Код документа: RU2633421C2
Изобретение относится к датчику давления для измерения давления, в частности, в системе выпуска отработавших газов двигателя внутреннего сгорания, согласно ограничительной части п. 1 формулы изобретения.
Для уменьшения содержания вредных веществ в отработавшем газе двигателя внутреннего сгорания в соответствии с законодательными нормами необходимы дорогостоящие и сложные системы выпуска отработавших газов, содержащие, в частности, различные катализаторы и/или сажевые фильтры. Для управления функциями и/или для функционального контроля таких систем выпуска отработавших газов необходимы сами по себе известные измерения давления посредством датчиков давления и/или измерения перепадов давлений посредством датчиков перепада давлений.
Например, предписан контроль установленного дизельного сажевого фильтра в установке нейтрализации отработавших газов на предмет повреждения или блокирования (заполненных фильтров). Для этого в качестве индикатора поврежденного или заполненного фильтра регистрируется перепад давлений между местом измерения перед дизельным сажевым фильтром и местом измерения позади дизельного сажевого фильтра. Однако дизельные сажевые фильтры, используемые в настоящее время, оказывают лишь очень незначительное сопротивление потоку, способствующее незначительному расходу топлива. Следствием этого является то, что возникающий перепад давлений в случае незаполненного дизельного сажевого фильтра по сравнению с демонтированным, или поврежденным дизельным сажевым фильтром составляет лишь несколько гПа. В конкретном незаполненном дизельном сажевом фильтре, например, в режиме работы двигателя, перепад давлений составляет 12 гПа, а в той же рабочей точке в поврежденном дизельном сажевом фильтре перепад давлений составляет 7-8 гПа, что соответствует разнице в 4-5 гПа. Однако датчики давлений, установленные в соответствии с актуальным уровнем техники, имеют все же недостаточную точность, в результате чего невозможно обеспечить безошибочное обнаружение поврежденного фильтра.
Таким образом, для контроля и/или для функций управления в системе выпуска отработавших газов двигателя внутреннего сгорания необходимы высокоточные измерения давления/перепада давлений.
В документе DE 102008002579 А1 описывается микроэлектромеханический сенсорный элемент для использования в окружающей среде, содержащей частицы. Функция датчика осуществляется мембраной, которая нагревается с помощью нагревательного средства до температуры выше температуры окружающей среды и поддерживает ее на этом температурном уровне с целью предотвращения отложения частиц и осаждения веществ на мембране.
В документе DE 202010003133 U1 описывается используемый в горячей окружающей среде датчик давления, охлаждаемый посредством охлаждающей жидкости, и возможность обеспечения его работоспособности. За счет целенаправленного выбора расстояния между корпусом и модулем датчика обеспечивается возможность целенаправленного, стабильного распределения охлаждения на датчике.
Поэтому задачей изобретения является создание высокоточного датчика давления, при необходимости в виде датчика перепада давлений, в частности, высокоточного датчика давления в системе выпуска отработавших газов двигателя внутреннего сгорания.
Эта задача решается с помощью признаков п. 1 формулы изобретения. Предпочтительные варианты осуществления являются предметом зависимых пунктов формулы изобретения.
Согласно п. 1 формулы изобретения датчик давления содержит корпус датчика по меньшей мере с одной установленной в нем ячейкой для измерения давления с соответствующей электроникой датчика, причем по меньшей мере одна ячейка для измерения давления соединена с трубопроводом для измерительной среды, в частности, с измерительным трубопроводом для отработавших газов в качестве трубопровода для измерительной среды. Согласно изобретению для датчика давления с целью повышения точности измерения предусмотрено терморегулирующее устройство.
В частности, при относительно небольшом диапазоне измерения давления влияние температуры на сигнал давления велико и отрицательно сказывается на достижимой точности. Благодаря терморегулирующему устройству для датчика давления создается и поддерживается постоянный температурный уровень, так что температурные воздействия, при которых возникают температурные градиенты, в значительной степени сокращаются и обеспечивается возможность высокоточного измерения давления/перепада давлений, в частности, в системе выпуска отработавших газов двигателя внутреннего сгорания.
При этом терморегулирующее устройство должно работать за счет нагрева и/или охлаждения таким образом, чтобы датчик давления удерживался в диапазоне температур, в котором он имеет определенно заданную, в частности, свою максимальную, точность измерений, или соответственно для которого рассчитана определенно заданная, в частности, максимальная, точность измерения.
Терморегулирующее устройство может быть образовано в особенно предпочтительном варианте осуществления благодаря тому, что терморегулирующая жидкость пропускается через корпус датчика, причем температура корпуса датчика за счет регулируемого нагрева и/или охлаждения, предпочтительно, электрического нагрева и/или охлаждения терморегулирующей жидкости, и/или за счет регулирования объемного потока терморегулирующей жидкости, удерживается на постоянном температурном уровне. В результате желательным образом на постоянном уровне поддерживается также температура компонентов датчика давления, в частности, ячейки для измерения давления и электроники датчика, так что сокращаются негативные температурные воздействия на точность измерения.
В принципе в зависимости от случая применения используется любая подходящая терморегулирующая текучая среда. Целесообразно, например, в качестве применяемой в автомобиле терморегулирующей текучей среды использовать текучую среду, уже имеющуюся в транспортном средстве. Смотря по обстоятельствам, это могут быть охлаждающая жидкость двигателя, отводимая из контура системы охлаждения двигателя, или топливо, или моторное масло. В частности, может быть использована также текучая среда, содержащая мочевину, которая в ходе способа селективного восстановления подводится по тракту для отработавших газов системы выпуска отработавших газов, и поэтому в системе выпуска отработавших газов проходят трубопроводы для текучей среды. Таким образом, эта текучая среда может просто пропускаться через корпус датчика, а затем подводиться к инжекционному соплу.
В порядке альтернативы или дополнения к нагреву/охлаждению с помощью текучей среды на корпусе датчика или внутри него может быть предусмотрен по меньшей мере один теплообменник нагревательной и/или охлаждающей установки, предпочтительно, электрической нагревательной и/или охлаждающей установки, с помощью которой температура в корпусе датчика путем регулирования поддерживается на постоянном температурном уровне.
Дальнейшее повышение точности измерения может быть достигнуто за счет того, что измеряемая среда, в частности, отработавший газ в качестве измеряемой среды, терморегулировалась в области ячейки для измерения давления на постоянном температурном уровне.
Кроме того, электроника управления может быть установлена на некотором расстоянии от ячейки для измерения давления. В этом случае на электронику управления с ячейки для измерения давления в зависимости от давления подается напряжение, при необходимости предварительно преобразованное электроникой управления для выдачи сигнала измерения давления в цифровой форме. В особенно предпочтительном варианте выполнения датчика давления электроника датчика выполнена в виде специально применяемой полупроводниковой интегральной схемы (ASIC), однако в принципе она может быть образована и с помощью других сопоставимых элементов, например, микроконтроллера.
Электроника датчика, предпочтительно, выполненная в виде полупроводниковой интегральной схемы (ASIC), должна иметь стандартные программы для температурной компенсации измеренного значения давления и к тому же с помощью наружного элемента для измерения температуры регистрировать температуру своего собственного чипа или при необходимости температуру в своей непосредственной близости. Благодаря минимизации расстояния между ячейкой для измерения давления и соответствующей электроникой датчика возможный температурный градиент соответствующим образом минимизируется, а точность измерения повышается.
Кроме того, электронике датчика должна предоставляться в распоряжение температура, зарегистрированная в точке измерения температуры на ячейке для измерения температуры со стороны, отвернутой от среды. Регистрируемый таким образом температурный градиент между электроникой датчика и ячейкой для измерения давления может быть использован для повышения точности измерения для температурной компенсации.
Кроме того, для дальнейшего повышения точности на электронику датчика, предпочтительно, выполненную в виде полупроводниковой интегральной схемы (ASIC), с учетом среды можно подавать значение температуры измеряемой среды, зарегистрированное во второй точке измерения температуры на ячейке для измерения давления со стороны, обращенной к среде. Таким образом, при температурной компенсации можно учитывать разницу температур между температурами на отвернутой от среды и на обращенной к среде сторонами ячейки для измерения давления.
Температурные компенсации для повышения точности, возможные с помощью вышеприведенных измерений температуры, возможны благодаря соответствующим вычислительным операциям и/или установленным характеристикам.
Для измерения относительного или абсолютного давлений используется ячейка для измерения давления с подсоединенным трубопроводом для отработавших газов и соответствующей электроникой датчика в корпусе датчика. Альтернативно или дополнительно для измерения перепада давлений между двумя измерительными трубопроводами для отработавших газов соответствующим образом используются одна или две ячейки для измерения давления с соответствующими электрониками датчиков, в частности, полупроводниковые интегральные схемы (ASIC), в корпусе датчика. Один единственный корпус датчика имеет то преимущество, что температура должна компенсироваться только в одном месте.
В качестве другой меры поддержания постоянного температурного уровня предлагается наносить внутри корпуса датчика термопасты и/или изготавливать корпус датчика из теплопроводного материала датчика.
Вышеописанный датчик давления с помощью измерительных трубопроводов для отработавших газов с целью измерения относительного давления/перепада давлений может быть подсоединен над катализатором окисления и дизельным сажевым фильтром, в частности, для контроля дизельного сажевого фильтра на предмет повреждения и/или блокировки. Тем самым реализуется точность измерения, необходимая для этого.
Преимущества, достигаемые с помощью других независимых п. 12 и 13, соответствуют преимуществам, приведенным ранее в связи с оценкой датчика давления, так что в этом отношении делается отсылка на вышеприведенные варианты осуществления изобретения.
Ниже изобретение поясняется со ссылкой на чертежи, на которых схематически показано:
фиг. 1 - система выпуска отработавших газов дизельного двигателя внутреннего сгорания автомобиля промышленного назначения, а
фиг. 2 - датчик перепада давлений, используемый в системе выпуска отработавших газов согласно фиг. 1.
На фиг. 1 схематически изображена система выпуска отработавших газов в виде установки 1 нейтрализации отработавших газов, в которую подается отработавший газ дизельного двигателя внутреннего сгорания (стрелка 2), последовательно протекающий через катализатор 3 окисления и дизельный сажевый фильтр 4. После добавки 5 восстановителя для селективного каталитического восстановления SCR (СКВ - селективное каталитическое восстановление, SCR) отработавший газ устремляется дальше через катализатор 6 селективного каталитического восстановления SCR, а также при необходимости через дополнительные устройства нейтрализации и измерения, а затем выходит (стрелка 7). От тракта 8 для отработавших газов перед катализатором 3 окисления отходят измерительный трубопровод 9 для отработавших газов, а также другой измерительный трубопровод 10 для отработавших газов и ведут к (схематически изображенному) комбинированному датчику 11 давления/перепада давлений для измерения перепада давлений над катализатором 3 окисления и над последовательно подсоединенным к нему дизельному сажевому фильтру 4. После дизельного сажевого фильтра 4 от тракта 8 для отработавших газов к датчику 11 давления/перепада давлений отходит очередной измерительный трубопровод 12 для отработавших газов и там, как и измерительный трубопровод 10 для отработавших газов, подсоединяется к элементу (ΔР) датчика перепада давлений. Этот перепад давлений регистрируется как индикатор для контроля, в частности, дизельного сажевого фильтра 4 на предмет повреждения и/или блокировки (заполнения фильтра). Этот датчик 1 давления/перепада давлений имеет корпус 13 датчика, который для повышения точности измерения оснащен терморегулирующим устройством 14. В конкретно изображенном примере выполнения корпус 13 датчика для установления постоянного температурного уровня обтекается охлаждающим средством, ответвляемым от контура охлаждения двигателя внутреннего сгорания (подвод охлаждающего средства - стрелка 15, выход охлаждающего средства - стрелка 16).
На фиг. 2 датчик 11 давления/перепада давлений схематически изображен более детально. На данной фиг. показаны также подвод охлаждающего средства (стрелка 15) и выход охлаждающего средства (стрелка 16) для протекания охлаждающего средства через корпус 1 датчика. В данном случае охлаждающее средство в виде текучей среды 17 с помощью электронагревателя 18 и/или регулятора 19 объемного потока направляется при постоянном температурном уровне через корпус 13 датчика.
Для измерения перепада ΔР21 давлений измерительный трубопровод 10 для отработавших газов подсоединен к ячейке DZ1 для измерения давления, а измерительный трубопровод 12 для отработавших газов - к ячейке DZ2 для измерения давления. Зависящий от давления сигнал напряжения, сгенерированный ячейкой DZ1 для измерения давления, в изображенном варианте осуществления подается в полупроводниковую интегральные схемы ASIC1 (ASIC - интегральная схема специального назначения). Зависящий от давления сигнал напряжения ячейки DZ2 для измерения давления подается, соответственно, в полупроводниковую интегральную схему ASIC2. Ячейки DZ1 и DZ2 для измерения давления, а также подсоединенные полупроводниковые интегральные схемы ASIS1 и ASIC2 установлены в терморегулируемом корпусе 13 датчика.
Для регистрации перепада ΔР21 давлений с помощью ячейки DZ1 для измерения давления измеряется давление Р1 в измерительном трубопроводе 10 для отработавших газов, а с помощью ячейки DZ2 измеряется давление Р2 в измерительном трубопроводе 12 для отработавших газов, и соответствующий сигнал измерения напряжения подается в полупроводниковую интегральную схему ASIC1 или ASIC2.
Для высокоточных измерений давления в (уже термоотрегулированной) полупроводниковой интегральной схеме ASIC1 и ASIC2 (при необходимости также с другими последовательно подключенными электронными компонентами) осуществляются температурные компенсации.
Для этого определяются и учитываются следующие температуры и тем самым температурные градиенты.
В полупроводниковых интегральных схемах ASIC1 и ASIC2 регистрируются соответственно имеющие там место температуры Т1 и Т2 (конкретные элементы для измерения температуры, установленные в полупроводниковых интегральных схемах ASIC1 и ASIC2, а также в ячейках DZ1 и DZ2 для измерения давления или встроенные в них, для наглядности не показаны).
Кроме того, на ячейке DZ1 для измерения давления с обращенной к среде стороне, то есть в области, смежной с трубопроводом 10 для измерительной среды, регистрируется температура Т3, а в другой точке измерения, на отвернутой от среды стороне, регистрируется температура Т5. Эти температуры Т3, Т5 подаются также в полупроводниковую интегральную схему ASISC1, благодаря чему для температурной компенсации предоставляются в распоряжение разности ΔТ15 и ΔТ35 температур. Соответствующим образом в другой ветви измерения давления с измерительным трубопроводом 12 для отработавших газов на ячейке DZ2 для измерения давления регистрируются температура Т4 на обращенной к среде стороне и температура Т6 на отвернутой от среды стороне, и передаются в полупроводниковую интегральную схему ASIC2, так что и там в распоряжение предоставляются разности ΔТ26 и ΔТ46 температур. Таким образом, аналогично появляется также разность ΔТ34 температур, которая должна учитываться полупроводниковой интегральной схемой ASIC2 вместе с полупроводниковой интегральной схемой ASIC2. Очевидно, что выравнивание зарегистрированных температур по желательному возможно более постоянному температурному уровню осуществляется за счет того, что расстояния х, у, z между отдельными компонентами датчика выдерживаются по возможности малыми и конструктивно минимизированы.
Измеренные сигналы давления полупроводниковых интегральных схем ASIC1 и ASIC2 подаются в другую полупроводниковую интегральную схему ASIC3, в которой образуется разность и для дальнейшей обработки выдается высокоточный измеренный сигнал перепада давлений.
ПЕРЕЧЕНЬ ПОЗИЦИЙ
1 - Система выпуска отработавших газов
2 - Стрелка (подача)
3 - Катализатор окисления
4 - Дизельный сажевый фильтр
5 - Добавки восстановителя селективного каталитического восстановления (SCR - selective catalytic reduction)
6 - Катализатор селективного каталитического восстановления SCR (selective catalytic reduction)
7 - Стрелка
8 - Ветвь для отработавших газов
9 - Измерительный трубопровод для отработавших газов
10 - Измерительный выпускной газопровод трубопровод для отработавших газов
11 - Датчик давления/перепада давлений
12 - Измерительный трубопровод отработавших газов
13 - Корпус датчика
14 - Терморегулирующее устройство
15 - Стрелка (подача охлаждающего средства)
16 - Стрелка (выход охлаждающего средства)
17 - Текучая среда
18 - Электронагреватель
19 - Регулятор объемного потока.
Изобретение относится к датчику давления для измерения давления, в частности, в системе выпуска отработавших газов двигателя внутреннего сгорания, причем датчик (11) давления содержит корпус (13) датчика по меньшей мере с одной установленной в нем ячейкой (DZ) для измерения давления с соответствующей электроникой (ASIC) датчика, и по меньшей мере одна ячейка (DZ) для измерения давления соединена с трубопроводом (9; 10; 12) для измерительной среды, в частности, с измерительным трубопроводом для отработавших газов в качестве трубопровода для измерительной среды. Согласно изобретению для датчика (11) с целью повышения точности измерения предусмотрено терморегулирующее устройство (14). Терморегулирующее устройство (14) образовано за счет того, что терморегулирующая текучая среда (17) направляется через корпус (13) датчика, причем температура в корпусе (13) датчика удерживается на постоянном температурном уровне посредством регулируемого нагрева, предпочтительно, с помощью электрического нагрева (18) и/или посредством регулирования объемного потока терморегулирующей текучей среды (17). Технический результат – создание высокоточного датчика давления в системе выпуска отработавших газов двигателя внутреннего сгораний. 4 н. и 11 з.п. ф-лы, 2 ил.