастицы ильменита с размером частиц от 0.2 до 5 мкм - 10, водный раствор хлористого кальция плотностью 1095 кг/м3 - 77, в объеме 25 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина - 1, высокомолекулярный органический термостабилизатор - 1, дизельное топливо (летнее) - 56. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 31, изопропанол - 68, метиловый спирт - 1.
На втором этапе продавку блокирующей пачки водным раствором хлористого калия с плотностью 1080 кг/м3 в объеме 3 м3/м.
Пример 5
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 27 м3/ч. Поглощение было ликвидировано в один цикл.
На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 10, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4, микрочастицы тетраоксида тримарганца с размером частиц от 0,2 до 5 мкм - 8, водный раствор хлористого кальция плотностью 1040 кг/м3 - 74, в объеме 20 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (олеиновая) и смоляных кислот - 42, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 56.8. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 30.5, изопропанол - 69, метиловый спирт - 0.5.
На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1015 кг/м3 в объеме 6 м3/м.
Пример 6
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 19.5 м3/ч. Поглощение было ликвидировано в один цикл.
На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 27.5, эмульгатор - 3, коллоидный раствор наночастиц двуокиси кремния - 0.5, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 1, микрочастицы тетраоксида тримарганца с размером частиц от 0.2 до 5 мкм - 5, водный раствор хлористого кальция плотностью 1040 кг/м3 - 63, в объеме 6.5 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (линоленовая) и смоляных кислот - 42, окись амина 0.9, высокомолекулярный органический термостабилизатор - 0.8, дизельное топливо (зимнее) - 56.3. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 32.5, монометиловый эфир пропиленгликоля - 67, вода - 0.5.
На втором этапе продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1030 кг/м3 в объеме 2 м3/м.
Пример 7
Осуществление способа при ликвидации поглощений бурового раствора пластом с аномально-низким пластовым давлением и интенсивностью поглощений 25.5 м3/ч. Поглощение было ликвидировано в один цикл. На первом этапе произвели закачку в ПЗП блокирующей пачки следующего состава, % масс.: дизельное топливо - 10, эмульгатор - 2.5, коллоидный раствор наночастиц двуокиси кремния - 1, сухие наночастицы аморфной двуокиси кремния с размером частиц от 5 до 500 нм - 4, микрочастицы ильменита с размером частиц от 0,2 до 5 мкм - 9, водный раствор хлористого кальция плотностью 1040 кг/м3 - 73.5, в объеме 17 м3/м. При этом эмульгатор содержит % масс.: эфиры высших ненасыщенных кислот жирного ряда (олеиновая) и смоляных кислот - 42, окись амина - 0.7, высокомолекулярный органический термостабилизатор - 0.5, дизельное топливо (летнее) - 56.8. Коллоидный раствор наночастиц двуокиси кремния содержит % масс.: двуокись кремния - 30.5, изопропанол - 69, метиловый спирт - 0.5.
На втором этапе произвели продавку блокирующей пачки водным раствором хлористого кальция с плотностью 1015 кг/м3 в объеме 4.5 м3/м.
Таким образом, изобретение обеспечивает повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с АНПД, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям ликвидации поглощений бурового раствора при строительстве (бурении) нефтяных и газовых скважин. Способ включает последовательную закачку в пласт блокирующей пачки и продавочной жидкости. При этом в качестве блокирующей пачки используют эмульсионно-суспензионную систему, содержащую дизельное топливо или подготовленную нефть с пункта подготовки и перекачки нефти, эмульгатор, коллоидный раствор наночастиц двуокиси кремния, сухую аморфную двуокись кремния, микрочастицы ильменита или тетраоксида тримарганца, водный раствор хлористого кальция или хлористого калия. При этом в качестве продавочной жидкости используют водный раствор хлористого кальция или хлористого калия. Техническим результатом является повышение технологической эффективности мероприятий по ликвидации поглощений бурового раствора в высокопроницаемых пластах или пластах с аномально-низким пластовым давлением, упрощение приготовления блокирующего состава в промысловых условиях, возможность регулирования реологических параметров составов как в поверхностных условиях, так и при их движении в колонне бурильных труб. 6 з.п. ф-лы, 7 пр., 4 ил.
Способ обработки призабойной зоны пласта